Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

An International Journal

Computers
& Structures

Solids - Structures - Fluids — Multiphysics

EDITORS
K. J. Bathe B. H. V. Topping

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

ELSEVIER

Computers and Structures 86 (2008) 1604-1618

Available online at www.sciencedirect.com

ScienceDirect

Computers
& Structures

www.elsevier.com/locate/compstruc

A numerical procedure simulating RC structures reinforced with
FRP using the serial/parallel mixing theory

Xavier Martinez *, Sergio Oller, Fernando Rastellini, Alex H. Barbat

Departament de Resisténcia de Materials i Estructures a I’Enginyeria (RMEE), Universitat Politécnica de Catalunya (UPC), Jordi Girona 1-3,
Modul C1, Campus Nord, 08034 Barcelona, Spain

Received 20 February 2007; accepted 17 January 2008
Available online 5 March 2008

Abstract

The use of fiber reinforced polymers (FRP) to reinforce and retrofit reinforced concrete (RC) structures has become one of the main
applications of composites in civil engineering. This paper describes a procedure, based on a finite element formulation, that can be used
to perform numerical simulations of RC structures reinforced with FRP. Composites are treated using the serial/parallel mixing theory,
which deduces the composite behavior from the constitutive equations of its components. A new construction-stages algorithm is devel-
oped for simulating retrofitted structures. The performance of the proposed formulation is proved comparing numerical and experimen-
tal results. Finally, the developed code is used to obtain the optimum FRP reinforcement configuration for a RC frame structure.

© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The first known report in which carbon fiber reinforced
polymers (CFRP) were used to retrofit a damaged structure
is from 1991, when they were used to strengthen the Ibach
Bridge in Lucerne, Switzerland [1]. Since then, this technol-
ogy has become far more widely used and is now one of
the main applications of composite materials in civil
engineering.

Most current knowledge about the structural reinforce-
ment and/or retrofitting of reinforced concrete (RC) struc-
tures with fiber reinforced polymers (FRP) is based on
experimental simulations, that are used to analyze different
reinforcement applications such as bending reinforcements
[2], shear reinforcements [3,4], column wrapping [5] or
anchorage of the reinforcement to the existing structure
[6]. These studies use experimental techniques that are sup-
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ported and complemented by analytical calculations. If the
problem is treated numerically, material nonlinearities are
usually linearized and the FRP composite is considered
as a single material (i.e. [7]).

On the other hand, composite materials have been, and
still are, one of the principal areas of research in computa-
tional mechanics throughout the last few decades. Main
efforts are focused on the study of composite plates and
shells [8,9], as these are the structural elements commonly
used in aeronautical, nautical and automotive structures,
which are the engineering fields in which composites are
most widely applied.

Traditionally, numerical simulations of composites have
been performed using orthotropic materials with average
properties from their constituents. With this approach,
no model has been found that is able to function beyond
the elastic limit state of its constituents. As a result, numer-
ical simulations are limited to elastic cases. Different theo-
ries have been proposed to solve this problem which take
into account the internal configuration of the composite
to predict its behavior. The two most commonly used are
described below.
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Homogenization theory: This method deals with the glo-
bal composite structure problem in a two-scale context.
On the macroscopic scale the composite materials deter-
mine the global response of the structure. Composites
are considered to be homogeneous materials in this
scale. The microscopic scale represents an elemental
characteristic volume in which the microscopic fields
inside the composite are obtained. This scale deals with
the component materials of the composite, each one
with its own constitutive equation. Homogenization the-
ory relates these two scales by assuming a periodic con-
figuration of the composite material [10,11].

Mixing theory: The first formulation of the mixing the-
ory was developed by Truesdell and Toupin [12] and it
is based on two main hypotheses: 1. All composite con-
stituents are subject to same strains. 2. Each constituent
contributes to the composite behavior according to its
volumetric participation. The main drawback of the
mixing theory is the iso-strain condition which enforces
a parallel distribution of the constituents in the compos-
ite. Some improvements to the original formulation can
be found in [13,14].

Despite all the existing studies on both subjects, experi-
mental tests of FRP reinforcements and numerical charac-
terization of composite materials, little research has used a
numerical approach to analyze the structural reinforcement
of RC structures with FRP. Therefore, the main goal of
this paper is to combine both fields, developing a numerical
procedure for computing RC structures reinforced with
FRP. The developed formulation is based on the finite ele-
ment method and enables determining the structural per-
formance of existing structures when they are reinforced
and/or retrofitted with FRP. This performance is calcu-
lated taking into account material nonlinearities. The
developed formulation also identifies the performance of
each constituent material in the structure (for example, it
is possible knowing the stress state of the fiber in the com-
posite reinforcement when the structure collapses). The
code can be used to study the same structure with different
FRP configurations, to determine the most suitable option
for the case considered. It can also apply the reinforcement
to structures that are already damaged, reproducing with
more accuracy the conditions found in real applications.

The numerical formulations proposed in this paper use
the serial/parallel rule of mixtures, developed by Rastellini
[15], to analyze composite materials. The code also includes
a construction-stages algorithm that is used to consider the
case of structural retrofitting. Section 2 contains a detailed
description of both of these features. In Section 3 the exper-
imental data reported in [2] for a RC beam reinforced with
CFRP is used to validate the proposed code. Two different
numerical simulations are then described to illustrate the
potential of the formulation developed: The first case, in
Section 4, shows the results obtained when the RC beam
used to validate the code is retrofitted. The second case,
in Section 5, uses the code to simulate a concrete frame

structure in which different FRP reinforcements are applied
to the beam, column and beam-column connecting joint.
This simulation illustrates how the developed code can be
used to determine which FRP reinforcement configuration
achieves better results. Finally, in Section 6, are presented
the conclusions about the numerical tool developed and
the conclusions drawn from the calculations performed.

