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SUMMARY

In this paper we suggest some algorithms for the fluid–structure interaction problem stated using a domain
decomposition framework. These methods involve stabilized pressure segregation methods for the solution
of the fluid problem and fixed point iterative algorithms for the fluid–structure coupling. With one single
loop the solution of the coupled system tends to one of the strongly coupled monolithic systems. These
coupling algorithms are applied to the aeroelastic simulation of suspension bridges. We assess flexural
and torsional frequencies for a given inflow velocity. Increasing this velocity we reach the value for which
the flutter phenomenon appears. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. State of the art

The interaction between a fluid and a structure appears in a wide variety of fields. Probably, the
most analysed fluid–structure interaction problem is the aeroelastic one (specially for aeronautical
applications), for instance in the simulation of the action of a fluid (air) over a structure (such
as a wing or a bridge). Recently, an increasing interest in the simulation of hemodynamics has
motivated a lot of research on fluid–structure algorithms appropriate for the blood–vessel system.

The implementation of a coupled problem can be done using two different global strategies.
The monolithic strategy implies the solution of the coupled problems simultaneously. Partitioned
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ON FLUID–STRUCTURE ALGORITHMS IN AEROELASTICITY 47

methods are usually used in order to keep software modularity and to allow the use of the numerical
methods developed for every field separately. When using pressure segregation methods for the
fluid problem (as in this work) partitioned procedures are naturally adapted.

The numerical simulation of the fluid–structure coupled problem is complicated. It does not
only inherit the difficulties associated with the fluid and structure simulations, but the coupling of
these two systems is also a hard task in many situations. The difficulties arising from this coupled
system depend strongly on the physical properties of the case to be simulated. Thus, the choice of
an appropriate algorithm that deals well with the coupling varies with the problem to solve. For
instance, applications in aeroelasticity and hemodynamics have very different behaviour for the
same coupling algorithm. Whereas for aeroelastic problems there is a clear tendency to solve the
coupled system using explicit procedures (see [1] and references therein) or implicit Dirichlet–
Neumann schemes and Richardson iterations (see [2, 3]), these methods are not appropriate in most
hemodynamics applications. In the last case, the use of more involved implicit procedures for the
coupling are required in order to reach good convergence. This situation can be explained by the
added mass effect (see [4]). When the structure density �s is much larger than the fluid density �f
(as it happens in aeroelasticity), the classical Dirichlet–Neumann approach is stable, even without
relaxation, and exhibits a good convergence ratio. On the contrary, when the fluid and structure
densities are of the same order (as in hemodynamics) the added mass introduced by the fluid over the
structural problem makes the convergence of this coupling algorithm too involved. In some cases,
even with relaxation, convergence cannot be reached. And when relaxation is enough, too small
relaxation parameters and lots of iterations are needed. In order to obtain convergence, GMRES
iterations are used (instead of simpler Richardson iterations) and more involved linearizations, like
Newton and quasi-Newton algorithms, have been suggested (see [5, 6]). The relaxation of these
methods is a key aspect in order to reach convergence when dealing with these problems, and
some possibilities have been used (see [3, 7]).

Herein we want to obtain appropriate algorithms for the simulation of fluid–structure problems
using finite element methods. The interpretation of the coupling of the fluid and structure as a
domain decomposition (DD) method without overlapping used in [8] is adopted. We apply these
algorithms to the aeroelastic analysis of bridges. These algorithms are based on the blend of fixed
point algorithms of Dirichlet–Neumann type with pressure segregation methods. We assume a
Newtonian and incompressible fluid. The structure, as it is usually done in the analysis of these
problems, is considered a rigid body with elastic coefficients in the rigid body motion degrees of
freedom (dofs).

1.2. Ingredients of a fluid–structure solver

In this kind of problems the displacement of the structure changes the domain of the fluid. Then, the
fluid equations have to be able to deal with moving domains. With this aim we use an arbitrary
Lagrangian Eulerian (ALE) approach. Some ALE formulations have been analysed in [9–11].
The ALE scheme has an intrinsic error in time that can spoil the accuracy of the fluid solver in
fixed domains. For this reason, an appropriate ALE scheme depends on the time accuracy of the
fluid solver for fixed domains. The ALE approach involves the movement of the domain (mesh)
with appropriate Dirichlet boundary conditions. This movement is defined by a mesh displacement.
Different techniques have been proposed for its computation. The most widely used is the harmonic
extension of the Dirichlet functions on the boundaries, this methodology being the one adopted in
the present work.
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The fluid solver for incompressible flows is a key point of the algorithm because it consumes
most of the CPU time. The monolithic treatment of the Navier–Stokes equations is involved (for
the system solver) and time consuming. In order to improve the situation, we suggest the use of
pressure segregation methods in their fractional step and predictor–corrector forms (see [12, 13]).
On the other hand, we use the orthogonal subgrid scale stabilized finite element method (see [14])
for the space discretization, that allows the use of equal velocity–pressure interpolation.

