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MODELING MATERIAL FAILURE IN CONCRETE 

STRUCTURES UNDER CYCLIC ACTIONS 

By Rui Faria,1 Javier Oliver,2 and Miguel Cervera3 

Abstract: A constitutive model devised for the analysis of concrete structures, and suitable 

for generic 2D or 3D applications, is presented and validated. For plain concrete a 

tension-compression distinguishing stress split is performed, and two scalar damage variables 

account for the degradation induced by the tensile and compressive stress components. As 

outcomes the model reproduces the stiffness recovery upon load reversal, and it captures the 

strength enhancement under multiaxial compression. Besides, the simple formulation as well 

as the extremely reduced number of parameters involved in the concrete model makes it quite 

suitable for the analysis of real structures, and constitutes a useful design tool. As regards to 

the nonlinear performance of the steel reinforcement, the explicit Giuffrè-Menegotto-Pinto 

model is adopted. Efficiency of the global model is illustrated via two seismic applications: 

one concerning an arch dam, and the other a six-floor reinforced concrete wall. The latter 

application is presented for validation purposes. 
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INTRODUCTION 

The dissimilar behavior exhibited by concrete under tension or compression is an essential 

feature when dealing with cyclic actions. This peculiarity of concrete’s behavior, also 

exhibited by other geomaterials, is a consequence of the rather different strengths exhibited 

under tensile or compressive loading, the first one associated to significant fragility, 

responsible for visible cracking. Therefore, under cyclic loading tensile cracking is usually the 

first evidence of nonlinearity, and consequently important changes in stiffness are observed 

upon reversal of the sign of the external loading, as it occurs during earthquakes. 

To cope with this unilateral effect the devised concrete constitutive model must be able, 

somehow, to distinguish tension from compression, an objective that at a macro level is 

usually accomplished by implementing a split of the strain or the stress tensors (Ortiz 1985, 

Mazars and Pijaudier-Cabot 1989, Cervera et al. 1995). Classically this tensorial 

decomposition induces the global model to include two constitutive submodels, one for the 

tensile and the other for the compressive tensor counterparts; typical associations of this kind 

are the models which combine the ‘smeared’ or ‘discrete crack approaches’ with 

plasticity-based yielding criteria. In spite of the considerable success of many of these 

submodel associations, an important drawback is well-known: the computational coding 

complexity, not only due to the duplication inherent to the tension and compression 

submodels, but also to the difficulty in dealing with combined tension-compression states of 

stress at each point (which one of the submodels should be fulfilled first, when a trial stress 

tensor violates both?). Furthermore, with such submodel associations seismic analyses of 

large structures become computationally almost prohibitive, regarding the many thousands of 

load steps and load reversals involved. 

An approach that circumvents many of the above shortcomings, and becomes quite more 
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attractive for civil engineering applications, is provided by the so-called scalar damage 

models, which are based on the assumption that with an appropriate set of internal variables – 

the scalar damages – the nonlinear performances of concrete under tension and compression 

are manageable with an integrated strategy. In association to some split of the strain or the 

stress tensors, different scalar damage variables are introduced to cope with the dissimilar 

performances of concrete under tension and compression. Through appropriate evolution laws 

such damage variables, which range between ‘zero’ whilst material is elastic and ‘one’ (or 

some other limit) when material reaches collapse, provide a quite intuitive tool to monitor the 

internal progression of material degradation. 

This paper concentrates on the problem of reproducing the nonlinear behavior of 

reinforced concrete (RC) structures by adopting for the concrete part a constitutive model 

belonging to the family of scalar damage models. Quite refined approaches derived from 

damage mechanics are presently available (Ortiz 1985, Simo and Ju 1987, Chaboche 1988, 

Lubliner et al. 1989, Mazars and Pijaudier-Cabot 1989, La Borderie et al. 1990, Ju 1990, 

Halm and Dragon 1996, Lee and Fenves 1998, Carol et al. 2001, Comi and Perego 2001, 

Hansen et al. 2001), some of them including tensorial damage variables, coping with material 

orthotropy or anisotropy, but the focus here is essentially to provide a numerical model 

suitable for engineering applications, keeping in good balance computational cost and 

efficiency. Accordingly, complex approaches other than the isotropy and scalar nature of the 

damage variables are declined, having in mind that the scope of this paper is to provide a 

constitutive model easily manageable for design purposes, and involving a reduced number of 

parameters. The model to be described for the concrete material is an upgraded version of the 

plastic viscous-damage one presented in Faria et al. (1998), where contributions from plastic 

deformations and viscous effects due to strain-rate dependency were discarded to allow for the 

intended aim of simplicity. In spite of its final intuitive format, the concrete model to be 
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described here encompasses the dissimilar behavior under tension and compression, the 

stiffness recovery upon load reversal, it predicts the strength enhancement under 2D or 3D 

compression, and it is quite robust numerically. These features are accomplished by 

performing a split over the stress tensor obtained elastically, which includes the model in the 

so-called ‘strain-driven’ category, since the elastic stress tensor is computed explicitly on the 

basis of the strain tensor, the primary variable to be evaluated on standard finite element (FE) 

displacement-based codes. The dissimilar features of concrete’s behavior under tension or 

compression are accomplished by assigning a separate scalar damage variable to each of the 

tensorial components of the elastic stress tensor. 

