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Abstract

A new residual-type flux-free error estimator is presented. It computes upper and
lower bounds of the error in energy norm with the ultimate goal of obtaining bounds
for outputs of interest. The proposed approach precludes the main drawbacks of
standard residual type estimators circumventing the need of flux-equilibration and
resulting in a simple implementation that uses standard resources available in finite
element codes. This is especially interesting for existing codes and 3D applications
where the implementation of this technique is as simple as in 2D. Recall that on the
contrary, the complexity of the flux-equilibration techniques increases drastically in
the 3D case. Bounds for the energy norm of the error are used to produce upper
and lower bounds of linear functional outputs, representing quantities of engineer-
ing interest. This new flux-free error estimator improves the effectivity of previous
approaches (better accuracy in every test) and it can be used in the mechanical case
for linear elements. The proposed approach demonstrates its efficiency in numerical
tests producing sharp bounds of the reference error both for the energy and the
quantities of interest.
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1 Introduction

Assessment of functional outputs of the solution (goal-oriented error estima-
tion) in computational mechanics problems is a real need in standard engi-
neering practice. In particular, end-users of finite element codes are interested
in obtaining bounds for quantities of engineering interest. Techniques provid-
ing these bounds require using error estimators in the energy norm of the
solution. Bounds for quantities of interest (functional outputs) are recovered
combining upper and lower bounds of the energy error for both the original
problem (primal) and a dual problem (associated with the selected functional
output) [1–3].

It is also important to note that bounds for the energy and for quantities of
interest are usually obtained with respect to a reference solution (associated
with a much richer discretization, viz. a finer mesh). Bounds for the exact
solution of the boundary value problem as presented in [4–6] are not addressed
here.

The need of obtaining reliable upper and lower bounds of the error for quan-
tities of interest has motivated the use of residual error estimators, which are
currently the only type of estimators ensuring bounds for the error. Classical
residual type estimators, which provide upper bounds of the error, require
flux-equilibration procedures (hybrid-flux techniques) to properly set bound-
ary conditions for local problems [7,2]. Flux-equilibration is performed by a
complex algorithm, strongly dependent on the element type and requiring a
data structure that is not natural in a standard finite element code.

The idea of using flux-free estimators, based on the partition-of-the-unity con-
cept and using local subdomains different than elements, has been already
proposed in [8–10]. The main advantage of the flux-free approach is the sim-
plicity in the implementation. Obviously, this is especially important in the
3D case. Boundary conditions of the local problems are trivial and the usual
data structure of a finite element code is directly employed. Recently, in [11],
the flux-free estimates have been compared with the standard hybrid-flux es-
timates in terms of both their sharpness (effectivity) and their computational
efficiency. The main conclusion of this investigation is that in most of the test
cases the hybrid-flux estimates are more accurate while the overall computa-
tional cost is lower for the flux-free estimates. However, there is no general
consensus on these issues.

This paper introduces a new flux-free error estimator improving the effectivity
of previous approaches (better accuracy in every test), which can be used in
the mechanical case for linear elements and with a further simplification in
the implementation. The remainder of the paper is structured as follows. In
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Section 2, the model problem is described. The development of this technique
is motivated by the need of assessing and bounding the error of the functional
outputs of the solution. Then, in Section 3, a procedure to obtain upper and
lower bounds of the energy norm is presented. Section 4 is devoted to analyze
the features of the proposed estimates, including proofs of the main proper-
ties. In Section 5 the approach introduced here is compared with previously
published flux-free techniques. The energy norm estimates are used in Section
6 to assess the error in quantities of interest. Computational aspects of the
proposed methodology and some implementation details are discussed in Sec-
tion 7. Finally, in Section 8, the different estimators are used in four numerical
examples, from a simple 2D thermal problem to a 3D mechanical test.

2 Statement of the problem

2.1 Model problem

Let Ω ⊂ R
nsd be an open, bounded domain with piecewise linear boundary and

nsd the number of spatial dimensions. Moreover, ∂Ω is divided in two disjoint
parts ΓD and ΓN such that ΓN ∪ ΓD = ∂Ω, ΓN ∩ ΓD = ∅ and ΓD is a non
empty set. Let u be the solution of the linear elasticity problem,






−∇ · σ(u) = s in Ω

σ(u) · n = t on ΓN

u = uD on ΓD

(1)

where t and uD are the imposed traction and boundary displacements, re-
spectively.

The weak solution of this problem is u ∈ U verifying

a(u,v) = l(v) ∀v ∈ V , (2)

where

a(u,v) =
∫

Ω

σ(u) : ε(v) dΩ, l(v) =
∫

Ω

s · v dΩ +
∫

ΓN

t · v dΓ. (3)

The usual solution and test spaces are defined U = {u ∈ [H1(Ω)]nsd ,u|ΓD
=

uD} and V = {v ∈ [H1(Ω)]nsd ,v|ΓD
= 0}, where H1 is the standard Sobolev

space of square integrable functions and first derivatives. The bilinear form
a(·, ·) induces the energy norm, which is denoted by ‖·‖, that is, ‖v‖2 =
a(v,v).
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The finite element interpolation spaces U
H ⊂ U and V

H ⊂ V are associated
with a finite element mesh of characteristic size H and degree p for the com-
plete interpolation polynomial base. The geometric support of the elements
for a given mesh are open subdomains denoted by Ωk, k = 1 . . . nel, where
Ω =

⋃
k Ωk. It is also assumed that different elements do not overlap, that is,

Ωk ∩ Ωl = ∅ for k 6= l.

Then, the finite element solution uH which is an approximation to u, lies in
the finite dimensional space U

H and verifies

a(uH ,v) = l(v) ∀v ∈ V
H . (4)

2.2 Error equations and reference error

The goal of a posteriori error estimation is to assess the accuracy of the finite
element solution uH , that is, to evaluate and measure the error, e := u−uH ,
which belongs to V , either in the energy norm ‖e‖ or in a quantity of interest
lO(e).

The global equation for the error is recovered from (2) replacing the exact
solution u by uH + e and using the linearity of the first argument of a(·, ·)

a(e,v) = l(v) − a(uH ,v) =: RP (v) ∀v ∈ V , (5)

where RP (·) stands for the weak residue associated to the finite element ap-
proximation uH .

In practice, the exact error e is replaced by a reference error, eh, lying in
a finite dimensional space V

h much richer than the original finite element
space V

H . That is, the exact solution u is replaced by the reference (or truth)
solution uh; consequently, u ≈ uh = uH + eh. The reference error is the
projection of the exact error into the reference space, that is, eh ∈ V

h is the
solution of the problem

a(eh,v) = RP (v) ∀v ∈ V
h. (6)

The direct computation of eh is computationally unaffordable because the size
of the system of equations is the dimension of V

h. The idea behind any implicit
residual type error estimator is to solve a set of local problems instead of the
global problem (6). In each of these local problems, boundary conditions must
be properly defined in order to obtain a good approximation of the error and
to ensure solvability.
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2.3 Estimation of outputs of interest

Attention is usually centered in bounding output quantities lO(u), where lO(·)
is a linear functional, see for instance [1,12,13,3,14]. These strategies introduce
a dual (or adjoint) problem with respect to the selected output. The weak form
of the dual problem reads: find ψ ∈ V such that

a(v,ψ) = lO(v) ∀v ∈ V .

The finite element approximation of the dual problem is ψH ∈ V
H such that

a(v,ψH) = lO(v) ∀v ∈ V
H . (7)

Finally, the dual reference error is ǫh ∈ V
h, such that

a(v, ǫh) = lO(v) − a(v,ψH) =: RD(v) ∀v ∈ V
h, (8)

where RD is the weak residue associated with ψH .