Less attention is paid to the structure solver. The following exposition can be applied to any kind
of structural problem, with linear or non-linear material behaviour. Nevertheless, in the application
we have considered, the structure is considered to be a rigid body. Thus, the computational cost
of the structure is much lower than the computational cost of the fluid.

1.3. Outline of the article

We have organized the present work as follows. In Section 2 we motivate a novel fluid–structure
algorithm and justify its application to aeroelasticity. We state every field problem in its continuous
level and some notation is introduced in Section 3. In Section 4 we write the interface equation
associated to the problem under consideration, using a DD framework. At the fully discrete level,
we introduce the fluid solvers and appropriate coupling procedures (Section 5) involving pressure
segregation methods. Section 6 is devoted to the application of these methods to the simulation of
bridge aerodynamics. Section 7 concludes the paper by drawing some conclusions.

2. MOTIVATION OF THE WORK

The main contribution of this work is the use of an implicit coupling scheme using Dirichlet–
Neumann and Richardson iterations for the fluid–structure coupling together with a pressure
segregation method that uncouples the solution of velocity components and pressure. With only
one loop, the solution of the coupled system tends to the strongly coupled fluid–structure system.
In the rest of the section we emphasize the motivation of this novel algorithm and its application
to aeroelasticity.

As explained above, the appropriate algorithm for the solution of the coupled system depends
on the kind of problem to be solved. In this paper we have in mind aeroelastic problems. Let us
draw some features about this sort of applications:

• The fluid solver consumes much more CPU time than the structure solver. For this reason, the
number of fluid evaluations has to be minimized in order to reduce the computational cost.

• The convergence of the coupling iterative process is easy. As explained in Section 1, this
behaviour is associated with the fact that the structure density is much larger than the fluid
density.

For these applications explicit procedures and implicit procedures using simple fixed point
algorithms are the most usual approaches. The convergence rate of the Dirichlet–Neumann sub-
structuring technique (with Richardson iterations) is good, because the added mass effect can be
treated explicitly. That, together with the fact that the fixed point algorithm minimizes the number
of fluid evaluations per iteration, has motivated its use for aeroelastic applications.

We can say that, for a given time step size, explicit procedures are cheaper than implicit
procedures. However, explicit procedures are also less accurate and less stable. Moreover, when
using explicit techniques we are restricted to small enough time step sizes or otherwise the solution
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Figure 1. Pressure error plots: (a) without predictor–corrector iterations and (b) with
predictor–corrector iterations.

explodes. Implicit procedures allow larger time step sizes, reducing the number of evaluations.
Furthermore, the convergence of simple fixed point iterations in aeroelastic applications is easy.

Even though explicit procedures seem to be a good and stable approach for aeronautical
application involving compressible flows, when dealing with incompressible flows (for instance in
bridge aerodynamics), the stability is a more critical issue. The situation is more dramatic when
using second-order schemes (in time), needing more unstable extrapolations of displacement and
mesh velocity (in order to keep overall accuracy). Thus, in aeroelastic applications, where high-
order schemes in time are appealing, due to the highly transient behaviour, high-order implicit
procedures are a good choice. At every time step, fluid and structure solutions are equilibrated,
freeing the simulation of the undesirable numerical instabilities of the explicit coupling.

The drawback of an implicit method is the fact that some evaluations of the fluid are needed
per time step value, even though, as pointed out above, larger time step sizes can be used. And
the bottle neck of the coupling is the fluid solver. In order to reduce the CPU cost of the implicit
approach we have considered pressure segregation (or fractional step type) methods. Doing that,
the initial fluid system, with d + 1 dofs per node is reduced to d + 1 small systems (with 1 dof
per node). It implies a large reduction of the fluid solver computational cost. The main problem
related to this splitting is the fact that we are introducing artificial pressure boundary conditions
on the interface. This misbehaviour is important in fluid–structure applications, where the pressure
on the interface is a key value that drives the coupling. As explained in Section 5 and showed
in Figure 1 for a test problem, predictor–corrector methods that consist on iterating over the
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split system are an appealing choice because we can still decouple every velocity component and
pressure computations and tend to the monolithic solution, reducing the pressure boundary layer
and splitting error.

The last step is to consider the same loop for the implicit coupling and the predictor–corrector
fluid solver. This is the candidate algorithm that we will consider in this work, because

• The coupling is treated implicitly, getting equilibrated fluid–structure solutions and can be
easily extended to high-order methods (in time). The solution is not affected by numerical
instability, basic when evaluating physical instabilities (as flutter).

