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Abstract
The function of biologicalmembranes is controlled by the interaction of the fluid lipid bilayer with
various proteins, some ofwhich induce or react to curvature. These proteins can preferentially bind or
diffuse towards curved regions of themembrane, induce or stabilizemembrane curvature and
sequestermembrane area into protein-rich curved domains. The resulting tight interplay between
mechanics and chemistry is thought to control organellemorphogenesis and dynamics, including
traffic,membranemechanotransduction, ormembrane area regulation and tension buffering.
Despite all these processes are fundamentally dynamical, previouswork has largely focused on
equilibrium and a self-consistent theoretical treatment of the dynamics of curvature sensing and
generation has been lacking.Here, we develop a general theoretical and computational framework
based on a nonlinearOnsager’s formalism of irreversible thermodynamics for the dynamics of curved
proteins andmembranes.We develop variants of themodel, one of which accounts formembrane
curving by asymmetric crowding of bulky off-membrane protein domains. As illustrated by a selection
of test cases, the resulting governing equations and numerical simulations provide a foundation to
understand the dynamics of curvature sensing, curvature generation, andmore generallymembrane
curvaturemechano-chemistry.

1. Introduction

Animal life is characterized by a hierarchical compartmentalization into separate functional units delimited by
interfaces. At cellular and sub-cellular scales, the fundamental structure supporting compartmentalization is the
lipidmembrane. To form specialized organelles, lipidmembranesmust adopt a variety of shapes including
spherical vesicles, sheets, tubes, and complex assemblies involving several of these elements [1]. Furthermore,
biomembranes need to dynamically reconfigure their shapes and topologies to accomplish vesicular transport
[2], cell division [3], or to unfoldmembrane reservoirs under stress [4]. The plasmamembrane is also a
mechanical organizer of the cell [5], and supports a variety ofmechanotransductionmechanisms [6]. To
perform all these functions, lipidmembranes rely on a combination of solid-likemechanical properties,
e.g.bending and stretching elasticity, in-plane fluidity, and the interactionwith amyriad of curvedmembrane
proteins.Molecularly,membrane proteins impinge curvature on themembrane through variousmechanisms,
which include curved scaffolding domains, wedge-like insertions [7–9], or asymmetrical crowding of bulky
disordered domains [10] or anchored polymers [11] as in the glycocalyx [12] interacting at a distance from the
bilayermid-plane. Here, we refer to all these objects as curved proteins. Besides enabling shape remodeling,
membrane fluidity allows curved proteins tomigrate to regions of favorable curvature during curvature sensing
[13], to cluster and reshape themembrane during curvature generation [7], whilemembrane tension controls
the (dis)assembly of protein-rich curved domains [4].
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To quantitatively understand these phenomena, various biophysical studies have exposed artificial lipid
membranes to purified proteins in controlled conditions [14]. At high concentration, curved proteins can
induce severemembrane curvaturewhen incubatedwith liposomes [15], can stabilizemembrane tubes [10, 16],
and can dynamically trigger protein-rich tubular protrusions out of tense vesicles [17–19]. At lower
concentrations, proteins sense curvature and preferentially adsorb ormigrate to favorably curvedmembranes,
as probed in assays involving polydisperse vesicle suspensions [20], vesicles withmembrane tethers [18, 21] or
supported lipid bilayers onwavy substrates [22]. Since protein-rich curved domains sequester apparent
membrane area from the adjacent planarmembrane, their formation performwork againstmembrane tension,
and thus can be hindered if tension is large enough. This kind ofmechano-chemical coupling, tested in vitro by
exposing aspirated vesicles to BARproteins [19], has physiological implications during themechano-protection
of stressed cells by the release ofmembrane area through disassembly of caveolae [4], or in the regulation of
clathrin-mediated endocytosis bymembrane tension [23].

A number of theoretical and computational studies at various scales have been developed to understand the
interaction between curved proteins andmembranes. At the nanoscale, all-atommolecular dynamics have
described curvature generation by single domains [24] and curvaturemaintenance bymultiple proteins [25].
Reaching amicron, coarse-grainedmolecular dynamics simulations, treating themembrane eithermolecularly
or as a continuumobject, have followed the aggregation ofmultiple proteins to cooperatively formprotein-rich
curved domains [26–30].Models treating proteins as discrete objects in a continuummembrane have examined
membrane-mediated protein–protein interactions [31, 32], or the spontaneous curvature induced by anchored
polymers [33, 34]. A fundamental obstacle to developmeanfield theories at larger scales based onmodels where
proteins are discrete object, however, is the non-additive nature ofmembrane-mediated pairwise interactions
[35]. Reaching larger scales, continuummodels combining theHelfrich curvature energy [36, 37]with
thermodynamicmodels ofmixtures [38, 39] have been quite successful in recapitulating and interpreting
quantitative in vitromeasurements, see [40, 41] for two recent reviews. Thesemodels suggest that, rather than
two differentmechanisms, curvature sensing and generation are twomanifestations of the samemechano-
chemical coupling. They have provided a background to understand the emergence of heterogeneous protein-
rich curved domains using linear stability analysis [42, 43], or curvature sorting of proteins in equilibrium and at
fixed shape between tubes and vesicles [18, 44–46] or onwavy surfaces [47]. Also in equilibrium, protein-
membrane interactions allowing for shape changes were studied in [48].

With a few exceptions under rather restrictive conditions [49, 50], previous theories of the interaction
between curved proteins andmembranes have focused on equilibrium. Yet, cellular functions are
fundamentally out-of-equilibrium.Here, we develop a nonlinear and self-consistent continuum theory to study
the two-way chemo-mechanical coupling betweenmembranes and curved proteins out-of-equilibrium, and
performnumerical simulations.We follow a nonlinearOnsager’s variational formalism inwhich the dynamics
emerge from a competition between energy release rate and dissipation. Ingredients in the free energy include
the curvature energy of themembranewith a protein-induced spontaneous curvature, the entropy ofmixing of
proteins, and protein–protein interactions. As it evolves, the systemdissipates energy through the drag between
proteins and themembrane, and through lipid shear viscosity as themembrane changes shape. See [51] for a
related theoretical work. The setup and ingredients of the theory are given in sections 2 and 3. The resulting
governing equations for protein transport and formembrane dynamics are presented in section 4.We
particularize this general theory to axisymmetry and present a direct numerical approach to approximate the
theory in section 5. In section 6, we present a selection of numerical calculations showing the ability of the theory
to describe curvature sensing, generation, andmore generally the intimate chemo-mechanical coupling of the
membrane-protein system. Finally, we introduce two variants of thismodel in section 7, one accounting for
protein’s bending elasticity and the other addressingmembrane bending by crowding of bulky off-membrane
protein domains [10, 17], and collect our conclusions in section 8.