If v is replaced by eh in (8), then using Galerkin orthogonality and the paral-
lelogram identity, the following representation of lO(eh) can be obtained

lO(eh) = a(eh, ǫh) =
1

4
‖κeh +

1

κ
ǫh‖

2 −
1

4
‖κeh −

1

κ
ǫh‖

2 (9)

for any arbitrary scalar parameter κ. To simplify the notation the arguments
in the squared norms of the r.h.s. in (9) are denoted by z±

h = κeh ±
1

κ
ǫh.

In fact, in order to bound the output of the error, lO(eh), the r.h.s of (9)
indicates that it is sufficient to bound the energy norm of z+

h and z−
h , (i.e. the

energy norm of linear combinations of eh and ǫh).

Define Eu[v] and El[v] as the upper and lower bound of ‖v‖2, respectively. Note
that Eu[v] and El[v] are not functions; instead, it is a convenient notation of
the upper and lower bounds of ‖v‖2. Thus, once the bounds for ‖z±

h ‖
2 are

computed, namely
El[z

±
h ] ≤ ‖z±

h ‖
2 ≤ Eu[z

±
h ],

the output of the error is readily bounded as

1

4
El[z

+
h ] −

1

4
Eu[z

−
h ] ≤ lO(eh) ≤

1

4
Eu[z

+
h ] −

1

4
El[z

−
h ]. (10)

This procedure is summarized in Figure 1 where bounds for the output of
interest of the reference approximation, lO(uh), are also shown: lO(uH) is added
to each term of inequality (10). Next section introduces a methodology to
obtain both upper and lower bound error estimates in energy norm. This
approach is then used to compute Eu[z

+
h ], Eu[z

−
h ], El[z

+
h ] and El[z

−
h ].
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Step 1.– Compute uH ∈ U
H .

Step 2.– Compute ψH ∈ V
H .

Step 3.– Compute Eu[z
+
h ] and Eu[z

−
h ] such that

‖z+
h ‖

2 ≤ Eu[z
+
h ] and ‖z−

h ‖
2 ≤ Eu[z

−
h ].

Step 4.– Compute El[z
+
h ] and El[z

−
h ] such that

El[z
+
h ] ≤ ‖z+

h ‖
2 and El[z

−
h ] ≤ ‖z−

h ‖
2.

Step 5.– Compute bounds for the error in the quantity of interest as

1

4
El[z

+
h ] −

1

4
Eu[z

−
h ] ≤ lO(eh) ≤

1

4
Eu[z

+
h ] −

1

4
El[z

−
h ].

Step 6.– Recover bounds for the output of interest as

lO(uH) +
1

4
Eu[z

+
h ] −

1

4
El[z

−
h ] ≥ lO(uh),

lO(uH) +
1

4
El[z

+
h ] −

1

4
Eu[z

−
h ] ≤ lO(uh).

Fig. 1. Strategy to obtain bounds for the quantity of interest lO(uh)

3 Estimation of the energy norm of the error

In this section, error estimates yielding upper and lower bounds of the energy
norm are presented. For the sake of simplicity, the presentation concerns only
the primal problem. The methodology is general and it is also applicable to
the dual problem or to linear combinations of both.

3.1 Definitions and preliminaries

Let xi, i = 1, . . . , nnp denote the vertices of the elements in the computational
mesh (thus linked to U

H) and φi the corresponding linear (or bilinear or
trilinear) shape functions, which are such that φi(xj) = δij. The support of
φi is denoted by ωi and it is called the star centered in, or associated with,
vertex xi.

It is important to recall that the linear shape functions based on the vertices
are a partition of unity. Using this essential property and the linearity of the
weak residue RP (·), defined in (5), for every v ∈ [H1(Ω)]nsd the following
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equality holds

RP (v) = RP

( nnp∑

i=1

φiv

)
=

nnp∑

i=1

RP (φiv). (11)

Note that RP (φiv) vanishes if supp v∩ωi = ∅, because ωi is the support of φi.
Therefore, the residue is decomposed into local contributions over each star.
This basic property is the key idea to define residual estimators based in stars.
Similar approaches have been used in references [15,8–10].

Let V
h
ωi and V

H
ωi denote the local restrictions of the reference and finite element

spaces to the star ωi, that is,

V
h
ωi := V

h ∩ [H1(ωi)]nsd and V
H
ωi := V

H ∩ [H1(ωi)]nsd .

Formally any function v ∈ V
h
ωi (in particular, v ∈ V

H
ωi ⊂ V

h
ωi) is not defined

in the whole domain Ω but only in the star ωi. However, here any v ∈ V
h
ωi

is naturally extended to Ω by setting the values outside ωi to zero. Thus,
functions in V

h
ωi are continuous in ωi but generally discontinuous across the

boundary of the star ωi.

The local restriction V
h to the element Ωk, V

h
Ωk

:= V
h ∩ [H1(Ωk)]

nsd , is also
extended to Ω in the same way. This induces the broken space, namely

V
h
brok :=

nel⊕

k=1

V
h
Ωk

.

Note that functions in V
h
brok may present discontinuities across the inter-

element edges (or faces) and that V
h
ωi ⊂ V

h
brok.

The bilinear form a(·, ·) and the energy norm are generalized to accept broken
functions in its arguments; that is, for v and w ∈ V

h
brok,

a(v,w) :=
nel∑

k=1

a
Ωk

(v,w) and ‖v‖2 :=
nel∑

k=1

‖v‖2
k,

where a
Ωk

(·, ·) is the restriction of the bilinear form a(·, ·) to the element Ωk

and ‖v‖2
k = a

Ωk
(v,v).

For further developments it is also necessary to introduce the nodal projections
of any function in V onto the finite element space, V

H , and the reference
space, V

h. That is, πH : V −→ V
H such that πHv(x̂i) = v(x̂i) where x̂i

denote every node on the finite element mesh, and πh : V −→ V
h such that

πhv(x̂i) = v(x̂i) where x̂i denote now the nodal points of the reference mesh.
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Step 1.– Compute uH ∈ U
H .

Step 2.– For i = 1, . . . , nnp, compute ẽωi

∈ V
h
ωi such that

aωi(ẽωi

,v) = RP
(
φi(v −πHv)

)
∀v ∈ V

h
ωi .

Step 3.– Define the global estimate ẽ ∈ V
h
brok

ẽ :=
nnp∑

i=1

ẽωi

.

Step 4.– Compute the upper bound as

Eu[eh] = ‖ẽ‖2 =
nel∑

k=1

‖ẽ‖2
k ≥ ‖eh‖

2.

Fig. 2. Upper bound for the squared energy norm of the reference error

3.2 Upper bound estimate of the reference error

The strategy to compute upper bound estimates of the reference error, Eu[eh],
consist in, first, the evaluation of the finite element solution uH , which is
necessary to compute the residue RP ; and, second, the appraisal of the local
estimates ẽωi

∈ V
h
ωi solving problems in each star ωi

aωi(ẽωi

,v) = RP
(
φi(v −πHv)

)
∀v ∈ V

h
ωi , (12)

where aωi(·, ·) is the restriction of the bilinear form a(·, ·) to the star ωi. Then,
adding the local estimates, which have been extended into V

h
brok, a global

estimate ẽ ∈ V
h
brok is obtained,

ẽ :=
nnp∑

i=1

ẽωi

, (13)

and the upper bound of the energy norm of the reference error is recovered
computing the norm of the estimate ẽ, that is, Eu[eh] := ‖ẽ‖2 ≥ ‖eh‖

2. Figure
2 describes this strategy in four steps.

Note that the error estimator described above does not require any computa-
tion of fluxes (stresses) along the boundary of the elements (it is flux-free).