• The computational cost of the fluid solver is clearly reduced.
• The quality of the pressure on the interface is improved along the iterative process.
• And only with one loop that deal with the fluid solver and coupling, the solution tend to the
strongly coupled implicit system, the reference solution.

Due to the fact that the solution obtained with this method converges to the monolithic im-
plicit system (apart from the tolerance of the stopping criterion or maximum number of itera-
tions), the convergence behaviour of this iterative procedure in aeroelastic applications is the most
important aspect to be considered using numerical experimentation. This algorithm is introduced
in Section 5 and used for the evaluation of the flutter velocity of a bridge (involving the simulation
of incompressible flows and large Reynolds numbers) in Section 6.

3. THE CONTINUOUS PROBLEM

In this section we introduce the fluid–structure problem at the continuous level. First, we treat
some aspects about the problem domain, the definition of its movement and its restriction to the
fluid and structure, the domain velocity and the matching conditions that these restrictions satisfy
on the interface. After that, we state the governing equations of the fluid and structure problems
and suggest how to calculate the domain displacement. We conclude this section with the matching
conditions (that is, continuity of some values) that have to be imposed over the interface between
the fluid and the solid.

We denote by �t the domain occupied by the heterogeneous mechanical system at a given time
t>0. This domain is divided into the structure domain �s

t and its complement �f
t occupied by the

fluid. We denote by �t ≡ ��f
t ∩��s

t the fluid–structure interface. Further, nf is the outward normal
of �f

t on �t and ns its counterpart for the structure.
The total domain �t is defined at every time instant by a family of mappings At

At : �0 −→ �t

where �0 is the reference domain associated to t = 0. We stress the fact that At is arbitrary.
Let us introduce some notation. Given a function f : �t × [0, T ] −→ R defined at the current

domain we indicate by f̂ = f ◦At the corresponding function defined at the initial configuration

f̂ : �0 × [0, T ] −→ R, f̂ (x0, t) = f (At (x0), t)

Furthermore, the time derivatives at the initial configuration are defined as follows:

� f

�t

∣∣∣∣
x0

: �t × (0, T ) −→ R,
� f

�t

∣∣∣∣
x0

(x, t) = � f̂

�t
(x0, t)
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We denote by d(x, t) the displacement of the domain evaluated at the current configuration. Then,
we could write the mapping At as At (x0, t) = x0 + d̂(x0, t). We split the domain displacement
into its fluid and structure restriction as d=R�s

t
d+R�f

t
d=:ds + df. From the trace theorem we

know that

ds|�t =df|�t (1)

has to be satisfied. Moreover, we define

w= �df

�t

∣∣∣∣
x0

(2)

which is the domain velocity that we will require in order to write the fluid equations in an ALE
framework.

In the present work we assume a Newtonian incompressible fluid. We use the ALE formulation
in order to write the Navier–Stokes equations on moving domains. In what follows we only consider
the boundary conditions on �t . The rest of boundary conditions are essential for the definition of
the problem but do not affect the following exposition. For this reason we have omitted them for
the sake of clarity. The Navier–Stokes equations that govern the fluid problem read as follows:
find a velocity field u and a pressure field p such that

�f
�u
�t

− ��u + �fu · ∇u + ∇ p = �fff in �f
t × (0, T ) (3a)

∇ · u= 0 in �f
t × (0, T ) (3b)

where �f is the density and � the viscosity of the fluid. The Cauchy stress tensor for the fluid
is rf =−pI + 2�e(u) where e(u) = (∇u + (∇u)T)/2 is the strain rate tensor and I the identity
matrix. We denote by rfn := rf|�t ·nf the normal stress on �t .

Let us recall the Reynolds transport formula. Let �(x, t) be a function defined on �t . Then, for
any subdomain Vt ⊆�t such that Vt =At (V0) with V0 ⊆ �0 it holds that

d

dt

∫
Vt

�(x, t) dV =
∫
Vt

(
��

�t

∣∣∣∣
x0

+ �∇ · w
)
dV (4)

At this point, using expression (4) for the time derivative, we can write the fluid equations (3)
in the ALE framework as follows: find a velocity u and a pressure p such that

�f
�u
�t

∣∣∣∣
x0

− ��u + �f(u − w) · ∇u + ∇ p = �fff in �f
t × (0, T ) (5a)

∇ · u= 0 in �f
t × (0, T ) (5b)

Remark 1
Formulations (3) and (5) are equivalent at the continuous level.