2. Numerical formulation
2.1. Seriallparallel rule of mixtures

The serial/parallel rule of mixtures is an improvement of
the classical mixing theory, in which the iso-strain hypoth-
esis is replaced by an iso-strain condition in the fiber direc-
tion and an iso-stress condition in the transversal
directions. This theory was developed by Rastellini and is
explained in detail in [15].

2.1.1. Definition of the serial and parallel components of the
strain and stress tensors

The serial/parallel (SP) model considers that the constit-
uent materials of the composite act in parallel in a certain
direction and in serial in the remaining directions. Conse-
quently, it is necessary to define and separate the serial
and parallel components of the strain and stress tensors.

Defining e; as the director vector that determines the
parallel behavior (fiber direction), the parallel projector
tensor Np can be defined as follows:

Np:€1®€1. (1)

From Np, the fourth-order parallel projector tensor, Pp, is
defined as

Pp = Np @ Np. (2)
The serial projector tensor Ps is evaluated as its
complement:

Ps =1 — Np. (3)

Both tensors can be used to find the parallel part of the
strain tensor ¢p and its serial part &s:

ep=Pp:e and & = Pg:e¢. 4)

Hence, the strain state is separated into its parallel and se-
rial part:

&E=2¢p+&s. (5)

The stress state can be separated analogously, finding its
parallel and serial parts using the fourth-order tensors Pp
and Pg as

0 = op + 05, (6)
where
op=Pp:0 and os5=Ps:o. (7)
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2.1.2. Numerical modeling hypotheses

The numerical model developed to obtain the strain—
stress state in the composite is based on the following
hypotheses:

(1) The constituent materials of the composite are sub-
jected to the same strain in the parallel (fiber)
direction.

(2) Constituent materials are subjected to the same stress
in the serial direction.

(3) The response of the composite material is directly
related to the volume fractions of its constituent
materials.

(4) The phases in the composite are considered to be
homogeneously distributed.

(5) The constituent materials are considered to be per-
fectly bonded.

Although these hypotheses, as well as the serial/parallel
mixing theory, can be applied to composites with any num-
ber of components, the developed formulation is restricted
to only two of them. Therefore, for the sake of consistency,
only two composite components will be included in the the-
ory description: fiber and matrix.

2.1.3. Constitutive equations of compounding materials
When applying the serial/parallel mixing theory, it is
possible to use any constitutive equation to describe the
structural performance of the composite compounding
materials. The constitutive equations used can be different
for each component (i.e. an elastic law to describe the fiber
behavior and a damage formulation to describe the matrix
behavior). Considering that additive plasticity is used to
formulate the constitutive equations of the materials, the
stresses in the matrix and the fiber are obtained as

Mg ="C: (Me—"eP),
fo="C: (e —TeP),

(8)

where ™¢P and e are the matrix and fiber plastic-strain ten-
sors, respectively, and ™C and "C are the matrix and fiber
constitutive tensors.

These equations can be rewritten to consider the serial
and parallel separation of the strain and stress tensors
(Egs. (5) and (6)):

Bl
‘s Cop Css] |les—Te§ )
where

iCpp=Pp:'C:Pp
iCps = Pp :'C : Pg
iCgp =Ps :'C: Pp
iCgg = P :C: Py

with i = m, . (10)

2.1.4. Equilibrium and compatibility equations

The equations that define the stress equilibrium
and establish the strain compatibility between the indi-
vidual components follow the hypotheses previously
described.

Parallel behavior:

c m f
&p = &p = ép,

11
CGP = mkmO'P + fka'P. ( )
Serial behavior:
CS :mkmg +fkf87
S S S (12)

c m f
0s = 0s = Os,

where the superscripts ¢, m and f stand for composite, ma-
trix and fiber, respectively and ‘k is the volume-fraction
coefficient of each constituent in the composite.

2.1.5. Seriallparallel rule of mixtures algorithm

The strain state of the composite material, ¢, at time
t+ At is the known variable entered into the algorithm.
Using this variable, the serial/parallel rule of mixtures algo-
rithm has to determine the strain and stress states of each
component that fulfills the equilibrium, the compatibility
and the constitutive equations and the evolution of the
internal variables.

The first step of the algorithm is to separate the strain
tensor into its parallel and its serial components in order
to compute the strain state in the matrix and the fiber.
According to Eq. (11), the parallel strain component is
the same for both materials and for the composite. How-
ever, to determine the serial strain components, it is neces-
sary to predict the expected strains in one of the composite
compounding materials. If this prediction is made for the
matrix, the algorithm computes its serial strain increment
as

[mAgs]o =A: [fCSS : CASS + fk(szp — mCSP) : CASP], (13)

where A = (mkr([:gg + rkmq_\/ss)i1 and MAgg = [+At[085]— [[Cﬁs].

The initial prediction of matrix serial strains, according
to the method proposed by Rastellini [15] and shown in Eq.
(13), is obtained considering that the parallel and serial
components of the total strain are distributed according
to the composite stiffness obtained in the previous time
step. In the iteration step n, the predicted matrix serial
strains are used to compute the fiber serial strains by using
Eq. (12). Their expression is
t+AL[f n 1 t+At[c "k t+Atfm, 11

["Aes]| =% [ ]_E [Mes]”, (14)
where T4 [Meg]" = [Meg] + [MAes]”.