Remark 1 In the r.h.s. of (12) the projection πH has been introduced in
order to equilibrate the local problem and ensure its solvability. This is ana-
lyzed in Section 4.1. However, for scalar problems and mechanical problems
with high-order elements (at least quadratic) the r.h.s. does not require the
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projection. That is, equation (12) reduces to

aωi(ẽωi

,v) = RP(φiv) ∀v ∈ V
h
ωi .

Remark 2 In Section 7 another expression for the r.h.s. of (12) is proposed
to drastically simplify the practical implementation of this estimator.

3.3 Lower bound estimates

The upper bound estimate of the squared energy norm, Eu[eh], is associated
with the estimate ẽ of the error function. The upper bound property is intrin-
sically related with the broken (discontinuous) nature of ẽ. On the contrary,
a lower bound estimate is easily recovered from a continuous estimate of the
error function, see [16]. Thus, once ẽ is obtained, a continuous estimate of
the error function, ẽcont, is computed by simple postprocessing. Two different
alternatives can be considered to compute ẽcont from ẽ. First, the strategy
presented in detail in [16] and valid for any discontinuous estimate ẽ (dis-
continuous across inter-element edges or faces) can be readily implemented.
It averages the discontinuities of the function across inter-element edges/faces
and produces a continuous function that belongs to V

h. Second, the weighting
strategy, where the continuous estimate is obtained from

ẽcont := πh

( nnp∑

i=1

φiẽωi

)
. (14)

This approach uses the fact that local estimates ẽωi

are continuous in each star.
The discontinuities of ẽωi

on the boundary of each star ωi are smoothed by
multiplying by φi, which vanishes along the boundary of ωi. Consequently, this
is the natural choice for the estimates presented in this paper. The projection
into the reference mesh V

h ensures that the evaluation of RP (ẽcont) is easily

performed. Note that φiẽωi

may not belong to V
h.

For both averaging strategies, a lower bound, El[eh], of the energy norm of the
reference error is obtained from ẽcont as

El[eh] :=

(
RP (ẽcont)

)2

‖ẽcont‖2
≤ ‖eh‖

2. (15)

Moreover, in order to improve the quality of the estimate the global enhance-
ment strategy proposed in [17] can be implemented. First, ẽG ∈ V

H is com-
puted solving

a(ẽG,v) = −a(ẽcont,v) ∀v ∈ V
H , (16)
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Step 1.– Compute ẽcont ∈ V as

ẽcont = πh

( nnp∑

i=1

φiẽωi

)
.

Step 2.– Compute the lower bound

El[eh] :=

(
RP (ẽcont)

)2

‖ẽcont‖2
≤ ‖eh‖

2.

Step 3.– Compute ẽG ∈ V
H such that

a(ẽG,v) = −a(ẽcont,v) ∀v ∈ V
H ,

Step 4.– Improve the lower bound as

EG
l [eh] :=

(
RP (ẽcont)

)2

‖ẽcont‖2 − ‖ẽG‖2
≤ ‖eh‖

2.

Fig. 3. Lower bounds for the squared energy norm of the error

and then, the lower bound given in (15) is improved using ‖ẽG‖2 as

EG
l [eh] :=

(
RP (ẽcont)

)2

‖ẽcont‖2 − ‖ẽG‖2
≤ ‖eh‖

2. (17)

This strategy is summarized in Figure 3.

Remark 3 The evaluation of ẽG from equation (16) is equivalent to the reso-
lution of a system of equations with the same matrix used to compute uH , see
equation (4).

4 Analysis and properties of the proposed estimates

The upper bound estimate Eu[eh] is obtained without any flux recovery or flux
splitting technique. The effect of the flux jumps across each edge of the mesh
is implicitly taken into account because the support of the local problems are
the stars, which include the inter-element edges/faces. There is no need to
compute and postprocess fluxes of the finite element solution, uH , along the
inter-element edges/faces. Thus, the proposed estimate has two very attractive
features:

(1) there is no need to compute fluxes and flux jumps along the element
boundaries, and
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(2) there is no need to perform any flux equilibration.

Consequently, it is especially well suited to assess the error in a 3D framework,
where the cost of computing the boundary fluxes and their equilibration is
usually extremely large. Moreover, it is also important to notice that flux-free
estimators only require one array additional to the standard data structure
already present in any standard finite element code. This array contains infor-
mation on the elements that surround every given point. This data is easily
determined once and for all when topology is known, and in some codes it
is already available (viz. Matlab and Cast3m). In particular and in contrast
to hybrid-flux techniques there is no need to have structured the information
on edges/faces for the evaluation of fluxes. The remainder of this section is
devoted to analyze the main properties of the estimates introduced above.

4.1 Solvability of the local error equation

The local equation (12) is solved in each star ωi in order to compute the local

estimate ẽωi

. Note that the r.h.s. term of (12), RP
(
φi(v −πHv)

)
, does not

coincide with the obvious decomposition of the residue given in equation (11),
namely

aωi(ẽωi

,v) = RP (φiv) ∀v ∈ V
h
ωi . (18)

The term RP (φiv) has been replaced in (12) by RP
(
φi(v −πHv)

)
. This is

done to ensure the solvability of the local equation.

Theorem 4 The local problem for the estimate ẽωi

,

aωi(ẽωi

,v) = RP
(
φi(v −πHv)

)
∀v ∈ V

h
ωi ,

is solvable.

This Theorem is based on the following one, which can be found in [18, Thm
9.2.30],

Theorem 5 Let V be a Hilbert space and a(·, ·) be a bilinear form acting on
V ×V. Let also V = ker a⊕ V̂ be a decomposition of V, that is, for any given
v ∈ V, there exists a unique pair (va, v̂) ∈ ker a × V̂ such that v = va + v̂,
where

ker a := {va ∈ V | a(va,w) = 0 ∀w ∈ V}.

Assume also that the bilinear form a(·, ·) is coercive on V̂, that is

∃γ > 0 such that a(v̂, v̂) ≥ γ‖v̂‖2 ∀v̂ ∈ V̂ .

Then, the variational problem: find u ∈ V such that

a(u,v) = l(v) ∀v ∈ V ,
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is solvable if and only if the following compatibility condition holds:

l(v) = 0 ∀v ∈ ker a.

Solvability of a variational problem depends on the verification of the compat-
ibility condition for the functions in the kernel of the bilinear operator. Thus,
solvability of equation (12) depends on the model problem at hand. Here the
mechanical problem is discussed but the following remark is concerned with
scalar equations.

Remark 6 Consider the scalar diffusion-reaction equation. The bilinear form
for this problem is

a(u, v) =
∫

Ω

ν∇u · ∇v + µuv dΩ,

for a strictly positive real coefficient ν ∈ L∞(Ω), an a nonnegative real coeffi-
cient µ ∈ L∞(Ω), and its restriction to a star ωi is, as previously, denoted by
aωi(u, v). A strictly positive reaction term in aωi(u, v) ensures the solvability
of local equation (12) since the ker aωi = ∅. For µ|ωi = 0, the kernel of the
bilinear operator aωi(·, ·) is the one dimensional space of constants, P

0(ωi).
Then, equation (12) is solvable if and only if the compatibility condition holds,
namely

RP (φic) = cRP (φi) = 0 ∀c ∈ P
0(ωi),

which follows from the orthogonality of the primal residual to the finite element
space VH , since φi ∈ VH .

The bilinear form for the elasticity problem is defined in (3) and the kernel
of its restriction to ωi, aωi(·, ·), is defined by the solid rigid motions, that is,
the zero energy modes. In 1D, the rigid body motions are only translations,
that is, the one dimensional space of constants, P

0(ωi). In this case, as in
the scalar (thermal) problem, for c ∈ P

0(ωi), RP (φic) = cRP (φi) = 0 due to
the Galerkin orthogonality and therefore the compatibility equation holds and
equation (12) is solvable.