The structure can easily handle moving domains using a fully Lagrangian framework. For
instance, we consider an elastic structure. We denote by rsn := rs|�t ·ns the normal stress on �t .
The displacement of the structure domain ds is assumed to be equal to the structure displacement.
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The fluid displacement df is arbitrary but has to satisfy condition (1). Thus, we can write df

as an arbitrary extension of ds|�t into �f
t , that we denote by df =Ext(ds|�t ). Different choices

of the lifting operator Ext(·) have been proposed in the literature. Herein, we adopt an harmonic
extension evaluated at the current domain �f

t . In this case, df is solution of the Laplace problem.
At this point, suitable matching conditions have to be applied on the interface �t . These are

continuity of normal stresses (due to the action–reaction principle) and velocities (due to the perfect
adherence of the fluid to the structure):

u= �̂ds

�t
on �t × (0, T ) (6)

rfn + rsn = 0 on �t × (0, T ) (7)

Then, the fluid–structure coupled problem is completely defined by the fluid problem (5), the
structure problem, the fluid domain displacement and the interface matching conditions (1), (6)
and (7). For the statement of the weak form of the fluid problem, let us define the following spaces,
for a given t ∈ (0, T ):

V(�f
t ) := {v : �f

t → Rd , v= v̂ ◦ (Af
t )

−1, v̂∈ (H1(�f
0))

d}
V0(�

f
t ) := {v∈V(�f

t )|v|�t = 0}
Q(�f

t ) := {q : �f
t → R, q = q̂ ◦ (Af

t )
−1, q̂ ∈ L2(�f

0)}
�(�t ) := {c : �t → Rd , c= ĉ ◦ (At |�t )

−1, ĉ∈ (H1/2(�0))
d}

The notation used here is as follows: L2(�) denotes the space of square integrable functions in a
spatial domain �, H1(�) is the space of functions in L2(�) with first derivatives in L2(�), and
H1/2(�) is the space of functions defined on a d − 1-manifold � that are the trace of functions
in H1(�), with �⊂ ��. For functions f and g defined on a d- or d − 1-manifold, we write
〈 f, g〉� := ∫

� f g d�, omitting the subscript when � is the domain where the problem under
consideration is posed. For � a d − 1-manifold and f ∈ H1/2(�), the space of functions g such
that 〈 f, g〉�<∞ is denoted by H−1/2(�). Finally, (·, ·) denotes the usual L2 product in the domain
where the problem considered is posed.

4. THE DOMAIN DECOMPOSITION APPROACH

In this section we reformulate the fluid–structure problem in a DD framework, as done in [15] and
later works [7, 16].

Let us consider the time discretized version of (5) using backward-differencing formulas (BDF)
for the time integration at time step tn+1 = (n + 1)�t , �t>0 being the time step size (assumed
constant for simplicity). We denote the BDF-p operator as

Dp f
n+1 = 1

�t�p

(
f n+1 +

p∑
i=1

�ip f
n+1−i

)
(8)
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where f is a generic time dependent function, f n denotes its approximation at tn , p is the order of
accuracy of the scheme and �p and �ip are the parameters that define the BDF numerical integration
(see [17]). The first- and second-order BDF methods are defined as:

D1 f
n+1 = f n+1 − f n

D2 f
n+1 = 3

2 ( f
n+1 − 4

3 f
n + 1

3 f
n−1)

At a fixed time step n + 1, let us denote by k the interface variable corresponding to the
displacement on the fluid–structure interface, d|�tn+1 . We denote by FL�t the operator that gives

the velocity and pressure field at tn+1 for a given k

FL�t : �(�tn+1) → V(�f
tn+1) ×Q(�f

tn+1)

k → (un+1, pn+1)

There are multiple choices for the FL�t (k) operator, corresponding to the different possibilities
for the time approximation of the incompressible Navier–Stokes equations, such as the monolithic
system or the fractional step version at the continuous level in space. Let us start with the
monolithic scheme. In this case, FL�t (k) = (un+1, pn+1) is computed by solving the problem:
given k∈ �(�tn+1), find un+1 ∈V(�f

tn+1) and pn+1 ∈Q(�f
tn+1) such that

�f
�t

(Dpun+1, v) + �(∇un+1, ∇v) + �f((u
n+1 − wn+1) · ∇un+1, v)

−(pn+1,∇ · v) = �f〈 fn+1
f , v〉 ∀v ∈V0(�

f
tn+1) (9a)

(∇ · un+1, q) = 0 ∀q ∈Q(�f
tn+1) (9b)

un+1 = 1

�t�p

(
k+

p∑
i=1

�ipd
n+1−i

)
on �tn+1 (9c)

Borrowing classical concepts from DD methods, we can define the Steklov–Poincaré interface
operator (see [8]) for the fluid as follows: Sf is the Dirichlet-to-Neumann map in �f

t such that

Sf : H1/2(�t ) → H−1/2(�t )

k → rfn
(10)

This operator consists of solving the fluid problem given a value for the interface variable k, that
is FL�t (k), and recover the normal stress on the interface rfn . Thus, this is a mapping between the
trace of the displacement field d and the space of normal stresses exerted by the fluid. Obviously,
this operator depends on the fluid solver used, FL�t .