The next step is to recombine the serial and parallel
components of the strain tensor (Eq. (5)). The constitutive
equations are then applied to the predicted strains to
obtain the stress tensor and the updated internal variables
for both materials. The fiber and matrix materials are
modeled according to their own constitutive laws. In an
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additive plasticity law, Eq. (8) is used to obtain the stress
tensor for each one of them. The stresses from the consti-
tutive law must fulfill the following equation:

[AO’s]n _ A [mo_s]” _ l‘+At[f0—S]n < tolerance. (15)

If the residual stress is smaller than the tolerance, the com-
puted strains and stresses are considered correct and the
structural calculation can continue. However, if Eq. (15)
is not fulfilled, the initial prediction of the matrix strain
tensor has to be corrected. This correction is performed
using a Newton—Raphson scheme, which is updated using
the Jacobian of the residual forces. The Jacobian is ob-
tained deriving the residue function with respect to the un-
known. According to Rastellini [16], the expression for the
Jacobian is given as follows:
aAO's M

= ["Css]" + — [[Css]” (16)

J T

am 85 mES:HAZ [mss]”

and the expression for correcting the matrix serial strains
becomes

z+Az[mgs]n+1 _ z+Az[mgs]n —_J'. [AGS}”. (17)

The Jacobian must be obtained using the tangent constitu-
tive tensor for the fibers and the matrix in order to reach
quadratic convergence in the serial/parallel mixing theory.
However, depending on the constitutive equation defined
for each material, it is not always possible to obtain an ana-
Iytical expression for this tensor. Therefore, in order to ob-
tain a reliable algorithm, the tangent constitutive tensor is
computed with a numerical derivation.

2.2. Finite element code

PLCd [17] is a finite element code that works with two
and three-dimensional solid geometries. It can deal with
kinematic and material nonlinearities. It uses various con-
stitutive laws to predict the material behavior (elastic,
visco-elastic, damage, damage-plasticity, etc. [18]) and uses
different yield surfaces to control their evolution (Von-
Mises, Mohr-Coulomb, improved Mohr-Coulomb, Druc-
ker—Prager, etc. [19,20]). The Newmark method [21] is used
to perform dynamic analysis. A more detailed description
of the code can be obtained from [22,23]. The main numer-
ical features included in the code to deal with composite
materials are:

Classical and seriallparallel mixing theory: The classical
mixing theory was first developed by Truesdell and Tou-
pin and is based on the iso-strain behavior of composite
components [13,14]. Fig. 1 shows how the serial/parallel
rule of mixtures algorithm is implemented in the PLCd
code.

Anisotropy using a mapped space theory: This theory
enables the code to consider materials with a high level
of anisotropy, without the associated numerical prob-
lems [24,25].

> Prediction of matrix serial strains: " &'
% 7
H Etir:rii;erial [ ‘e :'A :ij [ES?IJ - %[M £ ]A Closing Equation
| e -la ) ) |
!

| Co™) =0c):(Pe™ =(er)) j=tmn |

Elastic Trial

| Constitutive Models for each Compound |

& &
(mo_m)* (’o””)*

MATRIX
Constitutive
Model
FIBRE
Constitutive
Model

—
3

Q
z

o)

(Vo™)

No Convergence = Modify Matrix Serial Strain Prediction ( &

Check for Convergence
[Ags]k = [mo-.& ]k —[ fO]:lk < toler

RECOMPOSITION

(O_m )(‘ — z kj(o_m)/_

j=m.f

Fig. 1. Flow chart of the serial/parallel rule of mixtures algorithm.

Fiber-matrix debonding: This effect reduces the compos-
ite strength due to the failure of the fiber-matrix inter-
face [13,26].

2.2.1. Tangent constitutive tensor

A perturbation method is used to obtain the tangent
constitutive tensor, C’, numerically for each constituent
material of the composite. The tangent constitutive tensor
is defined as follows:

6=C:é (18)

The tangent constitutive tensor can be written for isotropic
and orthotropic materials, by reducing the tensors to their
matrix description:

a1 TR P I I

=1 (19)

! t s
ol Léa

oy c
The stress vector rate of Eq. (19) can be obtained as the
sum of n stress vectors, which are the product of the j com-
ponent of the strain vector rate and the j column of the tan-

gent stiffness tensor. This is

&Eiléiazilc;-é, (20)
= J=
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¢ =[ch; o gl (21)
Eq. (20) can be used to obtain the j column of the tangent
stiffness tensor, which is unknown:
e Ve

o=—=—. 22
J &j 68j ( )
The perturbation method consists in defining » small vari-
ations, or perturbations, of the strain vector d¢;, to obtain n
stress vectors &¢ that will be used in Eq. (22) to obtain the
numerical expression of the tangent constitutive tensor.

2.2.2. Numerical implementation of the tangent constitutive
tensor

In a finite element code the material constitutive law
provides the stress tensor ¢ and the internal variables ¢
associated with a defined strain tensor ¢ With the strain
and stress vectors resulting from the constitutive equation,
a small perturbation is applied to the strain vector to
obtain its associated stress tensor. The obtained stresses
and the defined perturbation are then used to compute
the tangent constitutive matrix as shown in Eq. (22).
Fig. 2 shows the flow chart of the algorithm implemented
in PLCd code.

In the procedure proposed, the smaller the perturbation
value the better the approximation of the tangent constitu-
tive tensor. With this consideration in mind, the perturba-
tion value defined for each component of the strain tensor
is obtained by applying the following procedure:

if e £0 — 8 =¢;-107°,

. . 5 (23)
if =0 — d¢; =min{g} 107 Vik=1,n.