However for 2D and 3D mechanical problems, the solid rigid motions include
also rotations. For instance in a 2D setup, the kernel of aωi(·, ·) is a space of
three dimensions generated by two translations tx and ty and one rotation θ.
The rotation is a linear function and consequently φiθ does not always belong
to V

H (for instance, for linear triangular elements, φiθ /∈ V
H), and hence

RP (φiθ) is not necessarily zero. Thus, since the compatibility condition does
not hold in general, it can not be guaranteed that equation (12) is solvable.
From a mechanical viewpoint, the forces associated with RP (φiv) are not
equilibrated (the sum of forces is zero but the sum of moments does not
vanish).
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For domains with piecewise linear boundaries, a natural way to circumvent
this problem is to consider higher-order Lagrange elements. If φi are first-
order Lagrange (linear, bilinear or trilinear) shape functions associated to the
set of vertices of the finite mesh, since θ is also a linear combination of first-
order Lagrange shape functions then φiθ ∈ V

H and thus the compatibility
condition is verified. Thus, equation (12) is solvable.

However, this is no longer valid for first-order Lagrange elements nor for do-
mains with curved boundaries where rotation, θ, is not characterized by a
linear combination of first-order shape functions (recall that an isoparametric
transformation is used for curved elements). In this case, an alternative is to
correct the r.h.s. of (12) to ensure that the compatibility condition is verified
also for rotations.

Since RP (v) = RP (v −πHv) for all v ∈ V by Galerkin orthogonality, the
partition defined by (11) can be redefined as

RP (v) =
nnp∑

i=1

RP
(
φi(v −πHv)

)
,

which leads to equation (12). In this case, any rigid solid motion vrm belongs
to V

H , thus vrm −πHvrm = 0 and consequently problem (12) is solvable.

4.2 The upper bound property

The following results summarize the basic property that most residual type
error estimators based in a flux equilibration technique verify, see references
[19,20], and also proves the upper bound property of this type of estimates.

Lemma 7 Any estimate ẽ ∈ V
h
brok verifying the weak error equation

a(ẽ,v) = RP (v) ∀v ∈ V
h, (19)

is such that the norm of ẽ is an upper bound of the energy norm of the reference
error, that is

‖ẽ‖2 ≥ ‖eh‖
2.

PROOF. First the following trivial expansion is performed

0 ≤ ‖eh − ẽ‖2 = ‖eh‖
2 + ‖ẽ‖2 − 2a(ẽ,eh).

Now, replacing v by eh in (19) and using equality RP (eh) = ‖eh‖
2, see (6),

the upper bound property is obtained as follows

0 ≤ ‖eh − ẽ‖2 = ‖eh‖
2 + ‖ẽ‖2 − 2RP (eh) = ‖ẽ‖2 − ‖eh‖

2. ¤
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Thus, to prove that Eu[eh] is an upper bound of the energy norm of the error,
it is only necessary to check that the global estimate ẽ, defined in (13), verifies
equation (19).

Theorem 8 The estimate ẽ =
∑nnp

i=1 ẽωi

, where ẽωi

is the solution of the local
problem given in (12), is such that

Eu[eh] = ‖ẽ‖2 ≥ ‖eh‖
2.

PROOF. Using equations (12) and (13) together with Galerkin orthogonality

a(ẽ,v) =
nnp∑

i=1

a(ẽωi

,v) =
nnp∑

i=1

aωi(ẽωi

,v) =
nnp∑

i=1

RP
(
φi(v −πHv)

)

= RP
( nnp∑

i=1

φi(v −πHv)
)

= RP (v) − RP
(
πHv

)
= RP (v) ∀v ∈ V

h.

And the proof is concluded using Lemma 7. ¤

4.3 Lower bound by postprocessing

The following theorem, see [16] for a detailed proof, shows that every continu-
ous function yields a lower bound of the energy norm of the error. In particular
those obtained by post-processing as indicated in Section 3.3. Obviously, for
an arbitrary estimate ẽcont, the corresponding lower bound may have a very
poor quality. The best choice for ẽcont is either e or eh, in order to obtain
El equal to ‖e‖2 or ‖eh‖

2. Therefore, to obtain sharp lower bounds, the esti-
mate ẽcont must be a good approximation of the actual error (either exact or
reference).

Theorem 9 For any ẽcont ∈ V, a lower bound of the energy norm of the exact
error is recovered as

0 ≤ El[e] :=

(
RP (ẽcont)

)2

‖ẽcont‖2
≤ ‖e‖2.

Moreover, if ẽcont ∈ V
h ⊂ V, the lower bound is also a lower bound with

respect to the energy norm of the reference error, that is,

0 ≤ El[eh] :=

(
RP (ẽcont)

)2

‖ẽcont‖2
≤ ‖eh‖

2 ≤ ‖e‖2.
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4.4 Enhancing the lower bound

The continuous function ẽcont is obtained by performing only local computa-
tions, consequently the corresponding estimate El does not account for pol-
lution errors. The unestimated part of error, e − ẽcont, includes the pollution
effects and it is denoted as global error. In order to assess pollution, the equa-
tion for the global error is solved on the coarse mesh following the methodology
proposed in [17]. Thus, ẽG ∈ V

H is computed using equation (16) and the en-
hanced lower bound estimate, EG

l [eh], is obtained using (17). The following
theorem states that EG

l [eh] is also a lower bound of the squared error energy
norm.

Theorem 10 Let ẽG ∈ V
H be the solution of

a(ẽG,v) = −a(ẽcont,v) ∀v ∈ V
H ,

where ẽcont ∈ V
h is any continuous estimate. Then

EG
l [eh] :=

(
RP (ẽcont)

)2

‖ẽcont‖2 − ‖ẽG‖2
≤ ‖eh‖

2.

PROOF. Let ẽG

cont := ẽcont + ẽG, thus using Theorem 9,

(
RP (ẽG

cont)
)2

‖ẽG

cont‖
2

≤ ‖eh‖
2.

First, the residue is modified as

RP (ẽG

cont) = RP (ẽcont) + RP (ẽG) = RP (ẽcont),

because the weak residue vanishes for every function in the finite element space
V

H (Galerkin orthogonality). And second, the proof is completed replacing the
denominator by

‖ẽG

cont‖
2 = ‖ẽcont‖

2 + ‖ẽG‖2 + 2a(ẽcont, ẽ
G) = ‖ẽcont‖

2 + ‖ẽG‖2 − 2a(ẽG, ẽG)

= ‖ẽcont‖
2 − ‖ẽG‖2,

where equation (16) is used replacing v by ẽG. ¤

It is worth noting that the non-enhanced lower bound El[eh] is also an error
estimate. The computation of ẽG and EG

l [eh] is only performed to improve the
quality of the error assessment: the value of the enhanced estimate is larger
and the lower bound property is conserved. Therefore, the enhanced estimate,
EG

l [eh], is sharper.
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5 Comparison with other existing methods

References [8–10] use apparently similar techniques to obtain upper bounds
of the error in the context of a scalar model problem. This section is devoted
to compare these techniques with the approach proposed in this paper. The
rationale in [8–10] is to decompose the bilinear form a(·, ·) in a sum of local
contributions associated with each star. That is, weighted local bilinear forms
awi

(·, ·) are introduced such that

a(u,v) =
nnp∑

i=1

∫

ωi

wiσ(u) : ε(v) dΩ =:
nnp∑

i=1

awi

(u,v), (20)

where the weights wi account for the overlapping of the stars verifying the
partition of the unity property:

nnp∑

i=1

wi = 1.

The local norm induced by awi

(·, ·) is denoted by ‖·‖wi , that is, ‖v‖2
wi :=

awi

(v,v).