We point out that the Steklov–Poincaré operator Sf for the fluid is non-linear. It involves two
different non-linearities: one associated to the convective term of the Navier–Stokes equations and
a second one due to the fact that the fluid domain �f

t ≡ �f
t (k) does depend on the interface variable

(shape non-linearity). This implies that the superposition of problems cannot be used and thus Sf
has to include also forcing terms and non-homogeneous boundary conditions.
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Analogously for the structure, we define the Steklov–Poincaré operator: Ss is the Dirichlet-
to-Neumann map in �s

t such that

Ss : H1/2(�t ) → H−1/2(�t )

k → rsn
(11)

In this case, Ss consists of solving the structure problem using k as Dirichlet boundary condition
for ds on �t and extract the value of the normal stress rsn on �t . Therefore, this is a mapping
between the trace of the displacement field d and the space of normal stresses exerted by the
structure. Again, this operator is non-linear even for linear constitutive equations (as the elastic
case considered) because of the shape derivative (the deformation of the structure domain). Let
us introduce also S−1

s , which is the so called Poincaré–Steklov interface operator: S−1
s is the

Neumann-to-Dirichlet map in �s
t such that

S−1
s : H−1/2(�t ) → H1/2(�t )

rsn → k
(12)

The operator S−1
s consists of solving the structure problem using rsn as Neumann boundary

condition on �t and recover ds on the boundary. S−1
s will be used for fixed point algorithms.

At this point the interface condition (7) that involves continuity of normal stresses on �t can
be easily rewritten as: find k∈ �(�tn+1) such that

Sf(k) + Ss(k) = 0 (13)

Thus, using the DD approach the initial coupled problem has been reduced to an interface equation.
An alternative form of the interface equation, obtained by applying the inverse of the Steklov–

Poincaré operator S−1
s in (13), reads as: find k∈ �(�tn+1) such that

−S−1
s (Sf(k))= k (14)

This expression motivates the use of the Dirichlet–Neumann fixed point algorithm (see [2]). The
iterative fixed point procedure can be written as: given kk , with k � 0, find kk+1 such that

−S−1
s (Sf(k

k))= kk+1 (15)

where Sf(k) is associated to an appropriate semi-discrete fluid solver FL�t (k). The initialization
k0 of the iterative process is treated in Section 5. Let us explain this equation: given a value for
the interface displacement kk , we solve the fluid problem for this kk using FL�t (k

k) and recover
the normal stresses on the interface rfn , that is to say, we compute Sf(kk). Then, we calculate
the structure problem with rsn = rfn as boundary condition on the fluid–structure interface. It gives
a new value of the interface displacement, that now we call kk+1. In this case we solve the
Neumann-to-Dirichlet Poincaré–Steklov interface operator −S−1

s (rfn). This procedure is repeated
until convergence.

Remark 2
The solution of the fluid problem FL�t (k) requires non-linear iterations. Thus, algorithm (15)
involves the use of nested iterative loops.
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We are also interested on a linearized version of Sf. We denote by FL�t (un+1∗ ; k) the linearized
fluid operator that differs from the non-linearized version, i.e. (9), in the fact that the convective
term in the momentum equation of the fluid has been replaced by un+1∗ · ∇un+1 with un+1∗ given.
We also denote by S̃f(un+1∗ ) the linearization of Sf around the point un+1∗ , that is, involving the
solution of the linearized fluid problem with FL�t (un+1∗ ; k). In the next section we suggest the use
of the semi-linear interface operator in some cases. We stress the fact that S̃f(un+1∗ ) is non-linear
due to the shape derivative.

A different version of the fixed point algorithm (15) is obtained when using the semi-linearized
version of the interface operator Sf for the fluid. In this case the fixed point algorithm reads as
follows: given kk and un+1,k with k>0, compute kk+1 by

−S−1
s (S̃f(un+1,k; kk))= kk+1 (16)

and obtain un+1,k+1 from FL�t (un+1,k; kk). The procedure is repeated until a selected norm of
un+1,k+1 − un+1,k and kk+1 − kk is below a threshold tolerance.

Remark 3
When using the algorithm (16) the same loop deals with the coupling of the fluid and structure
systems and the non-linearity of the fluid equations.

Remark 4
The semi-linearized fixed point algorithm (16) involves the domain update at each iteration. This
situation can be relaxed by using some criterion over (kk+1 − kk) in order to decide to update or
to freeze the domain at the current iteration (that is to say, to neglect or not the shape derivative).
We can also consider the explicit treatment of the domain, evaluating only one domain movement
per time step. This semi-implicit procedure is very appealing because it reduces the computational
cost without compromising stability (see [18]). Alternatively, instead of freezing the domain, we
can use a transpiration method (cheaper than the movement of the domain), as suggested in [19],
in order to accelerate the iterative process.