Selecting the perturbation value by using this method, the
strain increment will always be small enough to ensure that
the stress variation is close to the computed value. How-
ever, this procedure can provide perturbation values close
to zero (i.e. when one of the strain values is almost zero).
This case will lead to an indetermination in Eq. (22). To

After solving the constitutve model: & - O - ¢

for a continuum in equilibrium

Do j=Ln
« Define strain perturbation 5Sj
.8 =¢+'¢ with ’3:[0 .. e O}T
j position

e Using constitutive law: 8* —)O'*, q*
i *

« 0o =0 -0

, o

.« €, =
2

END DO

Fig. 2. Flow chart of the perturbation method algorithm for obtaining the
tangent constitutive tensor.

prevent this problem from arising, the following condition
is imposed to ensure that the perturbation value is suffi-
ciently high:

S¢; > max{e} - 1070 Vk = 1,n. (24)

This procedure provides an accurate approximation of the
tangent constitutive tensor for any constitutive law used
and any yield surface; and ensures that the numerical pro-
cess converges satisfactorily.

2.3. Retrofitted structures. Construction-stages algorithm

There are many situations in which an existing structure
can be damaged and can require to be retrofitted. The dam-
age in the structure can be caused by several reasons, such
as a collision [27] or after an earthquake [28]. Therefore,
structural retrofitting is probably one of the main applica-
tions of CFRP in civil engineering structures.

In order to simulate a structural retrofitting, it is neces-
sary to add the CFRP reinforcement once the structure is
already damaged. With this aim, a construction-stages
algorithm is implemented in the PLCd code [17], so that
it is possible to add or remove structural elements during
the calculation process.

This algorithm enables the code to run the numerical
simulation for the desired load cases, with only some struc-
tural elements active in the structure. Being possible to add
new elements at a given load case, without interrupting the
calculation process. These elements must be free from
strains and stresses when they are activated.

Fig. 3 shows how this solution scheme is used when sim-
ulating a retrofit process. The example shown corresponds
to a beam to which a bending moment is applied. The beam
is reinforced with CFRP when the first tensile cracks
appear on the bottom edge.

The finite element method is based on the numerical
integration of the virtual work equation; this integration
implies to solve the problem:

KX =R, (25)

where K is the global stiffness matrix, X is the vector of no-
dal displacements and R is the vector of external forces ap-
plied to the structure. Once the nodal displacements have
been found, the strains in each element, &, are computed
using the following equation:

& = BXC, (26)

where B° is the element deformation matrix.

Finally, once the element strains have been obtained, the
following equation is used to compute the stresses in each
element:

o° = C°¢, (27)
where C° is the element constitutive matrix.

The stress tensor in Eq. (27) corresponds to the elastic
stresses. This expression is modified in a material nonlinear
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1st Load Case:

Active elements:  Only concrete

beam
The structure is loaded until the

yield stress at midspan is reached

2nd Load Case:
Active elements:  Concrete beam
and CFRP

Previous load keeps being applied

until failure

Fig. 3. Retrofit process of a beam with a bending moment.

analysis. However, for the sake of simplicity, the explana-
tion of the procedure is limited to the linear case.

Considering that there are n load cases in the calculation
process, Egs. (26) and (27) can be rewritten as

=g +&5+ & =BX",

o° =05 +o]+ -+ 0, =C%.

(28)

If new elements are introduced into the structural mesh
during finite element analysis (i.e. in the second load case),
they will take values of &f = 0 and 6§ = 0; and the strains in
the element will correspond only to the second load case:

& =¢ =BX°. (29)

However, the element displacement introduced in Eq. (29)
corresponds to the total displacement of the structure. This
means that the strains in the new element correspond to the
displacements of the structure during the first and the sec-
ond construction stages. The same applies to the stress ten-
sor. Consequently, the new elements try to adapt to the
global deformation of the structure by adopting strains
that are greater than the ones that correspond to the new
load increase.

By considering all of the structural elements during all
construction stages, it is possible to prevent this situation.
Then, it is necessary to separate the strain tensor into
two components, one active (¢4) and one non-active
(SNA), that is

£ = &) +eya- (30)
When the element is not present in the structure, all strains
are included in the non-active tensor:

&£ =g, =BX° and & =0 (31)
and if the element is active, Eq. (30) is used to calculate its
strain tensor:

g, =& —p =BX — - (32)
With this procedure, only the strains that correspond to the
construction stage in which the element is active are
considered.

Element stresses are computed by considering only the
active strains:

o = C°. (33)

Thus, no stresses are obtained if the element is non-active.

Active element > K°
Non-Active element

'

Assemble K
Solve equation system: KX =R

v

For each element:
e =BU*

Active element: 6‘; =& - 6':,4

> K =0

e _() po _ e
Non-active elem: £ =0; &y, =&

e _ (repe
o’ =C’;

Fig. 4. Flow chart of the construction-stages algorithm.

This procedure has been implemented in the PLCd code
and it provides correct results, as shown in the beam test
described in Section 4 of this paper.

The algorithm must take into account that the elemental
stiffness matrices (K°) of any non-active elements present in
the structure are included in the global stiffness matrix K.
As a result, these elements contribute to the global stiffness
of the structure. The elemental stiffness matrices of the
non-active elements should therefore be nullified at the
beginning of the construction stage to prevent this contri-
bution from affecting the results.

Fig. 4 shows a flow chart of the construction-stages
algorithm implemented in the PLCd code.