Concerning the reinforcement, rebars are reproduced with a FE mesh constituted by 

2-nodded truss elements. The nonlinear performance of each rebar is reproduced with the 

Giuffrè-Menegotto-Pinto cyclic model, which is also explicit in terms of the rebar strains. The 

reinforcement FE mesh overlaps the one for the concrete counterpart, and perfect bond 

between both materials is assumed. 

According to the features of the concrete and steel submodels, the global constitutive 

model that is presented for the analysis of RC structures is suitable for dealing with cyclic 

loading, with a straightforward implementation via a closed form algorithm, allowing for 

seismic analyses of really existing structures to become feasible. The efficiency of the global 

model is illustrated with two applications, namely a 3D plain concrete arch dam, and a 

six-floor 2D RC wall tested on a large-scale shaking table. 

BASIC CONCEPTS IN DAMAGE MECHANICS 

An essential idea in damage mechanics is that at each material point, and for an initial 

elemental area A with a certain outwards normal, a reduction of the ‘net’ area occurs as an 

outcome of the propagation of micro-cracks and internal imperfections, induced by the 
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external loading. On such elemental net area An the actual stress is termed ‘effective’, here 

denoted by σ , to be distinguished from the usual Cauchy σ stress commonly adopted in 

structural applications. Following this interpretation σ  is physically more representative than 

σ, as the latter corresponds to an averaged stress, idealized as acting on the initial area A, and 

not on the actual existing one An. 

In combination with the effective stress concept one may also refer to the concept of scalar 

damage d, to be viewed under 1D conditions as the surface density of material defects existing 

at local level, that is, AAd n−=1 . This damage variable evolves between ‘zero’ at the 

original elastic stage up to ‘one’ at material failure, and at any instant it quantifies the 

deterioration at a given point. Both the effective stress and the damage concepts are related, 

since equilibrium imposes that AAn σσ = , and accordingly one has σ−=σ )1( d . 

TENSION-COMPRESSION DISTINGUISHING CONCRETE DAMAGE MODEL 

Effective Stress Tensor 

Since a constitutive model suitable for engineering applications is aimed, and seismic analyses 

of large-scale concrete structures are envisaged, algorithmic efficiency is a subject of great 

concern. To account for this requisite, throughout the present chapter an explicit formulation 

in terms of the strain tensor is adopted, since ε is the primary entity to be computed on 

standard FE codes. The well-known disadvantage of classical strain-based splits – namely the 

inability to cope with the strength enhancement in compression induced by the lateral 

confinement (see for instance Mazars and Pijaudier-Cabot 1989) –, is considerably reduced by 

adopting a stress tensor σ  with an elastic definition as the basic entity within the model 

framework. This strategy preserves the advantages of a strain-driven formulation, since σ  is 

directly computed in terms of ε, and circumvents the drawbacks inherent to many implicit 

formulations based on the Cauchy stress tensor, where an iterative procedure inside the 
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constitutive model is required to update the internal variables. 

Therefore, and for the sake of simplicity, we will assume here the most simple 

strain-driven definition for the effective stress tensor T}σσσσσσ{ 231312332211=σ , that is, 

εσ D= , where D = the elastic constitutive tensor. 

Stress Split 

To account for the dissimilar performances of concrete under tension and compression, a split 

of the effective stress tensor σ  into tensile and compressive components ±σ  is introduced, 

and performed according to (Faria et al. 1998) 

∑ >σ<=+

i

T
iii ppσ  +− −= σσσ  (1) 

where ><  = the Macaulay brackets (they retrieve the enclosed expression if positive, or zero 

if negative), σi  = the i-th principal stress of σ , and pi = the versor of the principal direction 

associated to σi . 