2. Setup, kinematics and balance laws

Wemodel the lipid bilayer as amaterial surfaceΓ parametrized by r t,qa( ), where (θ1, θ2) are Lagrangian
coordinates labelingmaterial particles and t denotes time. Themodel proposed here does not explicitly describe
each of the twomonolayers [52, 53]. Accounting for the bilayer architecturemay be pertinent to somemolecular
curvingmechanisms, such as shallow insertions into one of themonolayers, whereas themodel developed here
could apply to interactions that equally affect bothmonolayers such as scaffolding or full insertion of
transmembrane proteins [54]. Using standard differential geometry [55], we use this parametrization to define
the tangent vectors at eachmaterial point as g r q= ¶ ¶a

a, which form the natural basis of the tangent space,
and themetric tensor with covariant components g gg =ab a b· . The components gβγ of the inverse of the

metric tensor follow from the relations g g d=ab
bg

a
g . The unit normal to the surface is n g g g1 2= ´( ) ,
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where g gdet= ab. The local curvature of the surface k is characterized by the second fundamental form,which

measures changes in the normal andwhose components in the natural basis are n gk q= ¶ ¶ab a
b· . The

invariants of the second fundamental form are its trace kH k gtr= = ab
ab (twice themean curvature) and its

determinant kK k gdet det= = ab
bg (Gaussian curvature). Throughout the text,∇ denotes the covariant

derivative or surface gradient and · the surface divergence.
The dynamics of the surface are determined by its Lagrangian velocity, which can be decomposed into

tangential and normal components as

V
r

v n
t

v . 1n=
¶
¶

= + ( )

As a result of this flow, themetric tensor changes with time. Itsmaterial time derivative, a partial derivative in
our Lagrangian setting, is called the rate-of-deformation tensor of the surface [53, 56],

d
g

v v k
t

v
1

2

1

2
, 2T

n=
¶
¶

=  +  -( ) ( )

and includes the usual term accounting for deformation resulting from tangentialflows, and a term accounting
for deformation resulting from shape changes, which involves the normal velocity and the curvature. The rate of
change of local area follows as

d v v Htr . 3n=  -· ( )
Weadopt ameanfield description of proteins in terms of a scalar fieldf(θα, t)measuring their local area
fraction. In doing so, we assume that proteins are isotropic, or in a regime inwhich entropic effects dominate
over orientational order.We leave for futurework a general continuum theory accounting for nematic order,
pertinent for instance to elongatedmembrane proteins with BARdomains [15, 28, 30].

2.1. Balance ofmass
Denoting by ρl(θ

α, t) the lipid areal density, balance ofmass of lipids requires dt tr 0l lr r¶ ¶ + = . Note that in
this equation tlr¶ ¶ coincideswith thematerial time-derivative sincewe consider a Lagrangian
parametrization. This equation ignores the area fraction occupied by protein insertions, which except for
channels ismuch smaller than the area fraction occupied by themembrane protein at the periphery of the
bilayer, seefigure 1. Atmoderate tensions we can assume that lipids are inextensible, and hence their density
constant. Consequently, lipidmembrane inextensibility requires that

dtr 0. 4= ( )

Since proteins are a diffusive species, balance ofmass of proteins can be expressed as

d w
t

tr 0 on , 5
f

f f
¶
¶

+ +  = G· ( ) ( )

where w is the diffusive velocity relative to the Lagrangian coordinates andwe have ignored protein sorption.
Again, because of our Lagrangian parametrization, tf¶ ¶ coincides with thematerial time-derivative ḟ.

3. Energetics, dissipation and power input

Todescribe the dynamics of protein-membrane interactions, we adopt a nonlinearOnsager’s formalism of
dissipative dynamics [57–59], according towhich the time evolution of the system follows aminimization
principle where energy release and dissipation compete. This nonlinear variational principle is useful to
formulate complexmodels in a very transparent way, and has been invoked in a variety of contexts including low
Reynolds number interfacial hydrodynamics [60–62], materialsmodeling [63–65], softmatter physics in general

Figure 1.The state of the system, given by the shape of the bilayermid-surface and by the protein area fraction, can evolve as a result of
themembrane velocity (V ), tangential (v) and normal (vn), and of the diffusive velocity of proteins relative to themembrane (w).
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[66], andmembranes in particular [53, 67, 68]. In the present context, the state variables r andf determine the
elastic energy (associated to bending) and the chemical energy (entropy and self-interactions) of the system,
whereas the variables characterizing changes in the state of the system, hereV and w , determine energy
dissipation through shear viscous forces in themembrane and friction as proteinsmove relative to the
membrane. Onsager’s formalismprovides a transparentmethod to derive the governing equations even in the
presence of strong nonlinearity, here causedmechanically by the very large deformations of themembrane and
chemically bymolecular crowding in protein-rich domains.

3.1. Energetics
Todescribe the bending energy of themembrane, we follow a classical Helfrichmodel [36, 37, 69], ignoring the
Gaussian curvature terms for simplicity but including a spontaneous curvature that depends on protein density.
Assuming a linear dependence of preferred curvature on protein density, a common formof the bending energy
is

H C S
2

d , 6b
2 ò

k
f= -

G
( ¯ ) ( )

whereκ is the bendingmodulus and C̄ encodes the curving strength of proteins. Other variants of thismodel
have been proposed [40] and further discussed in section 7.

For the free energy of the proteins on the surface, we adopt a Flory–Huggins [38, 39]model accounting for
the entropy ofmixing and for protein–protein interactions

k T

a a a
Slog log

2
d . 7p

B

p
m m

p p

2 0 ò f f f f f f
c

f
m

f= + - - + +
G

⎧⎨⎩
⎫⎬⎭[ ( ) ( )] ( )

In this equation, k TB is the thermal energy, ap is the area on themembrane of a single protein so thatf/ap is the
number density, the term involvingfm (a saturation area fraction) accounts for the entropy of uncovered spaces,
χ determines the strength and sign (attractive or repulsive) of protein–protein interactions, andμ0 is a reference
chemical potential. Variants of thismodel have been used to understand the linear stability of fullymixed states
[42, 43] or to examine protein sorting by curvature atfixed shape [18, 44, 47].

Depending on the parameters and the boundary conditions, themodel can lead to phase separation. For
instance, negativeχ promotes demixing and coexistence of a protein-rich and depleted phases. To regularize
phase boundaries, we consider a termpenalizing the gradient, which can be interpreted as a non-local
interaction of proteins

a
S

2
d , 8

p
nl

2 ò f=
L


G

∣ ∣ ( )

Λbeing amaterial parameter. The length scale of this interaction is of the order c~ L ∣ ∣ , which, for a planar
membrane, determines the thickness of the interface between protein-rich and depleted domains.Without this
term, there is no energetic penalty to domain boundaries and the equationsmay become ill-posed [70]. Total
free energy of this system is then given by

W H S, , d , 9b p nl
2    ò f f= + + = 

G
( ∣ ∣ ) ( )

whereW represents the total energy density of themembrane-protein composite system.Wenote that this form
of energy density is not themost general that can be conceived for diffusing proteins on an inextensible fluid
membranewithout orientational order. For instance, the energy could also depend on the scalar invariant

kf f · [71].
A central thermodynamic quantity that drives protein diffusion and sorption is the chemical potentialμ

[59], measuring the amount of work required to add amolecule at a particularmembrane location. The
chemical potential can be identified from the variational derivative of  with respect tof as

a
S D W D W Sd d , 10

p
2 3

2 ò òd m
df

df d f= = + f
G G

[ (∣ ∣ )] ( )

where D Wi denotes the partial derivative ofWwith respect to its ith argument. Because this variation is taken at
fixed shape, 22d f f df =  (∣ ∣ ) · . Using the notationW D W W D W,H 1 2= =f , andW D W2 3 f= f ,
and integrating by parts, we obtain

W W S W ld d 11 ò ò nd df df= -  +f f f f
G


¶G

( · ) ( ) · ( )

with n representing the in-plane normal at the edge∂Γ. Ignoring the boundary term, comparison of the two
equations above allows us to identify the chemical potential from equation (9) as,
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a W W a C H C k T log , 12p p B
m

0m m k f
f

f f
cf f= -  = - - +

-
+ - LDf f( · ) ¯ ( ¯ ) ( )

whereΔ denotes the surface Laplacian. This expression clearly shows the contributions to the chemical potential
given by bending elasticity, entropy and protein self-interactions.

3.2.Dissipation
Having described themechanisms throughwhichmembrane and proteins store energy, we nowdetail the
dynamicalmodes throughwhich the systemdissipates energy. Lipid bilayers in afluid phase behave like
interfacial viscousNewtonianfluids [67, 72]. Here, we ignore dissipative forces resulting from inter-monolayer
slippage [52, 53, 73]. Having assumed that themembrane is locally inextensible, dtr 0= , the dissipation
potential accounting for in-plane shear can bewritten as

d d S: d , 13m ò h=
G

( )

where η is the in-plane shear viscosity of themembrane and the rate-of-deformation tensor d is given by
equation (2) [67].