3. Validation of the numerical procedure

To validate the proposed formulation, a numerical
model of a RC beam reinforced with FRP was developed.
The beam considered is the same as the one defined by Spa-
dea et al. in [2]. The numerical results obtained with PLCd
are compared with the experimental results given in [2].

3.1. Beam and model description

The structure used to validate the code is a simply sup-
ported beam to which two equidistant loads are applied,
which produces a constant bending moment between them.
Fig. 5 shows the beam geometry and the reinforcement
added to it.

The experimental simulations reported in [2] consist in
using a displacement-control mechanism to apply a load
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Fig. 5. Geometric definition of the studied beam.

until the beam fails. Different CFRP reinforcement config-
urations are applied to the beam to obtain the force—dis-
placement response for each one. Two of these results are
used to validate the proposed numerical model: the first
is for the non-reinforced beam and the second is for the
beam with the CFRP reinforcement displayed in Fig. 5.
The reinforcement applied is 1.2 mm thick and composed
of 66% of carbon fibers, oriented along the longitudinal
axis of the beam, and 34% of polymeric matrix. The exper-
imental results are compared with the numerical results for
the developed models. These are:

Sp3D-R0O: Beam without CFRP reinforcement.
Sp3D-RI: Beam with bending CFRP reinforcement.

The constitutive performance of each composite mate-
rial used to simulate the beam is determined by combining
the constitutive behaviors of their constituent materials.
Table 1 shows the simple materials considered in the mod-
els and their mechanical characteristics. In this table, F
stands for the Young modulus, v for the Poisson modulus,
oc and g7 for the yielding compression and tension stres-
ses, respectively, and G¢c and Cr for the energy release rates
per unit area in compression and tension.

Concrete and matrix are simulated by a damage formu-
lation. Steel and carbon fibers are simulated by a plastic
law. Young’s modulus of steel has been reduced to take
into account the effect of fiber debonding [29]. Steel plastic
evolution is defined by an initial hardening law until it
reaches a peak of 435 MPa, at which point the hardening
law is replaced by a softening law. Fig. 6 shows the
strain—stress evolution of each material considered in the
simulation in the case of tensile stresses.

The numerical models developed in this article are based
on hexahedral elements. Six different composite materials

Concrete Steel
3 450
a0 |-/ =
T 25 K /
T 2 350
s =3 /
= 2 % 300 \
8 15 8 250 \
o ® 200
[} 2 \
H 1 g 150
2
5 3 100
=
= 05 50
0 0
0 002 004 006  0.08 0 02 04 06 08 1 12
Strain Strain
Matrix Fiber
o5 2500
T 50 T 2000
o
H s
é 15 §1500
= B2
o 10 % 1000
[ K
2
g 5 8 500
0 0
0 01 02 03 04 05 0 01 02 03 04 05
Strain Strain

Fig. 6. Strain-stress evolution of each constituent material considered in
the analysis.

are defined by a combination of six different constituents:
concrete, matrix, fibers and three steel materials. Different
steel materials are defined according to their orientation
because the direction of the fibrous material is required
as a material property in the serial/parallel mixing theory.
Transversal and vertical steel refer to the steel stirrups and
longitudinal steel refers to the bending steel reinforcement.

Table 2 contains the definitions of each composite mate-
rial according to the volumetric participation of their con-
stituents. Fig. 7 shows the distribution of these materials in
the beam model and the mesh defined for the simulation.
Only half of the beam has been modeled because of the
symmetry at mid-span. The figure also shows that complex
material distributions in the cross-section of the beam can

Table 1

Mechanical characteristics of the constituent materials defined in the beam models

Material Yielding criterion E (MPa) v ac (MPa) or (MPa) Ge (kI/m?) Gt (kJ/m?)
Concrete Mohr-Coulomb 2.5 x 10* 0.2 30.0 3.0 5.0 0.5

Steel Von-Mises 1.0 x 10° 0.0 270 270 2000 2000
Polymeric matrix Mohr-Coulomb 1.2 x 10* 0.2 87.5 25.0 10.5 3.0
Carbon fibers Von-Mises 1.5 x 10° 0.0 2300 2300 2000 2000
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Table 2

Definition of composite materials. Volumetric participation of each constituent material in the composite

Constituent materials Composite materials

Mat-01 Mat-02 Mat-03 Mat-04 Mat-05 Mat-06
Concrete 1.00 0.57 0.99 0.98 0.99
Longitudinal steel 0.42
Transversal steel 0.01 0.01
Vertical steel 0.01 0.01 0.01
Polymeric matrix 0.34
Long. carbon fibers 0.66

MAT-04

MAT-05

MAT-01

MAT-03

MAT-02

Fig. 7. Definition of the mesh and composite materials of the simulated beam. The model assumes symmetry at mid-span.

be considered using the serial/parallel mixing theory, with-
out having to model each single element independently.

3.2. Results

The force—displacement curves (capacity curves)
obtained in each case (Fig. 8) are used to compare the
numerical and experimental models. The displacement cor-
responds to the point at which the load is applied. The
agreement between the results is good enough to indicate
that the code works properly.

The agreement between the experimental and numerical
results can be observed not only in the structural response

35 ——H
f”E—’
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g 25 e ol
= o —
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& ey
< -
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L 10 7O : :
V "Experim - No Reinf’ (0]
5| "Experim - Reinf’ o i
’Numerical - No Reinf (Sp3D-R0)’
‘Numerical - Reinf (Sp3D-R1)"  ------

o
o [

-1 2 -3 -4 -5
Displacement [cm]

Fig. 8. Comparison between numerical and experimental capacity curves.

of the beam but also in its failure mode. The failure modes
reported by Spadea et al. are:

No reinforced beam: Tension steel yielding and concrete
crushing.