Constitutive Equation 

For a consistent derivation of a constitutive law a free energy potential with the form 

)()1()()1(),,( oo εεε −−++−+ ψ−+ψ−=ψ dddd  (2) 

is postulated, where +d  and −d  are scalar damage variables reproducing the tensile and 

compressive deteriorations (assumed as independent), and ±ψo  are elastic free energies defined 

according to 

εσσσε TT )(
2
1)(

2
1)( 1

o
±−±± ==ψ D  (3) 

(index ± means tension or compression as appropriate). Note in these two equations that the 

constitutive model is intentionally written in terms of the effective stress tensor, a 

strain-driven entity as referred before. 
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Having in mind that εσ ∂∂ψ= ±±
o  (see Faria et al. 1998 for details), the following form is 

obtained for the constitutive law 

−−++ −+−=
∂
ψ∂

= σσ
ε

σ )1()1( dd  (4) 

This relevant equation points out that the adopted split of the effective stress tensor leads also 

to a related dual split of σ into tensile and compressive tensors σ +  and σ − , that is, 

+++ −= σσ )1( d  −−− −= σσ )1( d  (5) 

Recalling conclusion (5), for general stress conditions (that is, 0≠+σ  and 0≠−σ ) a non-null 

stress tensor σ is retrieved if 1=+d , provided that 1≠−d  (or conversely if 1=−d  and 

1≠+d ). Therefore, with the capability of activating the tensile and compressive damage 

variables independently the present damage model allows predicting the formation of 

‘compressive struts’ inside an extensively cracked RC element, as it will be demonstrated in 

the final application. 

Damage Criteria 

In the literature (Simo and Ju 1987, Mazars and Pijaudier-Cabot 1989, Oliver et al. 1990) 

several definitions of tensorial norms and damage criteria are encountered. A crucial 

distinction between those norms and damage criteria concerns the basic entity on which they 

are based, and at least two families may be identified: (i) the strain-based ones, and (ii) the 

stress-based ones. Apparently this may be thought to reflect the different appraisals 

concerning the basic mechanisms which guide the initiation and progression of damage in 

concrete, particularly the one associated to cracking, where interpretations linking this 

phenomenon to lateral expansion (volume increase), or to tensile stresses, are commonly met. 

These interpretations depend mostly on the level under which the model approximation is 

introduced, since under a micro or mesoscopic level cracking in the cement paste is frequently 
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attributed to tensile stresses that form due to bridging between the aggregates, whereas under a 

macroscopic standpoint, and for instance during a uniaxial compressive test, visible cracking 

is sometimes associated with positive lateral straining. Under a physical standpoint the 

approach to be adopted herein is more likely to be classified as stress-based, although 

computationally the norms and damage criteria will be handled as efficiently as strain-based 

entities. 

Analogously to the ‘equivalent strain’ concept postulated in Simo and Ju (1987), positive 

scalar norms of the stress tensors and quite simple damage criteria will be adopted here to 

distinguish loading from unloading, and consequently to activate or deactivate the evolution 

of the internal variables ±d . Such norms are termed equivalent stresses, denoted by the 

symbols +τ  and −τ  and computed according to 

±±±± =τ σσ DT)(  (6) 

where ±D  are non-dimensional metric tensors. Switching temporarily from the vectorial to 

the second-order matrix notation of the stress tensors, the following definitions can be adopted 

for the metric tensors 

11ID ⊗γ−γ+= ±±± )1(  (7) 

where I = the fourth- and 1 = the second-order identity tensors, and symbol ⊗  denotes the 

tensorial product. Parameters ±γ  are defined separately for tension and for compression, and 

are devised to reproduce the equibiaxial÷uniaxial strength ratios typical in concrete. 

Calling for the stress norms defined in (6), the following damage criteria in terms of the 

Cauchy stress tensors are introduced 

0),( ≤−τ= ±±±±± qqg σ  (8) 

where q ±  are current thresholds that control the size of the damage surfaces, therefore playing 

the role of hardening-like internal variables. 
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Now, let us assume that the damage variables are computed in accordance to 

d r
q r

r
± ±

± ±

±= −( )
( )

1  (9) 

where the thresholds ±q  are positive functions of some internal variables r ± , such that 

0≥±r . Through substitution of (6) in (8), owing to the split of tensor σ expressed in (5) and 

also to (9), it is worth noting that the criteria expressed in (8) are equivalent to 

0),( ≤−τ=τ ±±±±± rrg  (10) 

where 
±±±± =τ σσ DT)(  (11) 

For practical applications the latter definitions provide a quite friendly format for the damage 

criteria, since they retain the scalar nature of the ones expressed in (8), and in spite of its 

stress-based physical background they are defined as functions of the strain-driven entity σ . 