Protein transport is characterized by the collective protein velocity w relative to the lipids in themembrane,
which has already appeared in the statement of balance of proteins, see equation (5). As a single proteinmoves
relative to the lipids, it experiences a drag force given by wx- , where ξ is themolecular drag coefficient. By
superposition in a dilute approximation, a collection of proteins characterized by local number densityf/ap
experiences a drag force per unit area given by w apxf- . The associated dissipation potential can then be
written as

w
a

S
2

d . 14p
p

2 ò
x

f=
G

∣ ∣ ( )

For simplicity, we ignore the dissipation occurring in the bulk fluid. This approximation could break down if fast
shape changes occurred over length-scales larger than the Saffman–Dellbrück length, of about 1–10 mm [67, 74].
Inmost situations, however, fast curvature generation by proteins leads tomuch smaller geometric features
[19, 75, 76]. Thus, the total dissipation potential of the system is given by:

v wv, , . 15n m p  = +[ ] ( )

3.3. Power input
Let us consider amembrane patchΓ, possibly with smooth boundary∂Γ. In absence of body forces or sorption
of proteins from the bulk, power can only be supplied to the system through edge tractions,moments orflux of
proteins at a given chemical potential. Assuming thatΓ is amaterial surface, and thus no lipids can flow through
∂Γ, wewrite the power input functional as

w v v n
a

l F F F v l M ld d d , 16b

p
n next ò ò òn t n n

m
f= - + + +t n

¶G ¶G ¶G
( ) · ( · · ) · ˙ ( )

whereμb is afixed chemical potential for proteins at the boundary, e.g.maintained by a protein reservoir, t is a
unit tangent vector along∂Γ so that n F,n t= ´ t , Fν and Fn are traction components at the boundary,M is a
bendingmoment per unit length, and ṅ represents thematerial time derivative of the surface normal.We can
express the last integral in terms of our dynamical variables v and vn using the relation

n v vv , 17nn n t nt k= - - - n· ˙ · ( · ) ( · ) ( )
where kn tt = · is the geodesic torsion of the boundary curve and kn nk =n · its normal curvature [77, 78].
Each of these terms can be defined onNeumann parts of the boundary∂Γ.

4.Governing equations

4.1.Onsager’s variational principle
Onsager’s recipe to derive the dissipative dynamics is tominimize the Rayleghian functional defined as

, 18ext   = + +˙ ( )

where ̇ is the rate of change of the energy [58, 59]. To enforce local inextensibility, see equation (4), and
possibly the incompressibility of the fluid enclosed by themembrane, we introduce a Lagrangemultiplier fieldσ
(contributing tomembrane tension) and a Lagrangemultiplier p (pressure difference) to form the Lagrangian
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d S p v Str d d . 19next    ò òs= + + + -
G G

˙ ( )

SinceΓ is amaterial surface, the rate of change of energy can bewritten as

dW W Str d , 20 ò= +
G

˙ ( ˙ ) ( )

where Ẇ is thematerial time-derivative of the energy density and is given by

W W H W D W
t

d

d
. 21H 3

2f f= + + f˙ ˙ ˙ (∣ ∣ ) ( )

Note carefully that, because g2
, ,f f f = ab
a b∣ ∣ with ,f f q= ¶ ¶a

a involves the inverse of themetric tensor,

which depends on themembrane configuration, the time derivative in the last term involves not only ḟ but also
the velocity of the surface. Indeed,

d
t

g
d

d
2 2 . 22, ,f f f f f f= -   +  ab

a b
( ) · · · ( )

Using the above equation, the relation vH H v v H K2n n
2=  + D + -˙ · ( ) [67], balance ofmass of proteins in

equation (5) and the divergence theorem, we can express the rate of change of the energy by explicitly
highlighting its dependence on the variables w andV v nvn= +

w

v

k

w w v

v

a
S

W H
a

W D W S

W W H K
a

H WH D W v S

a
l D W l W

a
l

W v l W v l D W l

d

2 d

2 2 : d

d 2 d d

d d 2 d . 23

p

H
p

H H
p

n

p p

H n H n

3

2
3

3

3

 ò

ò

ò

ò ò ò

ò ò ò

n n n

n n n

m
f

mf
f f

m
f f f

m
f f f

mf

f f

=


+  +  -  +   Ä 

+ D + - + - +  Ä 

- -   + -

-  +  -  

G

G

G

¶G ¶G ¶G

¶G ¶G ¶G

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

˙ · ( )

· ( ) ·

( ) ( )

( ) · ( · ) · ( ) ·

( · ) ( · ) ( · )( · ) ( )

In the literature dealingwith theCahn–Hilliard equation, related to ourmodel, the second term in the fourth
line is set to zero by requiring the natural high-order boundary condition 0nf =· on∂Γ [79]. As a result,
the last integral over the edge also vanishes. Similarly, we can express the constraint of local area conservation as

d v vS S v H S ltr d d d d . 24nò ò ò ò ns s s s= -  - +
G G G ¶G

· · ( )

To obtain the governing equations of the system,we substitute the above relations in equation (19), minimize
the Lagrangianwith respect to w v v, , n{ }andmaximize it with respect to {σ, p}. Surface integrals in the two
expressions above contribute to the Euler–Lagrange governing equationswhereas boundary terms identify the
Neumann boundary conditions. The resulting equations for the specific choice ofW given in section 3.1 are
discussed below.

4.2. Transport of proteins
Minimizing the Lagrangianwith respect to the diffusive velocity, 0wd = , we obtain the diffusive flux of
membrane proteins consistent with Fick’s law

w in . 25f
f m
x

= -


G ( )

Substituting the above relation in equation (5) and using the inextensibility of the lipidmembranewe obtain

a
0, 26

p

x
f f m-   =˙ · ( ) ( )

which can be expanded recalling equation (12) and rearranged to yield the transport equation for proteins

a C H
k T

0, 27p
B m

m

effxf k f c f
f

f f
f f f+   - +

-
 + L  D =

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥˙ · ¯ ( ) ( )

wherewe have defined the effective interaction between proteins as a Cp
eff 2c c k= + ¯ . For vanishing

spontaneous curvature (C 0=¯ ), this governing equation ceases to depend explicitly on the curvature of the
underlying surface, although it does depend on its geometry through the covariant derivative, and it reduces to a
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nonlinear Cahn–Hilliard equation [80] on the surfacewith a density-dependent diffusion coefficient

D
k T1

. 28B m

m

efff
x

c f
f

f f
= +

-

⎛
⎝⎜

⎞
⎠⎟( ) ( )

Forχ=0,Λ=0 andf=fm, equation (27) reduces to the linear diffusion equation. For C 0¹¯ , the curvature
gradient introduces a bias in the diffusionwith drift velocity

w a C H , 29p
drift k x= ¯ ( )

driving curved proteins along or against the curvature gradient depending on the sign of C̄ . At steady state, drift
and diffusive transportmust balance and yield a divergence-free flux.

4.3. In-plane force balance
Minimization of the Lagrangian respect to the in-plane velocity, 0vd = , yields

d
a

02 , 30
p

s
f m

h -


+  =· ( )

where thefirst term accounts for the tension required to impose lipidmembrane inextensibility, the second term
is a force density on thefluidmembrane resulting from the relativemotion of proteins, see equation (25), and the
third term represents tangential dissipative forces due tomembrane viscosity, which strongly depend on
curvature and involve both tangential and normal velocities as discussed in detail elsewhere [67, 81].