Two different choices for wi have been considered. In [9], for each element Ωk

of the star ωi, the proposed weight is wi|Ωk
= (1/σk) where σk is the number of

vertices of the element Ωk. In [8,10], the local weights are the shape functions,
wi = φi.

Once the bilinear form is decomposed into local contributions, the local esti-
mates êωi

∈ V
h
ωi are computed solving the local equation

awi

(êωi

,v) = RP
(
φi(v −πHv)

)
∀v ∈ V

h
ωi . (21)

Remark 11 In fact, in [8–10] the r.h.s. of (21) does not include the projec-
tion πHv. This is because these papers are only concerned with scalar (ther-
mal) problems and, consequently, the solvability issues discussed in Section 4.1
are not relevant.

The upper bound of ‖eh‖
2 is obtained adding the local weighted norms of êωi

,
that is

Êu[eh] :=
nnp∑

i=1

‖êωi

‖2
wi ≥ ‖eh‖

2.

The strategy to obtain the upper bound estimate is summarized in Figure 4.

Note that Eu[eh] and Êu[eh] are computed with completely different expres-
sions. The former is the norm of a sum and the latter is the sum of local
norms.
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Step 1.– Compute uH ∈ U
H .

Step 2.– For i = 1, . . . , nnp compute êωi

∈ V
h
ωi such that

awi

(êωi

,v) = RP
(
φi(v −πHv)

)
∀v ∈ V

h
ωi .

Step 3.– Compute the upper bound as

Êu[eh] :=
nnp∑

i=1

‖êωi

‖2
wi ≥ ‖eh‖

2.

Fig. 4. Alternative upper bound for the squared energy norm of the reference error

The only difference between equations (12) and (21) is the bilinear form in
the l.h.s term. However, the upper bounds Eu[eh] and Êu[eh] have a different
expression and, consequently, the analysis of the properties of the estimates
follows a different strategy.

The following theorem states that Êu[eh] is indeed an upper bound of the
squared energy norm of the error.

Theorem 12 Let êωi

be the solution of the local equation (21) where wi are
a partition of unity. Then,

Êu[eh] =
nnp∑

i=1

‖êωi

‖2
wi ,

is an upper bound of the squared energy norm of the reference error, namely,
Êu[eh] ≥ ‖eh‖

2.

PROOF. The decomposition of the bilinear form a(·, ·) defined in (20) leads
to the following decomposition of the energy norm

‖v‖ = a(v,v)
1

2 =
( nnp∑

i=1

awi

(v,v)
) 1

2

=
( nnp∑

i=1

‖v‖2
wi

) 1

2

.

Moreover, using equations (11) and (21) together with Galerkin orthogonality,
the squared energy norm of the reference error is rewritten as

‖eh‖
2 = a(eh,eh) = RP (eh) =

nnp∑

i=1

RP
(
φi(eh −πHeh)

)
=

nnp∑

i=1

awi

(êωi

,eh).

Combining these two decompositions and with repeated use of the Cauchy-
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Schwartz inequality the proof is completed

‖eh‖
2 =

∣∣∣∣

nnp∑

i=1

awi

(êωi

,eh)
∣∣∣∣ ≤

nnp∑

i=1

|awi

(êωi

,eh)| ≤
nnp∑

i=1

‖êωi

‖wi‖eh‖wi

≤
( nnp∑

i=1

‖êωi

‖2
wi

) 1

2

( nnp∑

i=1

‖eh‖
2
wi

) 1

2

≤ Êu[eh]
1

2‖eh‖. ¤

Remark 13 The repeated use of the Cauchy-Schwartz inequality in the proof
of Theorem 12 suggests that the obtained upper bound is not as sharp as the
upper bound associated with the estimate ẽ. The numerical examples confirm
this impression: the estimate Eu[eh] is usually sharper than Êu[eh].

6 Bounds of the error in outputs of interest

As shown in Section 2.3, in order to estimate bounds of the error in the output
of interest lO(eh), upper and lower bounds of ‖z±

h ‖ are necessary instead of
bounds of ‖eh‖. Recall that z±

h = κeh±
1

κ
ǫh where the error of the primal and

dual problems are involved. This section presents and discusses the particular
evaluation of Eu[z

±
h ] and El[z

±
h ]. These values, as indicated by equation (10),

allow to bound ‖z±
h ‖. Note also that bounds for the output of interest, lO(uh),

can be computed adding lO(uH) to each term of inequality (10).

6.1 Upper bound computation of ‖z±
h ‖

In order to determine Eu[z
±
h ] the error estimate of both the primal and dual

problem are necessary. Section 3 describes the evaluation of the primal error
estimate. The same methodology is used to estimate the dual error, ǫ̃, by
adding local estimates ǫ̃ωi

∈ V
h
ωi computed from

aωi(v, ǫ̃ωi

) = RD
(
φi(v −πHv)

)
∀v ∈ V

h
ωi . (22)

Then, the upper bound for ‖z±
h ‖

2, Eu[z
±
h ], is obtained as summarized in Figure

5 and based on the following Lemma.

Lemma 14 The estimate Eu[z
±
h ] := 2‖ẽ‖‖ǫ̃‖ ± 2a(ẽ, ǫ̃) is such that

Eu[z
±
h ] ≥ ‖z±

h ‖
2.
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Step 1.– For i = 1, . . . , nnp, compute the local estimates ẽωi

, ǫ̃ωi

∈ V
h
ωi

such that

aωi(ẽωi

,v) = RP
(
φi(v −πHv)

)
∀v ∈ V

h
ωi ,

aωi(v, ǫ̃ωi

) = RD
(
φi(v −πHv)

)
∀v ∈ V

h
ωi .

Step 2.– Define the global estimates ẽ and ǫ̃ as

ẽ =
nnp∑

i=1

ẽωi

, ǫ̃ =
nnp∑

i=1

ǫ̃ωi

.

Step 3.– Compute the upper bounds of the energy norm of z±
h as

Eu[z
±
h ] = 2‖ẽ‖‖ǫ̃‖ ± 2a(ẽ, ǫ̃) ≥ ‖z±

h ‖
2.

Fig. 5. Upper bounds for the squared energy norm of z±
h

PROOF. Since a(·, ·) is a symmetric bilinear form, the following equation
for z±

h holds,

a(z±
h ,v) = κRP (v) ±

1

κ
RD(v) =: R±(v) ∀v ∈ V

h.

Then, according to Lemma 7, an estimate z̃± ∈ V
h
brok yields an upper bound

of the energy norm of z±
h if

a(z̃±,v) = R±(v) ∀v ∈ V
h. (23)

Recall now that the primal estimate ẽ verifies equation (19), see Lemma 7.
Similarly, ǫ̃ verifies

a(ǫ̃,v) = RD(v) ∀v ∈ V
h.

Thus, introducing z̃± := κẽ± ǫ̃/κ ∈ V
h
brok equation (23) holds true. The proof

is completed taking κ2 = ‖ǫ̃‖/‖ẽ‖ in

Eu[z
±
h ] = ‖z̃±‖2 = κ2‖ẽ‖2 +

1

κ2
‖ǫ̃‖2 ± 2a(ẽ, ǫ̃) = 2‖ẽ‖‖ǫ̃‖ ± 2a(ẽ, ǫ̃). ¤

6.2 Lower bound computation of ‖z±
h ‖

Upper bound estimates of z̃± are also postprocessed to obtain z̃±
cont as de-

scribed in Section 3.3. The strategy used to obtain lower bounds of z±
h is

summarized in Figure 6.
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Step 1.– Compute ẽcont and ǫ̃cont as

ẽcont = πh

( nnp∑

i=1

φiẽωi

)
and ǫ̃cont = πh

( nnp∑

i=1

φiǫ̃ωi

)
,

or use a simple average as proposed in [16].
Step 2.– Compute the global enhancements ẽG and ǫ̃G in V

H such that

a(ẽG,v) = −a(ẽcont,v) ∀v ∈ V
H ,

a(v, ǫ̃G) = −a(v, ǫ̃cont) ∀v ∈ V
H .