Under ‘loading’ conditions the persistency condition 0=±g  leads to ±± =τ r . Integrating 

for a generic instant t, in view of this equation the following conclusion arises 







 τ= ±

∈

±±
sτsτ rr )(max,max

][0,o  (12) 

where ±
or  are the thresholds that bound the initial linear-elastic domain; according to (10) and 

(11), and since 0| 0 ==
±

td , it results ±± = oo fr , where ±
of  denote the threshold stresses that 

define the onset of damages in 1D tension or compression. Assuming a ratio 10ff oo =÷ +− , 

Fig. 1a reproduces the envelope of the 2D initial elastic domain inherent to the damage 

criteria expressed in (10): in pure tension a rounded Rankine-type criterion is obtained by 

setting 0.0=γ+ , whereas in pure compression a equibiaxial÷uniaxial strength ratio equal to 

1.15 is obtained by adopting 622.0=γ− . The overall agreement of this envelope with the one 

inferred form the experimental results due to Kupfer et al. (1969) is fairly good. 
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Regarding the non-negativeness of ±ψo , from eqs (2) and (4) it can be inferred that for the 

dissipation inequality ( 0≥+ψ− εσ  T ) to be satisfied, that is, 

0oo ≥ψ+ψ=+ψ− −−++ ddT  εσ  (13) 

it suffices that 0≥±d , a classical condition that rules the rate evolution of the damage 

variables. Since 0≥±r , according to (9) condition 0≥±d  is equivalent to 

±
±

±

±

±

=
∂
∂

≥ H
r
q

r
q  (14) 

In view of the fact that 10 ≤≤ ±d , according to (9) inequality 1≤±± rq  has to be satisfied, 

which combined with (14) leads to the conclusion that 1H ≤≤ ±±± rq . As depicted in 

Fig. 1b, this condition is trivially satisfied by the hardening/softening laws exhibited by the 

most relevant materials commonly used in engineering, and namely by the concrete. 

Updating of the Damage Variables 

From (12) it becomes clear that the updating of the internal variables r ±  constitutes a trivial 

task, since only the utmost ±τ  need to be retained. Consequently the damage variables can be 

trivially updated too, because owing to (9) they are explicit functions of thresholds r ± , 

provided that suitable formats are attributed to functions q r± ±( ) . In this paper the following 

evolution rules are adopted, which fulfill requirements (14): 

)1()( o
o

++
+++ −= rrAerrq  if  ++ ≥ orr  (15a) 

)1()1()( o
o

−−
−−−− −+−= rrCeBrBrrq  if  −− ≥ orr  (15b) 

For a 1D tensile test eq. (15a) provides a softening branch that is asymptotic to the strain 

axis, and accordingly a finite area is retained between the stress-strain curve and the strain 

axis (see the envelope curve in Fig. 2a). As material softening engenders an ill-posed 

initial-boundary value problem, which leads to high sensitivity of the numerical solutions 
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regarding the FE mesh refinement, as a consequence of strong tendency of deformations to 

localize on almost vanishing zones to form discrete cracks, a strategy for regularization needs 

to be introduced. The simplest one, also adopted here, consists in identifying the above 

referred finite area with the ratio /G , where G = the tensile fracture energy of concrete, and 

=  the localization zone size. In Oliver (1989) a consistent definition for the characteristic 

length   is defined, but regarding the purposes of the actual model we adopt here the 

following rough but simple definitions, based on the area Ω (or volume V) of the current 2D 

(or 3D) finite element: Ω=  or 3 V= . Therefore, the unique parameter A involved in 

(15a) is computed by identifying /G  with the time integral of dissipation on a 1D tensile 

test, which after some mathematical handling renders (Oliver et al. 1990) 

0
2
1

)(f

1

2
o

≥







−=

−

+

EGA  (16) 

where E = the Young’s modulus. 

Eq. (15b) allows reproducing the hardening in concrete under compression (Mazars and 

Pijaudier-Cabot 1989), as well as the softening that characterizes the post-peak behavior. 

Definition of the two parameters B and C is required, usually by imposing the numerical σ−ε 

curve to pass in two selected points of a curve obtained from a 1D compressive test (if 

softening in compression is a subject of concern, a regularization scheme as referred for 

tension could also be adopted). 

Performance Under Cyclic Loading 

Fig. 2a provides a pictorial description of the typical performance of the constitutive model 

during a 1D tension-compression cyclic test, where, for illustration purposes, the usual ratio 

between the compression and tensile strengths of concrete has been distorted. The tensile 

softening, as well as the hardening and subsequent softening observable under compression, 
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are easily reproduced with the evolution laws expressed by eqs (15); the stiffness recovery 

when passing from tension to compression (or backwards) is also captured by the model. 