In the common situation of an incompressible Stokes flowwith a dilute diffusing species, the drag force
density due to proteinmotion, the second term in equation (30), does not contribute to the hydrodynamics
becausef∇μ can be expressed as a gradient and groupedwith the Lagrangemultiplier enforcing
incompressibility in all the governing equations [59]. Here, however, this is not the case. Indeed, introducing
equation (12) into (30)we obtain

w d
a a

02 , 31
p p

eff dev drifts f f
x
f h -

L
  Ä  + +  =· ( ) · ( )

where a a a a a g2dev 2Ä = Ä -( ) (∣ ∣ ) is the deviatoric component of this rank-one tensor, andwe identify
the effectivemembrane tension (the hydrostatic part of the stress tensor) as

k T

a a a
log

2
. 32B

p
m m

p p

eff
eff

2s s f f f
c

f f f= + - - +
L

D( ) ( )

Since the third term in equation (31) cannot be expressed as a gradient, the drift contribution to protein
transport generates a tangential force density introducing an explicit coupling between hydrodynamics and
protein transport. This protein-induced force just requires the presence of curved proteins and a curvature
gradient and can driveflows out-of-equilibrium. Furthermore, as a result of the fundamental in-plane/out-of-
plane couplingmediated by curvature [81], this force density can induce out-of-plane forces and shape changes.
At steady state, since wdrift is in general different from zero, equation (31) shows that we can expect a non-
uniform effectivemembrane tension in the presence of gradients of curvature. The second term in equation (31)
further contributes to a non-uniform and also non-hydrostaticmembrane tension in equilibrium, in this case
associated to gradients inf.

Going back to the notion of effective tensionσeff, oneway to think about it is just as a Lagrangemultiplier
enforcing local inextensibility. However, equation (32)provides further insight about this tension. Thefirst
term,σ can be interpreted as themembrane tension of the lipids. The second term is the osmotic tension due to
the presence of proteins. In the limitf= fm, this termbecomes k T aB pf- , recovering theVan’tHoff’s
equation. The third term accounts for the fact that attractive/repulsive proteins increase/decrease surface
tension. The last term is a non-local tension that can become significant at phase boundaries. Thus,σeff is a
measure of tension in the compositemembrane-protein system.We refer to appendix A for a complementary
and detailed derivation of the stress in the present theory.

4.4. Force balance normal to the surface
Minimizationwith respect to the normal component of the velocity, 0vn

d = , yields

k d k

H C H C
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H p
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where thefirst term corresponds to an out-of-plane force density due tomembrane curvature elasticity, and
hence coupled to the protein density, the second to fourth terms account for Laplace’s law, and the last term is a
normal viscous force density due tomembrane shear, studied in detail in [67, 81].

4.5. Boundary conditions
In the chemo-mechanical problem studied here, we can imposeDirichlet boundary conditions in part of the
boundary∂Γ for the differentfields. For instance, reasonable Dirichlet conditions for themechanical part of the
problem includefixing v vv v v v, , n nt n= = =t n· ˆ · ˆ ˆ and vn n w =· ˆ on a part of∂Γ, where v v v, , nt nˆ ˆ ˆ and ŵ
areDirichlet data. For the chemical problem, theDirichlet boundary condition is prescribing w jbnf =· ˆ on
part of∂Γ.

On parts of the boundarywhereDirichlet boundary conditions are not specified, we obtain the following
Neumann boundary conditions by extremizing the Lagrangian and collecting terms at the boundary:

d

d

M W F W
a

M

F W F M

, , 2 ,

, 2 . 34

b H
p

n H

n n

n t n

m m
mf

s k h

t h

= = = - + - +

=- = - +

n n

t

· ·

· · · ( )

Thefirst condition sets the chemical potential in theNeumann part of the boundary, whereas the next four
equations set the applied torque and force per unit length. The in-plane force can be further recast in a form
clearly showing the contributions of the effective surface tension and bending energy as

dF H M
2

2 . 352 eff n nk
s k h= + - +n n · · ( )

For surfaces at equilibriumwithflat boundaries, the forces normal to the boundary per unit length transmitted
by themembrane is tangential and given byσeff.

4.6. Time-scales of shape andprotein density relaxation
The chemo-mechanicalmodel described by the transport equation for proteins (27), membrane inextensibility
(4), force balance in-plane (31) and out-of-plane (33) exhibitsmultiple intrinsic relaxation time-scales. To
examine the competition ofmechanical and chemical relaxation time-scales, we consider the simplest cases of
shape disturbances whose relaxation is driven by bending elasticity and dragged bymembrane viscosity, and of
protein density disturbances entropically penalized and dragged by the friction between proteins and the lipid
membrane. Suchmechanical relaxation occurs during the characteristic time τm=ηℓ2/κ , whereℓis the
characteristic size of the disturbance. The characteristic time for protein diffusion is k Tp B

2t x= ℓ ( ). Their
ratio is thus

k T

20
, 36m

p

Bt
t

h
kx

h
x

= » ( )

wherewe have used the common estimate for the bending stiffness k T20 Bk » . In turn, ξ is related to the
membrane surface viscosity η through the Saffman–Delbrück theory [82], which states that

L

4

log 2
, 37

asd

x
ph

g
=

-ℓ( )
( )

where Lsd≈5 μm is the ratio ofmembrane and bulk viscosity,ℓa≈1 nm is the effective radius of the protein
and γ≈0.577 is the EulerMascheroni constant. Using this estimationwe obtain, ξ≈2πη, which results in

1 40m pt t p» ( ). Thus,mechanical relaxation occurs nearly two orders ofmagnitude faster than protein
relaxation by diffusion. Although other phenomena accounted for in our general theory (such as protein self-
interaction, drift by curvature gradients, ormechanical forces due to the presence of curved proteins on the
membrane) can influence the dynamics of the system, this simple estimate establishes that in general protein
transport can be expected to be the slow process.

5. Axisymmetric formulation andnumerical approximation

Under the assumption of axisymmetry, pertinent tomany structures resulting fromprotein-membrane
interactions, the shape of themembrane can be parametrized in terms of the distance to the z axis and the z
coordinate of its generating curve (ρ(u, t), z(u, t)), where u is a Lagrangian coordinate labelingmaterial particles
in the interval [0, 1] and t is time. Protein area fraction does not depend on the azimuthal angle and thus can be
expressed asf(u, t). For closed surfaces, smoothness of the surface at the poles is guaranteed by the conditions

t z t0, 0, 0, 0r = ¢ =( ) ( ) and t z t1, 0, 1, 0r = ¢ =( ) ( ) , where ¢(·) denotes the partial derivative with respect
to u. For an open patch, we replace the condition at u= 1 by z t z t1, 0, 1, 0= ¢ =( ) ( ) . The diffusive protein
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velocity can be expressed as w tu t w u t u t, , ,=( ) ( ) ( ), where t z a,r= ¢ ¢( ) is the unit tangent vector to the

generating curve and a u u z u2 2r= ¢ + ¢( ) ( ) ( ) is the speed of this curve.
From the generating curve, we can compute themean curvature of the surface as

H
a

b

a

z1
, 38

2 r
= +

¢⎛
⎝⎜

⎞
⎠⎟ ( )

where b u u z u u z ur r= -  ¢ + ¢ ( ) ( ) ( ) ( ) ( ) [74]. Noting that the element of area is S a ud 2 dp r= , this expression
allows us to compute the bending energy z, ;b r f[ ] in equation (6).