Reinforced beam: Sudden and total loss of load capacity;
explosive debonding of CFRP plate.

The failure mode in the non-reinforced beam model
(Sp3D-R0) is the same as the one obtained in the experi-
mental test. This can be seen in Figs. 9 and 10, which show
the damage to the concrete and the plastic damage to the
steel reinforcement for the final calculation step and for
the most severely damaged beam section. These figures
show that the steel has started to yield and that the com-
pressed concrete has also reached its limit stress (onset of

DAMAGE
VALUE

1.00
l 0.89
0.78

067
0,56
I 044
033

0.22
0.11
0.00

Fig. 9. Damage to the concrete at beam failure and detail of the most
severely damaged cross-section. The numbers shown correspond to the
damage parameter in each finite element. Sp3D-R0 model.
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DAMAGE
VALUE

0.045
I 0.040
0.035
0.030

1 0.025

1 0.020
0.015
0.010
| 0.005
0.000

Fig. 10. Plastic damage to the steel at beam failure and detail of the most
severely damaged cross-section. Sp3D-R0 model.

concrete crushing). Under these conditions the transversal
section cannot develop more stresses and the code cannot
determine a valid solution for the current load step. This
situation can be interpreted as beam failure.

The failure mode of the CFRP reinforced beam model
(Sp3D-R1) is similar to that of the non-reinforced beam
model (Sp3D-R0). In the most severely damaged section
the entire concrete reaches its elastic limit stress and the
steel yields (Fig. 11). The developed model assumes a per-
fect bond between the concrete and the reinforcement.
Under this assumption, it is impossible to simulate the
explosive debonding of the CFRP plate observed in the
experimental test. However, if debonding occurred, the
beam would suddenly lose load capacity and the results
would be identical to the experimental ones.

CFRP reinforcement increases the tensile strength of the
beam and reduces the crack opening, which increases the
load capacity of the beam. Crack opening increases expo-
nentially in the most severely damaged section of the
non-reinforced beam model (Sp3D-R0) when steel yielding
begins. This increase is not observed when the beam is rein-
forced with CFRP. This can be seen in Fig. 12 which shows
the relative displacement between the nodes found on
either side of the most severely damaged section in both
models. The strength is increased and crack opening is
reduced because the carbon fibers are still under elastic
conditions; in fact, they are at less than 30% of their elastic

CONCRETE STEEL

DAMAGE
VALUE

1.00
I 0.89
0.78

0.67
| 0.56
0.44
0.33

0.22
I 0.11 Y
0.00

Fig. 11. Damage at the cross-section supporting heavier loads at beam
failure. Sp3D-R1 model.

DAMAGE
VALUE
0.0072
I 0.0064
0.0056
0.0048
0.0040
0.0032
0.0024
0.0018
I 0.0008
0.0000

Y

2z I:

0.14 T T T
"Crack Sp3D-R0’
"Crack Sp3D-R1’

ol /
/
/

0.06

Crack length [cm]

0.04

0.02 ST I
-.-‘_/---

0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5
Displacement [cm]

Fig. 12. Crack opening in the most severely damaged section.

capacity, although damage has already started to appear in
the polymeric matrix (Fig. 13).

3.3. SIP mixing theory performance

The models developed for validating the code are also
used to study the performance of the serial/parallel mixing
theory. Fibrous materials work in their longitudinal direc-
tion, consequently, the stresses should be greater in this
direction. The serial/parallel mixing theory should simulate
this behavior. To verify this, the performance of steel stir-
rups is studied herein. Beam strains in transversal direction
tend to increase in the upper bound of the cross-section and
to decrease in its lower bound due to Poisson effects. Con-
crete confinement reduces this effect by means of steel stir-
rups. Fig. 14 shows the transverse stresses in the stirrups,
which correspond to stresses in the longitudinal direction
of the stirrups. This demonstrates that the model is capable
of simulating the confinement of the concrete.

The serial/parallel rule of mixtures is providing correct
results if the global longitudinal stresses in the stirrups
(transversal stresses according to their orientation) are
the same as in the concrete. This situation is achieved, as
shown in Fig. 15. Moreover, steel stresses in the longitudi-
nal direction of the beam are lower than the stresses found
in the transverse direction (which corresponds to the orien-
tation of the studied stirrups).

4. CFRP retrofitting of RC structures

Two different numerical models have been developed to
study the effect of retrofitting a structure, depending on the
existing level of damage in the beam when the CFRP rein-
forcement is applied. The beam retrofitted is the same that
has been used in previous section. The models developed are:

Sp3D-Rt2: The CFRP reinforcement is applied when the
damage appears in the concrete material.
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Deformation ( x4): DISPLACEMETS of DISP , step 8.

Stresses in carbon fibers

) X STRESSES-06
Contour Fill of STRESSES, St
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Fig. 13. Stress state in CFRP reinforcement. Sp3D-R1 model.

STRESSES-04, step 6
Contour Fill of STRESS)
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Szz
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l 355.48
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- -482,22

-649.76
817.3
-984.84

Fig. 14. Transverse stresses in transverse steel stirrups. Sp3D-R0 model.

Sp3D-Rt3: CFRP reinforcement is applied when the
steel starts to yield.

Results obtained with these two models are compared
with those obtained when the beam is not reinforced
(Sp3D-R0 model) and when the beam is reinforced from
the beginning of the loading process (Sp3D-R1 model).
Fig. 16 shows the capacity curves for each model.