Algorithm 

Owing to the strain-driven formulation of the proposed model, its code implementation is 

quite straightforward, according to the following closed-form sequence of operations: 

−−++
−−−

+++

−+−=⇒








⇒τ⇒
⇒τ⇒

⇒=⇒ σσσ
σ
σ

εσε )1()1( dd
d
d

D  (17) 

About the Definition of −τ  

As depicted in Fig. 1a the damage criteria (10), expressed in terms of the stress norms ±τ  

defined in (11), encompass an elastic domain that in pure tension and in pure compression is 

defined by ellipsoids. This presents some advantages, since through providing a unified 

format for the norms and the damage criteria associated to tension and to compression the 

mathematical handling of the corresponding expressions is considerably simplified. 

Nevertheless, under 3D compression the ellipsoid renders an excessively conservative 

envelope, like if a ‘cap model’ was activated for relatively low compressive stresses. 

Switching to another norm for the compressive stresses, namely the one 

)(3 octtoc
−−− t+σ=t K  (18) 

easily circumvents this limitation, as already proposed in Faria et al. (1998). In this format, 

directly inspired on the Drucker-Prager criterion, −σoct  and −τocτ  are the octahedral normal and 

shear stresses obtained from σ − ; scalar K controls the Drucker-Prager cone angle, and 

consequently it is calibrated to fit the experimental results in biaxial compression. Under 

plane stress conditions definition (18) performs almost identically to (11), leading to a 

bounding curve similar to the one depicted in Fig. 1a, but under 3D compression the open 

bounding surface inherent to the Drucker-Prager cone is more suitable for concrete, and 
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adopted in the applications to be presented later. Nevertheless, the well-known insufficiency 

from the Drucker-Prager criterion consisting in that compressive stress states close to the 

hydrostatic axis remain elastic, irrespective to the stress intensity, is obviously a limitation 

also inherent to eq. (18), as it happens to many concrete devised plasticity-based models if not 

combined with ‘caps’. 

Final Comments About the Concrete Model 

As remarked before, the elastic definition postulated for the effective stress tensor was greatly 

influenced by the goal of simplicity, and not by physical considerations. Obviously some 

limitations have to be expected as a result of neglecting the irreversible strains on the concrete 

model, namely the inability to control dilatancy under multiaxial stress conditions. The 

plastic-damage models described in Lubliner et al. (1989) and Lee and Fenves (1998) include 

a plastic strain tensor within the internal variables set, providing quite accurate predictions of 

the concrete’s performance in several experimental tests, and accounting adequately for the 

dilatancy. A remark is yet made to the additional complexity of such refined approaches, both 

in terms of computational implementation and model calibration, which is contradictory to the 

straightforwardness intended for the present paper’s model. 

The option that was made to explicitly define the effective stress tensor as elastic 

engenders other limitations, namely the proficiency for tracking exactly the following features 

of concrete’s behavior: (i) the energetic dissipation under cyclic loading, and (ii) the strength 

enhancement due to lateral confinement. Anyway, in several benchmark applications reported 

in Faria et al. (1998) the model predictions were not improved as expected when the plastic 

deformations were accounted for, in comparison to a pure damage model, yet with the latter 

providing numerical predictions accurate enough for the usual purposes of practical 

engineering applications. This observation has greatly influenced the option made to reduce 

the definition of σ  to an elastic tensor. 
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STEEL CYCLIC MODEL 

In the applications of this paper the steel reinforcement is reproduced by discretizing each 

rebar via 2-nodded finite elements with axial behavior (truss elements), and thereafter 

superimposing such FE mesh to the one adopted for the plain concrete. An interface model 

accounting for bond-slip phenomena between concrete and steel would render a quite more 

detailed numerical representation, but model complexity would rise significantly. Besides, if 

for research or structural a posteriori analyses an adequate representation of slippage and 

rebar buckling phenomena are quite often needed, for applications involving design purposes 

they are usually discarded, among other reasons due to difficulties of calibration at the design 

stage, without experimental information. Accordingly, perfect bond between the concrete and 

the rebars is assumed hereinafter, and rebar buckling is neglected. 

The nonlinear σ−ε axial behavior of each rebar is simulated by the cyclic model reported 

in Menegotto and Pinto (1973), illustrated in Fig. 2b. As depicted transition curves are fitted 

between two asymptotes intersecting at point ),( II σε , the latter changing its position 

according to the plastic incursion into tension or compression. The asymptotes have 

inclinations Es and Esh – the elastic and the hardening modulus of steel –, and the constitutive 

law is expressed by the explicit equation 

[ ]
*

*

s

sh

s

sh*
1

)(1

1
ε



















ε+

−
+=s −BB

E
E

E
E  (19) 

where 

rI

r

σ−σ
σ−σ

=σ*  
rI

r

ε−ε
ε−ε

=ε*  3
2

1 a
a

aB +
ξ+
ξ−

=  
rI

Ir

ε−ε
ε−ε

=ξ maξ  (20) 

In these equations ( , )ε σr r  = the coordinates of the point where load reversal occurs, εr max  = 

the maximum εr  ever reached, and a1, a2 and a3 are the parameters that fit the Bauschinger’s 
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effect observed on the  σ−ε rebar curves obtained experimentally. 