As a reference surface Ḡwith local radius r̄ and speed ā ismapped to the current surfaceΓwith radius ρ and
speed a, the local areal stretch at each point is J a ar r= ( ) ( ¯ ¯ ). Thus,membrane inextensibility can be expressed
as J=1, or a ar r= ¯ ¯ . As shown in [74], themembrane dissipation potential in equation (13) for an
axisymmetric inextensiblemembrane describedwith Lagrangian coordinates can be expressed as

z a u; , 2 2 d . 39m
0

1 2

 òr r h
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r

p r=
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⎠⎟[ ˙ ] ˙ ( )

Balance ofmass of proteins in equation (5) for an inextensiblemembrane can be expressed in the present
setting as w a0 f rf r= + ¢˙ ( ) ( ). Plugging the expression for w issued fromOnsager’s principle, we rewrite
equation (27) under axisymmetry as
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is the surface Laplacian off.
To performnumerical calculations, we use aGalerkin finite element approach based on a B-Spline

approximation of the different fields.We numerically represent the state variables as

u t u t z u t B u t t z t, , , , , , , , 42
J

N

J J J J
1

åf r f r=
=

{ ( ) ( ) ( )} ( ){ ( ) ( ) ( )} ( )

whereBJ are cubic B-spline basis functions, and t t z t, ,J J Jf r{ ( ) ( ) ( )} are the Jth control points of the state
variables at time t [83]. This approximation providesC2 continuity, enough for our formulation, which requires
at leastC1 continuity for square integrable curvatures and protein Laplacians.

Tomove forward in time, we adopt a staggered approach inwhichwe first evolve the protein density field at
fixedmembrane shape, and then update shape atfixed protein distribution. To obtain the concentration of
proteinsf n+1 at time tn 1+ , we assume a given shape ofmembrane {ρ n, z n} at time t t tn n n1= - D+ , use a
backward Euler approximation to discretize equation (40) in time,multiply this equationwith a test functionψ
(u), integrate over the surface and integrate by parts. For simplicity of our exposition, we assume noflux of
proteins through the boundary to obtain
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Wenote that we have further integrated by parts the term involving H ¢ to lower the smoothness requirements of
the theory. Replacing equation (42) into (43) and choosing the test functionψ=BI, we obtainN discrete
equations forfJ, I=1,KN as
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Since thematrixKIJ depends on the unknown, the systemof equations in equation (44) is nonlinear andwe solve
it usingNewton’smethod.

To solve themechanical problem,wefix protein area fraction tof n+1 andwrite down an incremental
Lagrangian accounting for the rate of change of the free energy, formembrane dissipation, and for local area and
volume constraints
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The Lagrangemultiplier n 1s + is also discretized in space using B-splines. However, rather than cubic, we use
quadratic B-spline basis functions for thisfield to obtain a stable formulation [84, 85]. Tomove forward in time,
we obtain themechanical unknown at time t n+1 by numerically solving the algebraic optimization problem
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As described above, this Lagrangianmethodwill in general lead to significant distortions of the numerical grid.
For robustness and accuracy of the numericalmethods, we periodically performmesh reparametrizations of the
generating curve.

6. Results

6.1. Selection of parameters
Wechoose as the energy scale the bending rigidity of themembrane k T20 Bk = . As the length and time-scales,
we chooseℓ0=50 nmand k Tp B0

2t x= ℓ ( ). Considering amembrane viscosity of 5 10 N s m9 1h = ´ - - and
the relation ξ=2πη discussed in section 4.6, we obtain that 3 10 N s m8 1x » ´ - - , the diffusion coefficient of
proteins is D k T 1.3 10 m sB

13 2 1x= » ´ - - and τp≈ 0.02 s. In the absence ofmeasurements, we choose
a k T1p BL = large enough so that, when phase separation occurs, domain boundaries have afinite thickness

and simulations are devoid of numerical oscillations indicative of ill-conditioning, and small enough so that the
dynamics of the problem are not significantly affected by this parameter.With these units, in our calculationswe
set the non-dimensional coefficients C1, 2k = =¯ ¯̄ (corresponding to C1 25 nm»¯ ), a 0.04p =¯
(corresponding to ap≈100 nm2), k T a 1.25B p =¯ , a 1.25px =¯ ¯ and 1 40h p=¯ ( ).Wefinally note that, to
avoid numerical solutionswith unreasonably thin necks, thinner than the bilayer thickness, we introduce a term
that limits theminimum radius of a neck structure to about ò∼ 7.5 nmby adding an energy contribution of the
form

Sd , 48neck 2
s 

 ò
g

r
=

-G ( )
( )

whereΓs is the entire surface excluding a small region near the poles and γ=0.1kBT.We checked that this
potential only affected the solutions close to the neck.

6.2. Curvature sensing and generation starting fromaprolate vesicle
Curvature sensing is a phenomenon bywhich curvedmembrane proteinsmigrate to regions of themembrane
with higher/preferred curvature.Hence, a necessary condition is the existence of a curvature gradient.Wefirst
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considered a prolate vesicle as shown infigure 2(a). This vesicle is obtained byminimization of bending energy at
constant area S R4 0

2p= , withR0=500 nm, atfixed reduced volume v=0.93. At t=0, the vesicle is covered
with a homogeneous area fraction of curved proteins ( 0.15f =¯ )with spontaneous curvature C 1 25 nm 1= -¯ .
We assume that the proteins are non-interacting and thus choose a Cp

2c k= - ¯ so thatχeff=0. The initial
homogeneous distribution of proteins is preferred entropically, but is not optimal from the point of view of
bending energy, which favors proteinmigration towards the poles. The competition between these two free
energy contributions leads to a non-uniform chemical potential of proteins and drives protein transport. Since

0f = at t=0, protein transport is initially due exclusively to gradients in curvature with the diffusive velocity
coincidingwith the drift velocity w a C Hp

drift k x= ¯ . Estimating the average gradient ofmean curvature from
the prolate shape, we estimate the time required for drift transport to induce a gradient in protein density as

wR 0.3 s1 0
driftt » »∣ ∣ . Subsequently, the dynamics are governed by a competition between drift and diffusive

transport, driving proteins towards equilibriumover a time scale R D 1.36 s2 0
2t f» »( ¯ ) . Thus, we estimate

that the total time scale of relaxation is given by τ≈τ1+τ2≈1.66 s. These estimates are consistent with the
results shown infigure 2(a), wherewe show a few selected snapshots of protein distribution during the
equilibration dynamics, alongwith the time-evolution of the changes in the total energy, D , and of different
components of it. Thefigure shows that equilibration takes place in a time commensurate to τ, and that protein
migration towards the poles is driven by bending energy, which decreases during the dynamics, but opposed by

p nl + . In this example, where the total number of proteins on themembrane is low, their area fraction in the
protein-rich poles is far from the saturation area fractionfm=1 andmembrane shape does not change.

To examine the ability of proteins to generatemembrane shape, we revisited the previous example but
increased the amount of protein by setting an initial homogeneous area fraction of 0.35f =¯ , see figure 2(b). At
early times, the dynamics parallel those of the previous example, with driftmotion of proteins towards the poles,

Figure 2. Snapshots of shape and protein coverage during the relaxation dynamics on a prolatemembrane vesicle, and time evolution
of changes in energies (total, bending and chemical) for an average and initially uniformprotein area fraction of (a) 0.15f =¯ and (b)

0.35f =¯ . Supplementarymovies 1 and 2, available online at stacks.iop.org/NJP/21/093004/mmedia, show the dynamics in (a) and
(b). (c) Final equilibrium states depending on the saturation densityfm= {0.47, 0.75, 0.95, 1}, which stops the feedback between
curvature generation and protein transport. (d)Equilibrium states as vesicle pressure is incremented by steps, while allowing for
volume changes, showing amechanically-induced dissolution of a highly curved and protein-richmembrane domain.
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followed by balancing diffusive fluxes.However, now the amount of protein creates a sufficiently large
spontaneous curvature Cf¯ tomodify the shape of the vesicle, which develops a symmetry-breaking transition
(ii). At this point, a positive feedback is established duringwhich higher curvature attractsmore proteins, which
in turn locally increase curvature, and so on.We observe that during this process, the systems develops a cascade
of rapid pearling events of duration τm, which create new curvature gradients and thus are followed by the partial
equilibration of protein coverage over a time-scale of τp. Similar pearled tubularmorphologies have been
experimentally and computationally observed in bilayers with isotropic spontaneous curvature caused by
anchored polymers [11, 86], in cells as a result of crowding of the grycocalyx [12] or by asymmetric lipid swelling
due to changes in pH [87].We note that if proteins induce anisotropic spontaneous curvature, for instance
because they are elongated and adopt nematic order, experiments andmolecularmodels suggest that one can
expect tubular protein-rich protrusions of uniform radius [15, 28, 30] rather than pearled protrusions as wefind
here.We leavemodels capturing nematic ordering of curved proteins for future work. This pearling cascade and
positive feedback loop between curvature and protein coverage continues until proteins almost reach their
saturation densityfm in the highly curved domain. In equilibrium, the system reaches a heterogeneous state
where a protein-rich and highly curved pearled tube coexists with a depleted vesicle.