Step 3.– Define z̃±
cont = κ(ẽcont + ẽG) ±

1

κ
(ǫ̃cont + ǫ̃G), and compute the

lower bound as

EG
l [z±

h ] =

(
R±(z̃±

cont)
)2

‖z̃±
cont‖

2
≤ ‖z±

h ‖
2.

Fig. 6. Lower bounds for the squared energy norm of z±
h

Theorem 15 thm:lower-bound-z Let ẽG ∈ V
H and ǫ̃G ∈ V

H be the global
enhancements computed from ẽcont ∈ V

h and ǫ̃cont ∈ V
h, respectively. Then,

the estimate z̃±
cont := κ(ẽcont + ẽG) ± (ǫ̃cont + ǫ̃G)/κ provides a lower bound of

the energy norm of z±
h , that is,

EG
l [z±

h ] :=

(
R±(z̃±

cont)
)2

‖z̃±
cont‖

2
≤ ‖z±

h ‖
2.

PROOF. The proof is a direct consequence of Theorem 9 if both ‖ẽ‖ and
‖ǫ̃‖ are non-zero.

The case ‖ẽ‖ = 0 or ‖ǫ̃‖ = 0 is trivial because it implies that either e = 0 or
ε = 0, and therefore lO(e) = 0. In this case, the obvious lower bound EG

l [z±
h ]

is 0. ¤

7 Computational aspects

7.1 Simplified computation of the weak residual

The simplification proposed in this section defines, in fact, the actual strat-
egy proposed in this paper. As shown next (and as can be observed in the
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examples) there is no loss of certainty. Moreover, the advantages in the com-
putational effort are considerable. Equation (12) is in fact the fundamental
equation that is solved repeatedly. The weak residual in its r.h.s. is not trivial
to compute because for v ∈ V

h, in general, φiv does not belong to the finite
element reference space, V

h. Note that this is also the case for φi(v −πHv).
However, the evaluation of the weak residual is drastically simplified if its
argument is projected into V

h.

For every v ∈ V
h the following equality holds

RP (v) = RP
(
πhv

)
= RP

(
πh

( nnp∑

i=1

φiv
))

=
nnp∑

i=1

RP
(
πh(φiv)

)
.

Thus the same partition proposed in (11) can be performed with the residual
acting on the projection and consequently, equation (12) can be rewritten as

find ẽωi

∈ V
h
ωi such that

aωi(ẽωi

,v) = RP

(
πh

(
φi(v −πHv)

))
∀v ∈ V

h
ωi .

The behavior of the estimates obtained either introducing the projection, πh,
or not is similar as shown in the numerical examples. However the implemen-
tation of the r.h.s. term described in the previous equation is much simpler.
This is because the argument of RP (·) is reinjected in the reference space,
which is a standard finite element space. Moreover, φi ∈ Vh and v ∈ V

h, thus
πh(φiv) is computed by a simple product of nodal values of φi and v (or
v −πHv when necessary).

7.2 Spatial distribution of upper bound estimates

The upper bound estimate Eu[eh] presented in Section 3.2 can be decomposed
into positive contributions of each element of the mesh, thus providing local
indicators of the value of the local energy norm of the reference error ‖eh‖k,
that is,

Eu[eh] = ‖ẽ‖2 =
nel∑

k=1

‖ẽ‖2
k,

and ‖ẽ‖k is the local indicator for ‖eh‖k.
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8 Numerical examples

In this section, the behavior of the estimates presented above is analyzed both
for thermal and mechanical model problems. Some of the selected examples
have been used by other authors to assess performance of similar techniques
[1,3,21]. The quality of the error estimates is measured with the index

ρ :=
estimated error norm

“true” error norm
− 1,

where the “true” error is either the exact error (if available) or the reference
error. Index ρ is the usual effectivity index minus one. The accuracy of the
error estimate is given by the absolute value of ρ and the sign indicates if the
estimate is an overestimation (positive ρ) or an underestimation (negative ρ)
of the true error. For instance, ρ = 2% indicates that estimated error is larger
than the “true” error with a factor 1.02 and ρ = −3% means that the “true”
error is underestimated by a factor 0.97.

In the remainder of the section ρ is used to assess the quality of the different
estimates, for instance of Eu[eh]. Note however that Eu[eh] is an estimate of
the squared energy norm, but the corresponding ρ index is computed using
directly the approximation of the error norm (not squared). Moreover, when
the exact error, e, is known it is always used to compute ρ. Thus, ρ(Eu[eh]) is
defined either as

ρ(Eu[eh]) :=

√
Eu[eh]

‖e‖
− 1 or as ρ(Eu[eh]) :=

√
Eu[eh]

‖eh‖
− 1,

depending on the availability of e. This definition is extended to the other
studied error estimates, for instance ρ(Êu[eh]).

8.1 Thermal problem with energy norm assessment

First, the scalar benchmark is solved, see [2,3,16]. A squared domain, Ω =
]0, 1[×]0, 1[, with Dirichlet homogeneous boundary conditions on ∂Ω and a
source term are chosen such that the exact solution, given in Figure 7, has the
following analytical expression

u(x, y) = x2(1 − x)2(e10x2

− 1) y2(1 − y)2(e10y2

− 1)/2000.

The behavior of the energy norm estimates is analyzed comparing the esti-
mates with the exact energy error norm ‖e‖. Two different non-structured and
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Fig. 7. Thermal problem: exact solution (left) and meshes with 240 dof (center) and
913 dof (right)

non-uniform meshes have been considered, see Figure 7. In both cases, the ap-
proximate solution uH is computed using quadrilateral meshes with bilinear
interpolation (p = 1), and the reference space is associated with a mesh of size
h = H/4 (i.e. each element of the H-mesh is divided into 16 new elements).

Table 1 presents the ρ indices for estimates of upper bounds. Two versions
of Eu[eh] are shown, one using the projection πh in the r.h.s. term of the
local equation (12), as described in Section 7.1 to simplify computations, and
another without the proposed projection. Two versions of ρ(Êu[eh]) are also
evaluated. They correspond to the different weighting functions wi for the
bilinear form in the l.h.s. of equation (21) described in Section 5, and formerly
proposed in [9] (wi = 1/σ) and in [8,10] (wi = φi).

Paradoxically, in this example, the two upper bounds estimates proposed in
this paper (and associated with Eu[eh]) provide negative values of ρ. This
is because all the presented estimates are upper bounds with respect to the
reference error, eh, that is, they are larger than the reference error but not
necessarily larger than the exact error e which is used to compute ρ. Then,
even if ‖eh‖

2 ≤ Eu[eh] stands, in this case the estimates are very sharp and
we have ‖eh‖

2 < Eu[eh] < ‖e‖2, see Table 1. The estimates corresponding to
Êu[eh] are far from being sharp, they yield an overestimation of more than
60% (for wi = 1/σ) and 20% (for wi = φi).

As expected, the effectivity indices of Eu[eh] are better than the effectivity
indices of Êu[eh] (for both versions wi = 1/σ and wi = φi). Table 1 also shows
that the proposed projection πh in the r.h.s. term of local equation (12), as
described in Section 7.1, does not modify substantially the values of effectivity
indices. Recall that the use of πh simplifies considerably the implementation
of the estimator and it is therefore strongly recommended.