APPLICATIONS 

Seismic Behavior of an Arch Dam 

The damage concept is naturally associated with physical deterioration, which makes it quite 

adequate to point out the post-elastic mechanisms activated when a structure is submitted to 

extreme load conditions. As an illustration, lets take the 110 m high Alto Lindoso arch dam 

(Portugal) reproduced in Fig. 3, where a FE mesh with 20-nodded bricks was adopted for the 

arch and foundation. This dam was analyzed under the 0.25g earthquake also reproduced in 

Fig. 3. Without entering into dam engineering details, which are out of scope of the present 

paper (for further details see Cervera et al. 1995 and Faria 1998), here it is remarked that: (i) 

full reservoir condition was assumed; (ii) the foundation was assumed as elastic, and 

dissipation through radiation was accounted for by providing the boundaries with dampers 

endowing a transparency condition along the outwards normal (Faria 1998). Integration of the 

dynamic equations of motion was performed with the unconditionally stable and second-order 

accurate Hilber-Hughes-Taylor α-method (Hilber et al. 1977), which provides a source of 

algorithmic dissipation quite useful for reducing spurious high-frequency oscillations 

(numerical noise). Concerning the viscous damping contribution, the following strategy was 

pursued: (i) whilst structural behavior remains elastic a Rayleigh-based stiffness proportional 

damping matrix is adopted, calibrated so as to provide 2% of the critical damping on the first 

mode, with a frequency of 2.5 Hz; (ii) as tensile damages initiate and increase on a FE its 

damping matrix starts a continuous reduction process (in parallel to the stiffness matrix 

decay), keeping yet a residual damping matrix (of about 10% the original one) to compensate 

some insufficiency from the α-method to bring down the numerical noise to an acceptable 

level (for further details see Faria et al. 2002). 
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The basic properties and model parameters assumed for the concrete were the following: 

E = 30 GPa, Poisson’s coefficient = 0.2, +
of = 2.5 MPa, G = 200 J/m2, −

of = 7.5 MPa, 

−
cf = 25 MPa, K = 0.171, density = 2450 kg/m3. The foundation was assumed with the same 

elastic properties of concrete, and with density = 2700 kg/m3. 

To get some insight on the nonlinear behavior of the Alto Lindoso dam during this 

moderately intense earthquake, Fig. 4 reproduces the evolution of the deformed configurations 

and the tensile damage distributions. No damages in compression were registered for this 

seismic intensity, and for clarity only the left half of the dam is represented. If one associates 

the occurrence of non-null values of +d  with concrete fractured regions, onset of cracking on 

the upstream heel and on the downstream face of the crest arch occurs at t = 1.57 s, whilst the 

dam moves towards downstream. During the interval 1.57 s-1.84 s the crest deforms towards 

upstream, generating a curvature that promotes the spread of cracking on the downstream 

face. The ensuing deformation towards downstream (t = 2.06 s) reverses the curvature on the 

center of the crest arch, engendering cracking on the upstream face, as indicated by wide 

regions with +d = 1 predicted at this elevation. Therefore, in practical applications the damage 

distributions provide an interesting tool for the analyst to interpret the structural changes 

induced by progression of nonlinearity: the spread of tensile damages depicted in Fig. 4 (and 

accordingly the associated structural induced stiffness decay) is easily recognized as 

responsible for the amplifying effect on the dam displacements, changing the fundamental 

vibration mode. 

Seismic Behavior of a RC Wall 

This application concerns the numerical simulation of the seismic behavior of a six-floor 

reinforced concrete wall, experimentally tested on a shaking table at the Centre d’ Énergie 

Atomique (CEA), in France (see Combescure and Chaudat 2000 for details). Fig. 5 reproduces 
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the meshes adopted for the concrete, discretized with 8-nodded plane stress FE (0.06 m thick), 

as well as for the steel reinforcement, simulated via 2-nodded truss elements. Four 

consecutive earthquakes were prescribed to the RC wall, according to the following sequence 

of intensities: 0.22g, 1.35g, 0.64g and 1.0g. Even for the 0.22g earthquake significant cracking 

was already induced in the wall, but in order to save space the results to be presented hereafter 

will refer only to the 1.35g seism, reproduced in Fig. 6a. 