To further examine the role of the saturation area fractionfm in setting the equilibrium state, we repeated
the previous simulation considering different values offm. Figure 2(c) shows that the depth of the pearling
cascade is indeed controlled by this parameter. Forfm=0.75, the saturation density and equilibrium is reached
after thefirst pearl has formed. As the saturation area coverage is increased, the number of pearls, and the tube
length and curvature progressively increase whereas for lower values offm the systemdoes not even pearl. Thus,
in amodel governed by the energies in equations (6) and (7), protein saturation controlled byfm limits the
positive feedback loop between curvature and area coverage.

Curvature generation bymembrane proteins involves recruitment ofmembrane area into protein-rich
protrusions, and therefore should depend onmembrane tension as shown experimentally [19]. To examine this
mechanical coupling, we started from an equilibrium state showing a highly curved protein-rich tube and
increased the pressure difference in steps, thus allowing for volume changes in the vesicle. Initially, p0=13 Pa
andσeff≈0.003 mNm−1. Figure 2(d) shows that as pressure, and thus tension, increase,membrane area is
released from the protein-rich tube, which becomes shorter andmore concentrated (p1=55 Pa, p2=65 Pa).
Beyond p3=250 Pa corresponding toσeff≈0.064 mNm−1, the entire protrusion is eliminated and the
proteins uniformly spread over themembrane. This example thus shows themechanically-induced dissolution
of a protein-rich curved domain.

The transition between states of low curvature and homogeneous protein distribution and localized states
has been classically analyzed assessing the linear stability of the uniform state [19, 42], summarized in
appendix B. According to this analysis, a purelymechanical instability (Euler buckling) takes place when
σeff<0, while a purely chemical instability (phase separation) takes placewhen D 0f <( ¯ ) , see equation (28). In
addition to these standard instabilities, the system can also exhibit a chemo-mechanical instability involving
shape and protein patterning, which in the ideal case of a planar infinitemembrane can happenwhen
(appendix B) [19]
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This equation allows us to understand qualitatively themechanically-induced disappearance of amechano-
chemical pattern asσeff increases infigure 2(d), as well as the emergence of such a patternwhen f̄ increases as in
figures 2(a) and (b), whereχeff=0.

6.3. Sensing on a tube and shape stabilization
To further study themechano-chemistry ofmembrane-protein interactions, we then considered a setup that
mimics controlled in vitro experiments, where a curvature gradient is established by pulling a highly curved
membrane tether out of a vesicle [16, 18, 44, 88].We consider the same vesicle size and reduced volume as in the
previous examples, and gradually increase the distance between the poles. As in experiments [89], our
simulations show that beyond an extension, the systembreaks symmetry and a thin tube elongates fromone of
the poles, see figure 3(a)-i. Starting from this configuration, we load the vesicle with a uniformdistribution of
proteins with area coverage 0.15f =¯ . The protein dynamics are similar to the previous examples, with a
progressive enrichment of the highly curved tube over a time period of about the diffusive time-scale

R D4 17 s2 0
2t p f» »( ¯ ) , where nowproteins need tomigrate a longer distance on average to one of the two

poles, figure 3(c). At equilibrium and for this low protein coverage, proteins have barelymodified the shape of
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the vesicle-tube system, figure 3(a)-iii. However, their presence has a noticeablemechanical effect in the force
required to keep the tether in place, which decreases bymore than two-fold,figure 3(b). This kind of behavior
has been experimentally observed for BARproteins and dynamin [16, 18, 88]. For this protein coverage,
however, the amount of protein is insufficient to stabilize the tube and following the release of the displacement
constraint, the tube retracts and the protein-rich domain dissolves into the vesicle,figures 3(a)–(c). At higher
protein coverage, the proteins drawn to the tube are able tomodify visibly its shape by inducing slight pearling,
they further reduce the tether force, and the larger protein amount is able to stabilize highly curved and protein-
rich protrusions upon release of the constraint, figures 3(d) and (e), in agreementwith in vitro experiments
[18, 88]. Furthermore, the transition to a strongly pearled protrusion upon force removal (iii–iv) closelymimics
the shape transformations inmembrane protrusions bent by crowding of the glycocalyx upon disassembly of
enclosed actin filaments [12].

6.4. Bud formation and tension-induced dissolution
Buds constitute a prototypicalmembranemotif, and are involved in endo/exocytosis [2] or in tensional
buffering of the plasmamembrane through caveolae [4]. Although the formation of such buds requires the
synergistic interaction ofmultiple proteins and lipids, they can be abstracted as curved protein-richmembrane
domains [76, 90]. To understand the fundamentalmechanismof bud formation, we consider aflat discoidal
patch ofmembrane coveredwith a homogeneous distribution of proteins ( 0.1f =¯ ) at t=0.We assume that
themembrane isflat at its edge and that proteins cannotflow in or out from the boundary.We apply radial

Figure 3. (a)Dynamics of curvature sensing by proteins on a vesicle with a tube stabilized by a displacement constraint at a lower
average density 0.15f =¯ . Dynamics of the reaction force (b), average tubular densityft and height changes (Δh) (c) before and after
the release of the displacement constraint. (d)Evolution of reaction force for higher average densities 0.2, 0.25, 0.3f =¯ { } and (e)
average tubular density for different average densities showing a density-dependent stabilization of protein-rich curved protrusions.
Supplementarymovie 3 shows the sensing process and dynamics following constraint release for the lowest and highest average
densities.
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tractions at the boundary corresponding to an isotropicmembrane tension ofσeff≈3× 10−3 mNm−1, at the
lower end ofmembrane tension inmammalian cells [91].

According to equation (49), the parameters C 2 25 nm 1= -¯ and aeff/ap≈0.4 mNm−1 shouldmake the
initially uniform andflat state unstable, leading to a chemo-mechanical pattern. In agreement with this
prediction from the linear stability analysis, our nonlinear, yet axisymmetric, calculations show the spontaneous
formation of a budded protein-rich domain as shown infigure 4(a), reminiscent of caveolae. As shown in the
figure, this process leads to a significant reduction in the projected area of themembrane patch, and thus during
bud formation chemical energy is released to performmechanical work against the applied tension.

A critical function of caveolae is themechano-protection of cells subjected to stretching of the plasma
membrane [4]. These budded domains provide amembrane reservoir, which upon tension increase, can be
released to buffermembrane tension and avoid lysis [92]. To test the ability of ourmodel to reproduce this
phenomenology, we suddenly increasedmembrane tension to 0.5 mNm−1 within 0.6 s. As a result and in
agreementwith equation (49), the budded domain rapidly disassembles, leaving aflat patchwith uniformly
distributed proteins, figure 4(b), consistent with the increasedmobility of caveolar components following
tension-induced disassembly [4].