Effectivity indices for lower bound estimates are displayed in Tables 2 and 3.
Estimates Êl[eh] and ÊG

l [eh] are computed in the same fashion as El[eh] but

using the continuous function resulting of smoothing ê =
∑

i ê
ωi

instead of
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Table 1
Thermal problem: ρ indices for upper bound energy norm estimates

d.o.f. ‖e‖
‖u‖

‖eh‖
‖e‖ ρ(Eu[eh]) ρ(Eu[eh]) ρ(Êu[eh]) ρ(Êu[eh])

without πh with πh wi = 1/σ wi = φi

240 24.9% 95.9% -3.26% -3.34% 63.9% 23.4%

913 15.1% 96.6% -2.59% -2.65% 67.8% 25.8%

Table 2
Thermal problem: ρ indices for lower bound energy norm estimates

d.o.f. ρ(El[eh]) ρ(El[eh]) ρ(Êl[eh]) ρ(Êl[eh])

without πh with πh wi = 1/σ wi = φi

240 -19.9% -19.6% -19.9% -31.0%

913 -18.9% -18.6% -18.9% -29.6%

Table 3
Thermal problem: ρ indices for lower bound energy norm estimates with global
enhancement

d.o.f. ρ(EG
l [eh]) ρ(EG

l [eh]) ρ(ÊG
l
[eh]) ρ(ÊG

l
[eh])

without πh with πh wi = 1/σ wi = φi

240 -6.58% -7.30% -6.58% -4.67%

913 -5.79% -6.50% -5.79% -3.97%

ẽ, see equation (13). Table 3 shows the results obtained applying the global
enhancement discussed in Section 4.4. These results indicate that lower bounds
are not sensitive to the original (discontinuous) estimate, which provides the
upper bound. All estimates in Table 2 perform similarly. The effect of the
global enhancement is however very important: the effectivity indices improve
drastically from Table 2 to Table 3. Recall that in all these tables ρ is computed
with respect to the exact error because the exact solution is known.

From a qualitative viewpoint, it is worth noting that the estimated error dis-
tribution is in good agreement with the exact error distribution, both for the
estimate proposed here (Eu[eh]) and for the estimates proposed in [8–10] (the
two versions of Êu[eh]).

Figure 8 shows the spatial distribution of the local effectivity index and the
histogram representing the occurrences of local effectivity indices. The his-
togram shows the number of elements with local efectivity in a given range.
The histograms show a good behavior of the estimate if they display a narrow
distribution (all elements have similar local effectivity indices) concentrated
around 100%. Observe that the local values associated with the estimate Eu[eh]
proposed here are much more accurate than the values corresponding to Êu[eh].
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Fig. 8. Thermal problem: spatial distribution of the local effectivity (top) and his-
tograms for local effectivity (bottom). The results correspond to Eu[eh] (left), Êu[eh]
with wi = φi (center) and EG

l [eh] (right)

Remark 16 Elements with a small local error are not taken into account.
Because the areas where error is small are not interesting from an adaptive
viewpoint. Moreover, in these areas, small defaults in the error assessment lead
to very bad effectivity indices (small absolute error but large relative error).
Here, the criterion used is to suppress in the histograms elements such that the
local error norm is lower than ‖eh‖/4nel (being nel the number of elements).
That results on neglecting 20% of the elements approximately.

8.2 Thin plate energy error assessment

A square thin plate with two holes proposed in [22] is considered next. This is a
plane-stress linear elastic problem loaded with a horizontal unit tension along
the vertical edges Γ0, see Figure 9. Note that the solution of this problem has
corner singularities due to the interior rectangular cut-outs. Due to symmetry,
only one fourth of the domain is analyzed. Values for Young’s modulus and
Poisson ratio are set to 1 and 0.3, respectively.

Two meshes are considered, a coarse uniform mesh with 70 nodes and a finer
one with 850 nodes, adapted heuristically. Error estimates Eu[eh] and EG

l [eh]
are computed for both cases and results are summarized in Table 4. The
effectivity index of the upper bound estimate is similar for the two meshes,
and close to 1.17 (ρ ≈ 17%). The lower bound effectivity are not as sharp,
they are close to 0.3 (ρ ≈ −70%).
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Fig. 9. Thin plate model problem and meshes with 140 d.o.f. (center) and 1970
d.o.f.(right)

Table 4
Thin plate: upper and lower bounds for ‖eh‖

d.o.f. ‖eh‖
‖eh‖
‖uh‖

ρ(Eu[eh]) ρ(EG
l [eh])

with πh with πh

140 0.146 12.8% 17.9% -68.7%

1970 0.040 3.44% 17.1% -70.1%
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Fig. 10. Thin plate: spatial distribution of the reference error (top left), estimate
Eu[eh] (top right), and local distribution of the effectivity indices (ρ+1)% (bottom)
for the mesh with 140 d.o.f.

Spatial distributions of error Eu[eh] are displayed in Figures 10 and 11 for the
uniform and adapted meshes, respectively. Note that they are computed using
πh in the r.h.s of equation (12). It is worth noting that the error distributions
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Fig. 11. Thin plate: spatial distribution of the reference error (top left), estimate
Eu[eh] (top right), and local distribution of the effectivity indices (ρ+1)% (bottom)
for the mesh with 2588 d.o.f.

for Eu[eh] are in good agreement with the reference error. The bad behavior
of the local effectivity index in the first mesh, see Figure 10, is due to the fact
that practically all the error is concentrated in a few relevant elements. The
histogram in Figure 11 is narrow because the number of elements in the zones
where the error is relevant is much higher for the second mesh.

Finally, Figure 12 shows a comparison between the proposed upper bound

estimate,
√

Eu[eh], the flux-free techniques proposed in [9] (wi = 1/σ) and in

[8,10] (wi = φi), and a hybrid-flux upper bound estimate, see [7,2]. The up-
per bound estimates are computed for a series of adapted triangular meshes.
As expected all of them converge. Moreover, this is an example in which the
hybrid-flux bound is sharper than the previously published flux-free upper
bound estimates. In [11] the majority of the examples behave similarly. How-
ever, as already discussed the proposed flux-free bound is as sharp as the
hybrid-flux one.

8.3 Assessment of outputs of interest for a crack opening problem

The error estimator presented in this paper is applied to the crack opening
problem proposed in [21]. The specimen is described in Figure 13. Loads are
a uniform pressure in the upper round cavity and a uniform normal traction
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Fig. 13. Crack opening model problem (left), primal (center) and dual (right) solu-
tions. Uniform mesh with 173 nodes (346 d.o.f)

pulling the left upper part of the specimen. Displacements are set to zero along
ΓD, around the centered round cavity. The edges of the crack are denoted by Γ1

(right) and Γ2 (left). The quantity of interest is taken as the average opening
along the crack, that is,

lO(u) = −
∫

Γ1

u · n dΓ −
∫

Γ2

u · n dΓ.

Note that the opposite sides of the crack, Γ1 and Γ2, have opposite normal
unit outward vectors. Thus, lO(u) is the average (integrated) crack opening,
it is positive for opening and negative for penetration.
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Table 5
Crack opening problem: energy norm estimates and effectivity indices

Primal Dual

d.o.f ‖eh‖
‖uh‖

ρ(Eu[eh]) ρ(EG
l [eh]) ‖ǫh‖

‖ψh‖
ρ(Eu[ǫh]) ρ(EG

l [ǫh])

346 20.6% 18.1% -48.8% 61.6% 16.4% -19.6%

1344 10.5% 14.1% -82.9% 25.5% 19.1% -63.1%

Table 6
Crack opening problem: estimates for z±h

d.o.f ‖z+

h ‖ ρ(Eu[z
+

h ]) ρ(EG
l [z+

h ]) ‖z−
h ‖ ρ(Eu[z

−
h ]) ρ(EG

l [z−
h ])

346 0.666 16.7% -30.9% 0.457 18.3% -49.7%

1344 0.313 17.2% -74.6% 0.232 15.2% -84.4%

First, the analysis is performed with the coarse uniform mesh shown in Fig-
ure 13. Energy norm error estimates for both the primal and dual problems
are summarized in Table 5. Global effectivity indices are of the same order
of magnitude as in the previous example for the upper bound estimates. Al-
though the mesh is excessively coarse and the error is large (78% for the dual
problem), the behavior of the upper bound is similar and the quality lower
bound estimates is better.