Three different concrete domains A-B-C were considered in the wall (see Fig. 5), each of 

which with a particular 1D curve of the type depicted in Fig. 6b. Domain A concerns to the 

concrete standing outside the stirrups (unconfined concrete), whereas B and C refer to the 

confined concrete located within the core of the stirrups made up of φ3 diameters, with 0.02 m 

and 0.04 m spacings, respectively. Such distinction between the curves for the unconfined and 

confined concrete would be unnecessary under a 3D simulation, since the constitutive model 

would account for the lateral confinement provided by the stirrups. However, for the present 

simulation a 2D plane stress condition is being assumed, and consequently the concrete model 

cannot reproduce consistently the benefits provided by the confinement along the 

perpendicular to the plane of representation, since a null stress condition is enforced on such 

direction. Therefore, we adopt here the standard procedure that consists in attributing an 

increased compressive strength −
ccf  to the confined concrete depending on the confinement 

ratio k, with the latter being k = 1+Asw lw fsy/(bc hc s 
−
cf ), where Asw defines the cross sectional 

area of the stirrups, with perimeter lw, separation s, and yielding stress fsy; cc hb ×  designates 

the area of the concrete core effectively confined. Denoting by −
cf  and εc the compressive 

strength and strain for the unconfined concrete, the confinement effect may lead to the 

following increments on the concrete strength and peak strain (see notation in Fig. 6b): 

−− = ccc ff k , c
2

cc ε=ε k . 
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The following material properties were assumed invariable for the three concrete domains: 

E = 24.5 GPa, Poisson’s coefficient = 0.2, +
of = 3 MPa, G = 250 J/m2, −

cf = 39.6 MPa, εc = 2.5‰, 

K = 0.171, density = 2450 kg/m3. In what concerns the confined concrete, domain B was 

simulated with −
ccf = 54.7 MPa and εcc = 4.7‰, whereas in domain C −

ccf = 45.1 MPa and 

εcc = 3.2‰ were adopted. As for the steel reinforcement indicated in Fig. 5 the following 

material properties and model parameters were considered: Es = 200 GPa, a1 = 18.5, a2 = 0.15, 

a3 = 20.0. Rebars φ3 and φ4.5 were simulated with Esh/Es  = 0.0047, fsy = 563 MPa, and 

ultimate stress and strain with values fsu = 581 MPa and εsu = 22‰; for rebars φ6 the steel 

properties were Esh/Es  = 0.0052, fsy = 593 MPa, fsu = 625 MPa, εsu = 34‰, and finally for rebars 

φ6 Esh/Es  = 0.0038, fsy = 486 MPa, fsu = 587 MPa and εsu = 168‰ were adopted. 

During the experimental test the intense 1.35g earthquake induced important damages on 

the RC wall, associated to a quick progression of cracking and exploitation of large plastic 

deformations on the longitudinal rebars. The numerical predictions from the proposed model 

(obtained with the α-method and the same strategy concerning the viscous damping referred 

for the previous application) are compared with the experimental results in Fig. 7, both in 

terms of the relative horizontal displacement registered at level 5, as well as in terms of the 

bending moment registered close to the footing (level 1). A good overall agreement between 

the model predictions and the test results was obtained, with the amplitudes, the frequencies 

and also the phases exhibiting acceptable deviations. The comparison performed in Fig. 8 

concerns the moment-displacement diagrams obtained numerically and during the test 

campaign: it can be observed that the proposed model predicted fairly well the global 

performance of the RC wall, namely in what concerns the energetic dissipation registered 

experimentally. Finally, Fig. 9 reproduces a set of results obtained numerically at t = 4 s, when 

the displacement registered on the top of the wall reaches the maximum. In Fig. 9a the 
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concrete tensile damages are superposed to the deformed configuration, and a comparison is 

possible with the crack pattern obtained experimentally, and reproduced in Fig. 9b: the 

distribution of the tensile damages occurs at the same location where important cracks were 

registered during the test (in Fig. 9b the cracks marked as “Before the test” were induced by 

the construction process – accordingly, they should be considered as spurious for the intended 

comparison). Defining by εp,max the maximum post-yielding strain registered on the rightmost 

longitudinal φ8 (see Fig. 5), Fig. 9c provides an insight on the incursion into yielding for that 

rebar: plastic straining concentrates mostly close to the wall’s footing, associated to the 

formation of a main crack visible in Fig. 9b. It is also possible to observe that incursion into 

yielding extends approximately from the base up to level 3, a result in agreement to what is 

reported in the CEA report (Combescure and Chaudat 2000). Fig. 9d reproduces the 

compressive stresses σ− obtained with the proposed model, and puts into evidence the 

formation of inclined struts linking the compressed flange with the tie associated to the 

longitudinal reinforcement, that is, the materialization of the ‘strut-and-tie’ ultimate strength 

mechanism typical in RC structures. 