Alternative forms of the interface equation (13) motivate different iterative algorithms for the
coupling (see [5, 16]). Besides the iterative algorithm for the coupling, a relaxation method is
advisable in order to improve the convergence properties of all the previous algorithms. The Aitken
acceleration method is the most widely used. Different values of the optimal relaxation parameter
when using the Aitken technique for the vectorial case have been proposed by Deparis [7].

5. THE DISCRETE PROBLEM

This section is devoted to the fully discretized version of the coupling problem. We are focused on
the discretization of the fluid. Three different sorts of methods are considered: monolithic, pressure-
correction and predictor–corrector. Every method is introduced and stated. In the applications we
consider the stabilized versions of these schemes using orthogonal subgrid scales. However, for
the sake of clarity, we omit the stabilization terms in the formulation. We refer the reader to
a set of articles that deal with stabilized pressure segregation methods [12, 13, 20, 21]. The use
of a stabilized space discretization allows us to use the same low-order finite element space for
the interpolation of velocity and pressure. After the exposition of the alternative methods for the
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fluid problem, we state the discrete extension operator used for the calculation of the fluid domain
movement. Finally, we suggest some coupling procedures taking into account the fluid solver used.
These procedures stated are being used in Section 6.

5.1. The discrete fluid problem

The fully discretized version of the monolithic scheme (9) reads as follows: for n = 0, 1, 2, . . . ,
given kh ∈ �h(�tn+1) (understood as the displacement on the solid boundary at time step n), find
un+1
h ∈Vh(�f

tn+1) and pn+1
h ∈Qh(�

f
tn+1) such that

�f
�t

(Dpu
n+1
h , vh) + �(∇un+1

h , ∇vh) + �f((u
n+1
h − wn+1) · ∇un+1

h , vh)

−(pn+1
h ,∇ · vh) = �f〈ff, vh〉 ∀vh ∈Vh,0(�

f
tn+1)

(∇ · un+1
h , qh) = 0 ∀qh ∈Qh(�

f
tn+1)

un+1
h = 1

�t�p

(
kh +

p∑
i=1

�ipd
n+1−i
h

)
on �tn+1

where �h(�tn+1), Vh(�f
tn+1) and Qh(�

f
tn+1) are classical finite element approximation spaces of

the functional spaces �(�tn+1), V(�f
tn+1) and Q(�f

tn+1), respectively.
A substantial reduction of the computational cost can be gained by using splitting techniques.

These techniques allow the uncoupled computation of velocity components and pressure. Herein,
we consider a pressure correction method. An up-to-date overview of these methods can be found
in [22]. The classical approach is to motivate the splitting at the continuous level, as it was initially
suggested by Chorin and Temam. Herein, we consider a pressure-correction method obtained at
the discrete level (see [20]). Using the discrete approach good Dirichlet boundary conditions can
be enforced to the end-of-step velocity whereas only the value of its normal component can be
imposed when considering the splitting at the continuous level. This feature is of special interest in
fluid–structure applications, where the continuity of velocities must be imposed on the interface.
This scheme consists of: given kh ∈ �h(�tn+1), find un+1

h ∈Vh(�f
tn+1) and pn+1

h ∈Qh(�
f
tn+1) from

the following scheme:
1. Find ûn+1

h ∈Vh(�f
tn+1) such that

�f
�p�t

(
ûn+1
h −

p∑
i=1

�ipu
n+1−i
h vh

)
+ �(∇ûn+1

h , ∇vh) + �f((û
n+1
h − wn+1) · ∇ûn+1

h , vh)

−( p̃ n+1
h ,∇ · vh) = �f〈fn+1

f , vh〉 ∀vh ∈Vh,0(�
f
tn+1) (17a)

ûn+1
h = 1

�t�p

(
kh −

p∑
i=1

�ipd
n+1−i
h

)
on �tn+1 (17b)

2. Find un+1
h ∈Vh(�f

tn+1) and pn+1
h ∈Qh(�

f
tn+1) such that

�f
�t�p

(un+1
h − ûn+1

h , vh) − (pn+1
h − p̃n+1

h , ∇ · vh) = 0 ∀vh ∈Vh,0(�
f
tn+1) (18a)
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(∇ · un+1
h , qh) = 0 ∀qh ∈Qh(�

f
tn+1), (18b)

un+1
h = 1

�t�p

(
kh +

p∑
i=1

�ipd
n+1−i
h

)
on �tn+1 (18c)