Table 6 shows the energy norm estimates for the quantities z+
h and z−

h . Recall
that these linear combinations of the primal and dual errors, z±

h = κeh ±
1

κ
ǫh,

are required to assess the error in the quantities of interest. Upper and lower
bounds for the quantity of interest lO(uh) are obtained by properly combining
upper and lower bounds in the energy norm of z+

h and z−
h , see Figure 1. Table 6

indicates that upper bound estimates of z±
h present similar values of effectivity

indices as in previous examples. Effectivity for lower bound estimates is again
quite poor, specially for z−

h with a value of 0.08 (ρ ≈ −92%). Note however,
that this poor lower bound effectivity does not drastically downgrade bounds
of the desired functional output lO(uh), which are computed as indicated in
Figure 1 and Section 6. In fact, the obtained bounds are better than if the
trivial lower bounds (equal to zero) are imposed.

In fact, for the coarse case (346 d.o.f.), when upper and lower bounds for lO(uh)
are computed from data of Table 6, the following range is obtained: 0.141 ≤
lO(uh) ≤ 0.299. Note that the coarse mesh estimate is lO(uH) = 0.161 and the
reference one is lO(uh) = 0.220. In this case, the mesh is very inaccurate for the
desired quantity of interest because the error of lO(uH) is 26.8% with respect
to the reference one. Nevertheless, the estimate 0.220 ± 0.079 is a valuable
information.

The same analysis is performed with the mesh (1344 d.o.f.) shown in Figure
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Fig. 14. Crack opening: heuristically adapted mesh with 672 nodes (1344 d.o.f.)

14. This mesh is uniformly densified and heuristically adapted concentrating
elements in the neighborhood of the crack tip. As Table 6 shows, the energy
errors are improved (10.5% and 26.4% for primal and dual problems) and
the error of lO(uH) is now 5.11% with respect to the reference one. Thus the
output gap is reduced since 0.200 ≤ lO(uh) ≤ 0.249 and the estimate is sharper
0.225 ± 0.025.

Figure 15 shows the spatial distribution of the element-by-element contribu-
tions to lO(eh). That is, the local values for ak(eh, ǫh) in every element Ωk of
the mesh are plotted. Note that this is not an estimate but the actual refer-
ence values. These local contributions may be either positive or negative. In
order to better depict the areas that contribute to the error the distribution is
represented by both the absolute value and the sign of the local contributions.
The distribution of the absolute value shows that the main contributions to
the error in the quantity of interest are related to elements in the neighbor-
hood of the crack tip. Such a distribution of the error could guide an adaptive
process.

The estimated spatial distribution of the error in the output of interest is also
shown in Figure 15. That is, the estimated values ẽ and ǫ̃, see for instance step
2 in Figure 5, are used to evaluate ak(ẽ, ǫ̃) in every element Ωk of the mesh.
The similarity of these distributions demonstrates the good agreement between
the true and the estimated error distributions. Therefore, the introduced error
estimators may be fairly used in a goal-oriented adaptive analysis.

8.4 3D mechanical problem

As previously observed, this approach easily accommodates a 3D analysis.
Note that the modifications in code for the 3D analysis showed here were
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Fig. 15. Spatial distribution of the absolute value of the local contributions to lO(eh)
(upper-left and zoom into the relevant zones). The zoom boxes compare the refer-
ence error distribution with the estimated error distribution. The upper-right plot
describes the sign of these local contributions for the reference error distribution.

developed in four hours starting from the 2D implementation. Moreover, in
3D the conclusions drawn in [11] from a computational cost point of view are
more critical.

The geometry of the problem is inspired in an arch structure proposed in
[23]. The structure is casted in the bottom bases and loaded with a uniform
pressure on one lateral side, see Figure 16. This figure also shows the mesh of
174 quadratic 10-noded tetrahedra used for the analysis. The error assessment
is also performed on the mesh shown in Figure 17, which has been heuristically
adapted by refining the elements along the loaded lateral side where stresses
are larger. This adapted mesh contains 695 tetrahedra and 1495 nodes.

In this example, we compute the estimates Eu[eh], and EG
l [eh] introduced in

this paper using the projection πh for the r.h.s. term of the residual equation,
as described in Section 7.1. This estimate is compared with Êu[eh] described
in [8,10] (with wi = φi).

The reference mesh is obtained dividing each tetrahedron in 8 tetrahedra.
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Fig. 16. 3D model problem (left) and uniform mesh (right) with 174 elements and
401 nodes

Fig. 17. 3D adapted mesh with 695 elements and 1495 nodes

Table 7
3D upper and lower bounds for ‖eh‖

Mesh d.o.f. ‖eh‖
‖eh‖
‖uh‖

ρ(Eu[eh]) ρ(EG
l [eh]) ρ(Êu[eh])

Uniform 1203 4.13 22.0% 8.18% -8.56% 53.7%

Adapted 4485 3.63 19.2% 9.67% -14.4% 58.6%

Table 7 shows that the estimate proposed here is one order of magnitude
sharper than the one introduced in [8,10]. Note that lower bound estimates
present similar effectivities.

Surprisingly, comparing results for the uniform mesh with 1203 d.o.f and the
adapted mesh with 4485 d.o.f., the reference error is reduced only from 22.0%
to 19.2%. This is due to the fact that the first mesh is too coarse and the cor-
responding reference mesh is not accurate enough. Using this reference mesh
the norm of the reference error is 4.13, the exact error is however much larger.
A finer reference mesh is built up by splitting each element into 64 tetrahedra
(instead of 8). Due to the size of the problem, for this very fine reference mesh,
the reference error can be estimated but it cannot be computed. The obtained
values for the upper bound estimate Eu[eh] and the lower bound estimate
EG

l [eh] are 4.34 and 5.24 respectively. Thus the exact error is approximately
5 (probably larger). That means that for the uniform mesh the error is closer
27% than 22%.
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9 Concluding remarks

This paper introduces a new technique to compute upper and lower bounds
for functional outputs. As previously proposed subdomain-based approaches,
the implementation of the proposed method is less cumbersome compared
to hybrid-flux estimators where flux equilibration algorithms must be imple-
mented. Moreover, it can be used in the mechanical case for linear elements
and the accuracy of the results (sharpness of the upper bound) are drasti-
cally improved compared to other flux-free techniques. In fact, the observed
accuracy is at least comparable to hybrid-flux methods.

The resulting estimates yield guaranteed (and sharp) upper bounds of the
reference error. A simple postprocessing yields lower bounds of the error with
a little extra computational cost. Lower bounds of the energy error are useful
to sharpen upper and lower bounds of the error in quantities of interest.

The local problems that have to be solved in this context are flux-free, that is
no flux equilibration is required. The flux-free property is specially significant
when compared with the standard residual type error estimators (hybrid-flux
approach). The local boundary conditions for the local problems in the stan-
dard estimators require flux equilibration and result in costly computations
and complex programming, especially in 3D.

The distribution of the local contributions to the error are also accurately
estimated, both for the energy norm of the error and for the error measured
using some functional output. These estimates are therefore well suited to
guide goal-oriented adaptive procedures.
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