7. Two alternativemodels ofmembrane-protein interaction

7.1. Proteinswith bending elasticity
The curvaturemodel considered up to this point, based on equation (6), assumes that protein cooperativity
increases the spontaneous curvature of the surface.However, an alternativemodel can be conceived inwhich
curved proteins have a stiffness of their own, which results in an effective density-dependent stiffness of the
protein shell on themembrane [40]. In this case, the curvature energy of the compositemembrane-protein
system can bewritten as

H S H C S
2

d
2

d , 50b
p

p
2 2 ò ò

k k f
= + -

G G

( )
( ) ( )

whereCp is the intrinsic curvature of proteins andκp(f) a density-dependent stiffness of the protein coat. The
resultingmembrane shape is hence the result of the competition between elastic bending energies of proteins
and of the lipid bilayer. Thismodel has been used to study the response ofmembranes with stiff protein coats
[93]. Assuming a linear dependence ofκp on the protein area fraction, p pk f k f=( ) ¯ , and a chemical energy
given by equations (7) and (8) as before, the chemical potential of proteins now takes the form

a H C k T log . 51p p p B
m

0
2m m k

f
f f

cf f= + - +
-

+ - LD¯ ( ) ( )

InvokingOnsager’s principle with the same dissipation potentials as before, we obtain an alternative protein
transport equation

Figure 4. (a) Spontaneous formation of budded protein-rich domain from a flatmembranewith homogeneously distributed proteins
in the initial state and (b) dissolution of the bud under sudden stress increase, releasing projectedmembrane area.
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where the density-dependent diffusion coefficient
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has the same structure as the one in equation (28). In contrast, the drift velocity w a C H Hp p p
drift k x= - ( ) /

is nowqualitatively different, in that its sign relative to∇H can change in space and time depending on the sign
ofCp−H, whereas in the previousmodel (w a C Hp

drift k x=  / ) it just depended on the sign of the constant
C̄ . Focusing on the case inwhich both C̄ andCp are positive for concreteness, in themodel based on equation (6)
the drift term always favors protein transport towards regions of higher curvature, whereas in themodel based
on equation (50) this will be the case only as long asmembrane curvature is smaller than the preferred protein
curvature. As a result, in themodel presented in this section the positive feedback between curvature and protein
coverage stops oncemembrane curvature reachesCp. Recall that, as discussed in section 6.2, in the previous
model this positive feedbackwas only stopped by the saturation of protein coverage asf approachedfm.We
tested this idea computationally by examining the equilibrium shape predicted by themodel based on
equation (50)with k T40p Bk = andCp=1/25 nm−1, of a slightly deflated vesicle with the same reduced
volume v=0.93 and an average protein concentration f̄. Figure 5 shows that the system equilibrates at a state
with a protein-rich domainwhereH≈Cp/2 andwheref≈0.5 is lower thanfm=0.75. The curvature of the
protein-rich domain is controlled by the competition ofmembrane and protein elasticity, which in turn depends
on protein coverage. This calculation shows that in thismodelfm does not select the curvature of the protein-
rich domain. To further confirm this, we observe that increasingfm=1 does not change the equilibrium state.
In contrast, increasingCp by 17.5% and 20% led tomore curved protrusions with a larger number or pearls.
Eventually, as protrusions become increasingly concentrated in protein at high values ofCp, protein density
reaches saturation and hencefm starts playing a role.

7.2.Membrane bending by protein crowding
Up to this point, we have assumed that proteins interact at themid-plane of the lipidmembrane.However, this
approximation clearly breaks down formembrane proteinswith bulky partially disordered domains [10, 17] or
anchoring long polymers [12]. In this situation, the interaction between proteins leading to bending can be
overwhelmingly dominated by the entropic repulsion of these bulky partially disordered domains or polymers,
which interact a few nanometers away from the lipidmembrane. In the case of polymers attached to a
membrane, in addition to their positional entropy, onemust account for the changes in conformational entropy
of the polymers themselves, which can transition fromamushroom regime to a brush regime as local density
increases [12, 33, 94]. Here, we consider the case of proteins with a bulky off-membrane domain, whichmay be
partially disordered butwhose conformation does not change significantly with lateral packing. In this situation,
we can ignore the entropy of conformational changes of the proteins and theirmain contribution is due to
mixing entropy. Their ability to bend themembrane is related to the fact that curvaturemodifies the area
fraction of proteins at the off-membrane surface where they interact, see figure 6(a).

Thus, ignoring reconfigurations of the disordered domain/polymer blob [33], we assume that the proteins
interact on a surface G+ at a distance d from the surface representing the lipidmembrane,Γ. The free energy of

Figure 5.Comparison of the equilibrium shapes obtained for different values of the saturation area fractionfm and spontaneous
curvatureCp for themodel governed by the bending energy in equation (50).
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the proteins can then bewritten as
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where f+ is the area fraction of proteins on a, pG+ is the area on this surface of each bulky protein domain, and
fm is the saturation area fraction of bulky domains on G+.

We next refer this energy to the bilayermid-surface. If the separation betweenΓ and G+ is small, dH= 1,
then the area element of G+ is related to that ofΓ according to

S dH Sd 1 d . 55» ++ ( ) ( )

Denoting by n apf=+ + the number density of proteins on G+, the above relation shows that we can express
the number density onΓ using the relation n n dH n dH1 1» + » -+ ( ) ( ). This relation clearly shows how
curvature changes density, as illustrated infigure 6(a)where positive/negative curvature increases/decreases n+

atfixed n. Even if the area fraction does notmake strict sense onΓ, we can formally define it on the bilayermid-
plane as a npf = and hence

dH
dH

1
1 . 56f

f
f»

+
» -+ ( ) ( )

Denoting by w the diffusive velocity of proteins relative to the bilayer velocity at themembranemid-plane,
protein balance ofmass is still given onΓ by equation (5).

Using equations (55) and (56), noting that for small dHwehave that dH dHlog 1 + »( ) , further assuming
that dH dHlog 1 logm m mf f f f f f f- - » - + -[ ( )] ( ) ( ), which holds true provided thatf is not too
close tofm, and neglecting terms proportional to (dH)2, we can rewrite equation (54) as integral over the lipid
surfaceΓ as

Figure 6. (a) Illustration of themodel accounting for protein crowding of off-membrane bulky domains interacting on a surface G+

located at a distance d from the bilayermid-planeΓ. For afixed number density n onΓ, the figure shows howpositive/negative
curvature leads to increase/decrease of area fraction of proteins on G+. (b) If proteins are confined to amembrane domain (in red),
then an increase in the number of proteins can be accommodated bymembrane bending, which reduces the crowding of bulky
domains. (c)Equilibrium configurations obtained by increasing the protein average area fractionwithin a region of constant area. (d)
Corresponding jumps inmean curvature as a function of the density dependent spontaneous curvatureC(f).
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Combining this chemical energywith a simpleHelfrich energy for the bare bilayer, H S2 db
2 òk=
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, we

obtain
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wherewe have defined the protein-induced spontaneous curvature by crowding of off-membrane bulky
domains/polymer blobs as
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The formal similarity between this expression for b p + and that obtained in section 3.1 is remarkable,
the only difference being that before, the density-dependent spontaneous curvature was simply C Cf f=( ) ¯ and
now it is given by equation (59). Note that the termproportional to C 2f( ¯ ) in the bending energy of the previous
model can be dropped by re-definingχ asχeff, and thus it does not affect the structure of the free energy.