These results show that the structural stiffness does not
depend on the point at which the reinforcement is applied
to the structure. The structural stiffness obtained when the
CFRP reinforcement is applied after the steel has begun to
yield (Sp3D-Rt3) does not differ significantly from the
structural stiffness obtained after steel yielding in the rein-
forced model (Sp3D-R1). However, Fig. 16 also shows that
retrofitted structures suffer greater deformation and dam-
age than structures that are reinforced during the original
construction. The resulting damage reduces the load capac-
ity of the beam and the deformation can lead to a loss of

serviceability (i.e. when a load of 25 kN is applied to the
structure), the beam deformations are 45% greater in the
retrofit model Sp3D-Rt3, than in the reinforced model
Sp3D-R1.

5. Concrete frame structure simulation

The main aim of this simulation is to apply the formula-
tion developed to verify the ability of CFRP reinforce-
ments to increase the strength of concrete frame
structures. The connecting joints between the beams and
columns can be often subject to greater stress than other
zones of concrete frame structures and in most cases these
joints are the cause of structural weakness. The frame joint
is reinforced in the models developed for this study with
two different CFRP configurations to analyze the strength
mechanisms developed by the reinforcement to increase the
frame strength and to determine which type of reinforce-
ment configuration yields better results.
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Longitudinal stresses in stirrups
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Fig. 15. Longitudinal stresses in concrete and in steel stirrups. Sp3D-R0 model.

Two-dimensional and three-dimensional models have
been developed for the concrete frame. The 2D models
have been used to calibrate the mesh, as they require less
computational effort than the 3D models. Results obtained
with the 2D models are compared with those of the 3D
models to assess the accuracy of each type of simulation.
Three different structure models have been developed to
study the effect of CFRP reinforcements on the frame joint:

2DF-noR and 3DF-noR models: Two- and three-dimen-
sional models of the concrete frame without CFRP

2DF-R and 3DF-R models: Two- and three-dimensional

35
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Fig. 16. Comparison of CFRP reinforcements and retrofitting using
capacity curves.

5.1. Model description

The concrete frame to be studied is designed to reflect
the most common geometry and steel reinforcements used
in this type of construction. Fig. 17 shows the geometry
considered and Fig. 18 shows the steel reinforcement and
the CFRP reinforcement that will be applied to the frame
joint. The dimensions of the cross-section of the beam
and the steel reinforcement are intended to ensure struc-
tural failure close to the joint. The height of the beam is
smaller than the width and less steel reinforcement is used
for the beam than for the column. This will increase the
effect of the CFRP on in the frame joint. The structure is
loaded by a horizontal force P applied in the middle of
the frame joint (see Fig. 17).

models of the concrete frame with upper and lower
CFRP reinforcements.

2DF-LR and 3DF-LR models: Two- and three-dimen-
sional models of the concrete frame with upper, lower
and lateral CFRP reinforcements.

The constituent materials of the different composites in
each model are the same as those defined for the beam
(Table 1). The CFRP reinforcement is 1.2 mm thick and
is composed of 66% of carbon fibers and 34% of polymeric
matrix. The fibers in the upper and lower reinforcements
are aligned with the longitudinal axis of the structure.
Two layers are applied to the frame to provide lateral rein-
forcement, in which the fibers are oriented at +0° and +90°
with respect to the horizontal.

5.2. 2D results
The capacity curves obtained for each model (Fig. 19)

are used to analyze the structural behavior of the frame
joint with the different types of reinforcement. The x-axis
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Fig. 18. Reinforcements of the concrete frame.
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Fig. 19. Capacity curves obtained with the 2D models.

shows the horizontal displacement of the point to which
the load is applied and the y-axis shows the load applied.
The displacement depends on the column, the beam and
the joint stiffness. Any increase in the structure stiffness
shown by the force—displacement graph will reflect an
increase of the joint stiffness as a result of the CFRP rein-
forcement because the column and the beam are not mod-
ified in the different models.

Fig. 19 shows that the upper and lower CFRP reinforce-
ments (2DF-R model) do not significantly improve the
frame behavior. A substantial improvement is only found
when the lateral reinforcement is applied to the concrete

frame. All three curves contain a region in which the load
is reduced, after which it begins to increase again. These
points reflect the point at which a plastic hinge develops
in the structure. The structure adopts a new strength
mechanism at this load step, which increases its load capac-
ity. If the load applied to the structure when the plastic
hinge is developed is considered, results show that the
lateral reinforcement (2DF-LR model) increases the struc-
tural load capacity by 25%, when compared with the non-
reinforced model (2DF-noR). This increase is reduced to
4% if the structure is only reinforced with upper and lower
CFRP.

The effects of each type of reinforcement can be better
understood by studying the points at which the plastic
hinges are formed. Fig. 20 shows the longitudinal strains
for each model at the last computed step. The cross-sec-
tions in which the plastic hinges are formed are subjected
to the greatest strain.

Fig. 20 shows the plastic hinge moves from the beam to
the inner part of the joint, where no reinforcement is
applied if only the upper and lower CFRP reinforcements
are included into the structure. Therefore, the upper and
lower CFRP reinforcement does not change the beam
behavior substantially; once the hinge has been formed,
both structures behave similarly (Fig. 19). On the other
hand, when the lateral reinforcement is applied to the
structure, it limits damage in the frame joint and causes
the plastic hinge to move to the cross-section at which no
CFRP reinforcement is applied. This increases the load
capacity and the stiffness of the structure.
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Fig. 20. Plastic hinges in the concrete frame. 2D models.
5.3. 3D results STRAINS BEFORE PLASTIC HINGE ETRAINSAFTER PLASTIC HINGE

The capacity curves are also used to analyze the results
obtained with the 3D models (Fig. 21). The main difference
between the 3D and the 2D results is that the 3D models
are stiffer and can support greater maximum loads than
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Fig. 21. Capacity curves obtained with the 3D models. Fig. 23. Crack evolution in the 3DF-R model.