CONCLUSIONS 

This paper presents a constitutive model with an easily integrable format, devised for practical 

applications on large-scale RC structures, including seismic analyses. The model is capable of 

dealing with 2D and 3D structures, being constituted by two submodels: one concerning the 

concrete material, based on continuum damage mechanics, and one which deals with the 

reinforcement, based on the Giuffrè-Menegotto-Pinto explicit formulation. 

Regarding the concrete submodel, an effective stress tensor is selected for supporting the 

formulation. This stress tensor, computed elastically, is split into tensile and compressive 

tensor components, each of which associated to an independent scalar damage variable. It 
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allows for capturing the stiffness recovery effect upon load reversal, a feature of primary 

importance for seismic analysis. Owing to the strain-based formulation adopted throughout a 

closed-form and highly efficient integration algorithm is obtained. The submodel for the 

reinforcement is implemented on 2-nodded truss elements, to reproduce rebars made up of 

dissimilar steel grades. 

With the purpose of keeping the global model easily manageable by practical engineers 

engaged with the analysis and design of plates, shells and full 3D structures, a reduced number 

of parameters is involved in both submodels. Among the possible outputs from the model, the 

plotting of the distributions of the tensile and compressive damages is an attractive tool to 

identify the structural ultimate strength mechanisms and critical points. 

Two numerical applications were presented, illustrating the adequacy of the global 

constitutive model to reproduce the seismic behavior of an arch dam, as well as the 

earthquake performance of a reinforced concrete wall tested on a shaking table. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

a1, a2, a3 = parameters that control the steel Bauschinger’s effect; 

D, D  = elastic constitutive tensor and non-dimensional metric tensor; 

d = scalar damage variable; 

E = Young’s modulus of concrete; 

Es, Esh = elastic and hardening modulus of steel; 

fo = stress for the onset of nonlinearity under 1D loading; 

−
cf , −

ccf  = compressive strength of unconfined and confined concrete; 

fsy = rebar yielding stress; 

G = tensile fracture energy in concrete; 

g, g  = damage criteria; 

I, 1 = fourth- and second-order identity tensors; 

K = parameter that controls the Drucker-Prager cone angle; 

q, r = internal variables that control the size of the damage surfaces; 

ε = strain tensor 

σ, σ  = Cauchy and effective stress tensors; 

γ = parameter for the definition of D ; 

τ, τ  = equivalent stress norms computed for the σ and σ  stress tensors; 

ψ = free energy. 

Superscripts 

+, − = entity (or component) associated to tension or compression; 

± = tension or compression, as appropriate; 

Subscripts 

o = elastic entity; value at the onset of nonlinearity. 
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FIG. 1. a) 2D Elastic Domain; b) Hardening/Softening Condition 
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FIG. 2. 1D Cyclic Performances of: a) Concrete; b) Steel Submodels 
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FIG. 3. Alto Lindoso Arch Dam 
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FIG. 5. FE Meshes and Geometrical Data for the RC Wall 
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FIG. 6. a) 1.35g Accelerogram; b) Confined and Unconfined Concrete 
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FIG. 7. Historical Results 
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FIG. 8. Moment-Displacement Diagrams 



- 32 - 

 

 

 

 

 

 

 

  

 

0.6 

1.5 

2.4 

3.3 

4.2 

5.1 

0 10 20 30 40 

E
le

va
tio

n 
(m

) 

ep,max (x10-3) 
  

a) tensile damages b) observed cracks c) plastic strain 
(rightmost φ8) 

d) σ− 

FIG. 9. Situation at the Peak of the 1.35g Earthquake (t = 4 s) 

 

Before the test 
1.35g earthquake 



- 33 - 

Figure legends 

FIG. 1. a) 2D Elastic Domain; b) Hardening/Softening Condition 

FIG. 2. 1D Cyclic Performances of: a) Concrete; b) Steel Submodels 

FIG. 3. Alto Lindoso Arch Dam 

FIG. 4. Deformation and +d  During a 0.25g Earthquake 
( 1=+d  in gray; =0 in white) 

FIG. 5. FE Meshes and Geometrical Data for the RC Wall 

FIG. 6. a) 1.35g Accelerogram; b) Confined and Unconfined Concrete 

FIG. 7. Historical Results 

FIG. 8. Moment-Displacement Diagrams 

FIG. 9. Situation at the Peak of the 1.35g Earthquake (t = 4 s) 
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