In vitro experiments examiningmembrane bending by protein crowding [10, 17] confined proteins to
membrane domains. Not being able to diffuse freely, proteins became increasingly confined, leading to severe
membrane remodeling. See figure 6(b). Here, we consider this situation, by allowingf to differ from zero only
over a subdomainΓp⊂Γ. Over the interface given by∂Γp, we thus have an initial jump in protein area fraction
of f̄, the initial average area fraction over the subdomain. Across the interface∂Γp, forces andmoments need to
be continuous. Since the energy depends on curvature, jumps in the normal are not allowed butfinite jumps in
curvature are [69, 95]. Using the expression for the bendingmoment derived in equation (34) adapted to the free
energy density in equation (58), continuity of bendingmoments across the interface leads to the condition

H C Hi ok f k- =( ( ))∣ ∣ , where the subscripts indicate whether the quantity is evaluated on the inside or on the
outside of the interface.We thus conclude that the jump inmean curvature across the interface needs to coincide
with the protein-induced spontaneous curvature inside the protein-rich domain, H C f=  ( ). To test these
ideas, we considered various average protein area fractions, 0.1, 0.3, 0.6, 0.9f =¯ { }, within a domain of
diameter 250nm in amembrane patch of diameter 2.5 μm.We assumed that d=1 nmandχ/ap=6 mNm−1

(net repulsive protein–protein interaction). As shown infigure 6(c) increasing the number of proteins leads to
increasing curvature, going from very shallow caps to buds, which in all cases very precisely follow the predicted
relation for the jump inmean curvature, figure 6(d).

8. Conclusions

Wehave presented a nonlinear and self-consistent continuummodel for the dynamics ofmembranes
interactingwith curved proteins. Our theory describes a biologically important instance of chemo-mechanical
self-organization leading to surface shape dynamics, which coexists in cells with alternative shape patterning
mechanisms [96]. By combining elementary ingredients into a nonlinearOnsager’s formalism,we have
systematically derived fully nonlinear governing equations exhibiting a tight interplay between geometry,
protein transport, andmechanics. Previous simplermodels appear as specialized limits of our theory. Our
numerical simulations have demonstrated the ability of themodel to describe curvature sensing, generation,
stabilization, and tension-induced disassembly of protein-rich curved domains.We have developed three
versions of themodel.We have shown that a commonmodel where spontaneous curvature is proportional to
protein density develops a positive feedback between curvature and protein density, only stabilized by protein
saturation. An alternativemodel accounting for the bending elasticity of the protein coat does not exhibit this
feature. Finally, a variant of themodel where bending is induced by crowding of bulky off-membrane protein
domains is formally equivalent to the firstmodel, albeit with a nonlinear relation between protein-induced
spontaneous curvature and protein density. Thework presented here can be the background for further studies,
e.g.accounting for orientational order tomodel anisotropic proteins such as BARdomains [97], for the
interaction ofmultiple curvature-active species, or developing computationalmethods to treat the governing
equations in 3D [53].We end by discussing the applicability of themodel presented here.While our approach
can efficiently treat large numbers of proteins during slow diffusive processes (overminutes and spanning
microns), whether continuummodels can be quantitative in small systems involving tens of proteins over 10s of
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nanometers remains to be systematically tested. Furthermore, it is unclear at thismoment towhat degree the
chemical specificity required to understand the biophysics ofmembrane-protein interactions can be captured
by the parameters of ourmodel or variations of it. To address these issues, comparisonwith coarse-grained
molecular dynamicsmay be particularly interesting, as thesemodels canmore easily connect with truly specific
atomisticmodels while accessing larger systems for longer times.

Acknowledgments

Weacknowledge the support of the EuropeanResearchCouncil (CoG-681434), the EuropeanCommission
(projectH2020-FETPROACT-01-2016-731957), the SpanishMinistry of Economy andCompetitiveness/
FEDER (BES-2016-078220 toCT), and theGeneralitat de Catalunya (SGR-1471, ICREAAcademia award
toMA).

AppendixA. Stress vectors

We identify the stress for themembrane-protein system considered here.Wefirst note that, for a surface, stress
can expressed in terms of stress vectors with tangential and normal components, g nns s s= +a ab

b
a ,

performing power againstV;a [77], which can be expressed as

V g n g nv v v v k v k v . A.1n n n; ; ; ,= + = - + +a
g

g a
g
a

g
a g

g
ga a( ) ( ) ( ) ( )

Here, ();α denotes covariant differentiation and (),α partial differentiation. Onsager’s formalismnaturally allows
us to identify each contribution to the stress. For this, wewrite the Lagrangian in equation (19), ignoring external
power input, enclosed volume constraints, freezing protein diffusive transport and assuming for simplicity a
closed surface, since our interest here is in the stress, as
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where , ,s s sa a aˆ ˜ ¯ are the stress vectors associated to the free-energy, dissipation, and inextensibility constraint,
and the total stress vector is the sumof these contributions. The expression in the right-hand side leads to the
tangential and normal contributions of the stress in themechanical Euler–Lagrange equation since
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We focus first on the free-energy part of the stress and use the fact that for a Lagrangian parametrization
V g;d d=a a˙ . To identify the stress we assume that proteins do not diffuse, hence the energy only depends on the
configuration of themembrane and invoking the chain rule we canwrite
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Since protein transport is frozen for this calculation,W depends on gαβ and kαβ andwe have [69, 98]
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Using Jacobi’s relation, we further have
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Substituting the above relation in last term of equation (A.4), we obtain
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For the free energy density of themembrane considered here,W H , , 2f f( ∣ ∣ ), we have
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Using H k g= hg
hg and the relation g g g g¶ ¶ = -hg

ab
ha gb, we obtain
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Invoking balance ofmass of proteins, J Jdf fd= - , we have
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The equation above can be further used to obtain
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Thefirst term in the right-hand side can be further simplified to gf fD ab by going back to the definition of stress
in equation (A.2) and integrating by parts. The derivatives of energy density with respect to second fundamental
form are given by
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Substituting all the above relations into equation (A.4), we obtain the free-energy contribution to the stress
vectors as
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Taking the variation of the dissipation potential, a direct calculation allows us to identify gd2s h=a ab
b˜ .

Similarly, we can identify the component due to inextensibility as ggs s=a ab
b¯ . These equations above specify

the total stress vectors s s s s= + +a a a aˆ ˜ ¯ for the protein-membrane system. A calculation shows that the
tangential and normal components of the equation np 0;s + =a

a coincide with the tangential and normal
statements of force balance in equations (30) and (33).

Appendix B. Stability analysis

We summarize here the classical linearized stability analysis around aflat squaremembraneΓ0 of lateral size L
coveredwith homogeneous distribution of proteins with area fraction f̄.We analyze stability of this
homogeneous equilibrium configuration for perturbations in shape and protein density. Placing the flat
membrane in the x–y plane and considering shape perturbations described by aMonge parametrization,
r x y h x yi j k,= + + ( ) , the areal stretch ratio can be computed as

J h1 . B.12= + ∣ ∣ ( )

Aperturbation in height of themembrane results in changes in local area and balance ofmass of proteins
requires that the area fraction of proteins should reduce to Jf̄ .We consider density perturbations about Jf̄ to
uncouple them from the perturbations in height.We thus express perturbed area-fractions as

J
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wheref is the perturbation.
Expressing the free energy of section 3.1 in the reference configurationΓ0
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and expanding it up to second order inf and hwe obtain
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whereσeff and aeff are the effective surface tension and self interaction of proteins defined in equations (32) and
(49). To evaluate the integral in equation (B.4), we Fourier transform the perturbations towrite
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Unstablemodes can developwhen thismatrix ceases to be positive definite. Obvious conditions for instability
areσeff<0 (Euler buckling) and aeff<0 (purely chemical phase separation).More interesting chemo-
mechanicalmodes of instability developwhen both of these quantities are positive but det(A)<0 or
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Sinceσeff, aeff>0, for real unstablemodes to exist we require that
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A similar analysis applies to the free energy discussed in section 7.1, where now
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The second variation has the same structure as equation (B.4), the difference being in the interpretation of the
coefficients. Now,we have
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where
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Following the same procedure as before, we obtain the following condition for a chemo-mechanical instability

C a a a . B.13p p p p p
eff effk k k f s- + L¯ ∣ ¯ ∣ ( ¯ ¯ )( ) ( )

Qualitatively this condition is similar to that in equation (B.13). However, there is one subtle difference since
now aeff andσeff are independent of the spontaneous curvature of the proteins, whichwas not the case before.
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