X. Martinez et al. | Computers and Structures 86 (2008) 16041618 1617

e wren e 101

STRAINS

0.026
' 0.023
0.019

- 0.016

- 0.012

- 0.009

- 0.005
0.002
I-0.002
-0.005

Fig. 24. Plastic hinge in 3DF-LR model. Lateral view.

sions. This confinement enables the concrete to support
greater longitudinal stresses and slows the spread of dam-
age. Both of these improvements increase the strength
and stiffness of the structure.

Fig. 21 shows that the plastic hinges appear at the same
load and displacement in the 3D non-reinforced model
(3DF-noR) and in the upper and lower reinforced model
(3DF-R) as in the 2D lateral reinforced model (2DF-LR),
due to the increased strength of the concrete. However,
the plastic hinges appear earlier in the reinforced model
than in the non-reinforced one in the three-dimensional
simulation. This effect is illustrated by Fig. 22, which shows
the maximum strains in the non-reinforced beam model
(3DF-noR) before and after the formation of the plastic
hinge, and Fig. 23, which shows the same results for the
upper and lower reinforced model (3DF-R).

These figures show that the plastic hinge develops in
almost the same cross-section in both models. However,
since this cross-section is closer to the initial point of dam-
age in the upper and lower reinforced model than in the
non-reinforced model, the code finds faster the crack path
in the reinforced case. Therefore, although CFRP rein-
forcement increases the joint stiffness, in this case the load
that causes the plastic hinge to appear is lower when the
joint is reinforced than when no reinforcement is applied.

More differences are found when the three-dimensional
model is compared with the two-dimensional model for
the case in which lateral CFRP reinforcement is applied
to the frame joint (3DF-LR model). The first difference is
that the capacity curve does not show the formation of a
plastic hinge. This is because no section is completely dam-
aged when the code no longer converges.

However, the main difference can be observed in the
most severely damaged section. The strains in the lateral
sections of the frame joint (Fig. 24a) are similar to the
one seen in the 2D case: they are greater in the cross-section
where the CFRP reinforcement ends than in the frame
joint. Although, when the strains in a longitudinal section
of the structure are analyzed (Fig. 24b), it can be seen that
the plastic hinge is developed in the frame joint. Two-
dimensional models assume that the CFRP reinforcement
is applied through the entire cross-section whereas it is only
applied to the lateral surfaces. Consequently, the reinforce-
ment can prevent structural cracks from appearing on the
surface of the frame joint but cannot protect the inside of
the joint. This effect can be seen more clearly in Fig. 25,
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Fig. 25. Elements with larger deformations in 3DF-LR moldel. Top view.

which shows a top view of the strains in the column section
just below the frame joint.

These last two figures show that same structural failure
occurs regardless of the CFRP reinforcement configuration
applied. Therefore, it can be concluded that lateral CFRP
reinforcement does not prevent the appearance of cracks
in the joint and the subsequent formation of a plastic hinge,
but it can delay the load step during which the first cracks
appear and reduce the speed with which they propagate.
These both effects increase the load of the frame by 20%
when the horizontal displacement is 3.0 cm, which makes
this type of reinforcement the optimum for strengthening
the column-beam joint of concrete frame structures.

6. Conclusions

The results of the numerical procedures and simulations
developed in this paper show that the numerical tool devel-
oped to simulate FRP reinforcements of RC structures per-
forms well. The results are in good agreement with existing
experimental results. The code is prepared to compute real
structures that are reinforced or retrofitted with CFRP.
Last simulation presented has shown that different numer-
ical simulations with different FRP reinforcements can be
performed with PLCd in order to obtain the most suitable
reinforcement configuration for the problem under study.

It has been proved that the serial/parallel rule of mix-
tures can obtain the composite performance by combining
the mechanical behavior of its different constituents, each
one computed with its own specific constitutive equation.
The theory takes into account the directional behavior of
the fiber constituents.
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The construction-stages algorithm has shown how
important is to reinforce the structure when a low level
of damage is observed. Even if the structure stiffness does
not vary if FRP is applied for reinforcement or retrofitting,
the structural deformations and the stresses are greater if
FRP is applied when the structure is already damaged.

The frame simulations have shown that it is necessary to
use three-dimensional elements to correctly simulate the
behavior of the structure. Using two-dimensional elements
implies assuming that the materials are evenly distributed
through the cross-section. However, this assumption can
cause overestimation of the structural performance if the
structural components are not evenly distributed, as is
the case with the lateral reinforcements in the 2D frame
structure simulation. Nevertheless, if the condition of an
evenly distribution of the elements through the cross-sec-
tion can be assumed, 2D simulations provide almost the
same results as 3D simulations and reduce the computa-
tional cost substantially.

Finally, all of the simulations have demonstrated that the
performance of the structure improves when it is reinforced
or retrofitted with fiber reinforced polymers. The degree of
improvement depends on the type and configuration of the
reinforcement used and on the existing level of damage in
the structure when it is applied. In particular case of the
RC frame structure, the best CFRP joint reinforcement con-
figuration is to wrap the entire joint by applying the upper,
lower and lateral CFRP reinforcements.
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