In order to reduce the computational cost, we can split the pressure and end-of-step velocity in
(18), using an equivalent version involving a discrete pressure Poisson equation:

2.1. Find pn+1
h ∈Qh(�

f
tn+1) such that

−�p�t(�h(∇ pn+1
h − ∇ p̃n+1

h ),∇qh) = �f(û
n+1
h , ∇qh) ∀qh ∈Qh(�

f
tn+1) (19)

2.2. Find un+1
h ∈Vh(�f

tn+1) such that

�f
�t�p

(un+1
h − ûn+1

h , vh) − (pn+1
h − p̃n+1

h , ∇ · vh) = 0 ∀vh ∈Vh,0(�
f
tn+1) (20a)

un+1
h = 1

�t�p

(
kh +

p∑
i=1

�ipd
n+1−i
h

)
on �tn+1 (20b)

In step 2, p̃ n+1
h is an appropriate approximation to pn+1

h and �h is the L2 projection onto
the velocity space. We consider an incremental fractional step method when p̃n+1

h = pnh . This
method has an splitting error of order O(�t2). The results are much better than for total projection
methods, where p̃ n+1

h = 0, without extra computational cost. The system matrix associated to (19)
is cumbersome, but can be tackled when using an iterative solver, case in which only matrix–
vector products are needed. Furthermore, the use of a closed integration rule for approximating the
Gramm (mass) matrix that appears in (19) reduces considerably the computational cost. Anyway,
(19) can be approximated by using a more classical Laplacian discretization (see [20]), leading to
the following pressure equation: find pn+1

h ∈Qh(�
f
tn+1) such that

−�p�t(∇ pn+1
h − ∇ p̃ n+1

h ,∇qh) = �f(û
n+1
h , ∇qh) ∀qh ∈Qh(�

f
tn+1) (21)

Remark 5
These pressure segregation methods obtained at the discrete level introduce the same artificial
boundary condition that we find when we do the splitting at the continuous level (see Figure 1),
that is, �pn+1/�n = 0 on the Dirichlet boundary of the velocity. This misbehaviour is particularly
important on fluid–structure simulations, due to the fact that the fluid–structure interface is a
Dirichlet boundary. Thus, an artificial boundary condition over the pressure is imposed on the
interface, where the pressure is integrated for the calculation of the stresses exerted by the fluid.
We defend the use of predictor–corrector schemes introduced below in order to improve the pressure
accuracy over the interface.

When we use an iterative implicit procedure for the coupling, the fluid problem is evaluated (at
least) as many times as coupling iterations. Thus, it is natural to put in the momentum equation
p̃ n+1
h = pn+1,k

h , pn+1,k
h the pressure having been obtained at the previous iteration. In fact, if the

resulting scheme converges, the end-of-step velocity un+1
h converges to the intermediate velocity

ûn+1
h . Furthermore, un+1

h converges to the solution of the monolithic fluid system. Thus, we do
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not need to distinguish between ûn+1
h and un+1

h and (18) can be ignored. The final system to be

solved at every coupling iteration is the following: given kkh ∈ �h(�tn+1) and pn+1,k
h ∈Qh(�

f
tn+1),

find un+1,k+1
h ∈Vh(�f

tn+1) and pn+1,k+1
h ∈Qh(�

f
tn+1) such that

�f
�t

(Dpu
n+1,k+1
h , vh) + �(∇un+1,k+1

h , ∇vh) + �f((u
n+1,k+1
h − wn+1) · ∇un+1,k+1

h , vh)

−(pn+1,k
h ,∇ · vh) = �f〈fs, vh〉 ∀vh ∈Vh,0(�

f
tn+1) (22a)

−�p�t(�h(∇ pn+1,k+1
h − ∇ pn+1,k

h ),∇qh) = �f(u
n+1,k+1
h , ∇qh) ∀qh ∈Qh(�

f
tn+1) (22b)

un+1,k+1
h = 1

�t�p

(
kh +

p∑
i=1

�ipd
n+1−i
h

)
on �tn+1 (22c)

This problem is denoted by PC�t,h(p
n+1,k
h ; kkh). We remark that in the case presented nested loops

are needed: an internal loop to deal with the non-linearity of the convective term and an external
for the convergence to the monolithic fluid system (for fluid problems) or the monolithic coupling
system (for fluid–structure problems). Again, there is the possibility to use one loop for everything.
In this case, the final system is: given kkh ∈ �h(�tn+1), un+1,k

h ∈Vh(�f
tn+1) and pn+1,k

h ∈Qh(�
f
tn+1),

find un+1,k+1
h ∈Vh(�f

tn+1) and pn+1,k+1
h ∈Qh(�

f
tn+1) such that

�f(Dpu
n+1,k+1
h , vh) + �(∇un+1,k+1

h , ∇vh) + �f((u
n+1,k
h − wn+1) · ∇un+1,k+1

h , vh)

−(pn+1,k
h , ∇ · vh) = �f〈fs, vh〉 ∀vh ∈Vh,0(�

f
tn+1) (23a)

−�p�t(�h(∇ pn+1,k+1
h − ∇ pn+1,k

h ),∇qh) = �f(u
n+1,k+1
h , ∇qh) ∀qh ∈Qh(�

f
tn+1) (23b)

un+1,k+1
h = 1

�t�p

(
kh +

p∑
i=1

�ipd
n+1−i
h

)
on �tn+1 (23c)

In this case the fluid solver is denoted by PC�t,h(u
n+1,k
h , pn+1,k

h ; kk). Methods (22) and (23) are
predictor–corrector schemes. These methods have been introduced in [12, 23] without the fluid–
structure motivation. In these references the stabilization terms omitted in the present exposition
are carefully treated.

In the iterative process of predictor–corrector methods the splitting error is reduced. Let us prove
this comment with a numerical test. We solve the Navier–Stokes equations over the unit square
with a force term such that the analytical solution of the transient problem is

u= (y,−x) sin(	t/10)

p = x + y

The simulation is carried out using scheme (22) during 10 s. The pressure error on the boundary for
t = 10 is plotted in 1(a), without predictor–corrector iterations. Using predictor–corrector iterations
the pressure error, plotted in 1(b), is reduced, particularly on the boundary. The final error of the
predictor–corrector solver depends on the tolerance for the external loop and maximum number
of iterations allowed.
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5.2. The discrete fluid domain movement

As commented in the previous section, we use a harmonic extension operator on �f
t in order to

obtain dfh . The discrete problem reads as follows: given kkh ∈ �h(�tn+1), find (dfh)
n+1 ∈Vh(�f

tn+1)

such that

(∇(dfh)
n+1,∇vh) = 0 ∀vh ∈Vh,0(�

f
tn+1) (24a)

(dfh)
n+1 = kh (24b)

We call (dfh)
n+1 =Exth(kh). The harmonic operator is applied on �f

t because it allows to solve
this problem using the same mesh that we use to compute the fluid problem.

5.3. Coupling algorithms for the discrete problem

When considering aeroelastic applications fixed point algorithms of Dirichlet–Neumann type are
effective. This kind of methods is considered in the following. On the other hand, in order to reduce
the computational cost of the fluid solver, pressure segregation methods have been considered.
The last task is to match these ingredients in an effective way. We suggest the use of a ‘one
loop algorithm’, where the same loop deals with the fluid solver and coupling. For every coupling
iteration k � 0, the problem to be solved is: given kn+1,k

h ,un+1,k
h and pn+1,k

h , find kn+1,k+1
h such

that

kn+1,k+1
h = − S−1

s (S̃f(u
n+1,k
h ; kn+1,k

h )) (25)

with (un+1,k+1
h , pn+1,k+1

h ) = PC�t,h(u
n+1,k
h , pn+1,k

h ; kn+1,k
h ). Thus, in the implicit coupling pro-

cess, we have to solve (25) until convergence. In this method the same loop deals with the
non-linearity of the convective term and the convergence to the monolithic system. Some other
alternatives for the treatment of the iterations are possible. For instance, the use of nested loops,
one for the coupling and one for the non-linearity. This case is similar to (25) but uses Sf(k

n+1,k
h )

together with the fluid solver (22). However, for simplicity, we only use (25) in the numerical
experimentation. Alternative versions of (25) can be tested for every application in order to identify
which is faster.

Scheme (25) can also be considered in an explicit way, performing only 1 iteration per time step.
Even though implicit versions have been chosen herein, explicit and semi-implicit (see Remark 4)
versions can be useful for some aeroelastic applications.

In any case, the domain has to be initialized for every time step value. Different alternatives
have been suggested in the literature. A first-order approximation in time is kn+1,0

h = knh . A more
accurate second-order approximation that reduces the artificial energy introduced to the system is
proposed in [24] for explicit procedures. Unfortunately, when using explicit procedures numerical
instabilities occur much earlier with the second-order predictor (see the numerical experimentation
in [3]). In this work we have adopted as initialization

kn+1,0 = − S−1
s ((rfn)

n) (26)

that is, we solve the structure problem at tn+1 using as Neumann boundary condition the normal
stress (rfn)

n exerted by the fluid at the previous time step. A second-order method of this type is

k̃
n+1 = − S−1

s (2(rfn)
n − (rfn)

n−1) (27)
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The iterative procedure must be supplemented with an appropriate stopping criterion. Due to the
fact that the loop includes predictor–corrector iterations and the fluid–structure coupling, both the
convergence of the fluid unknowns and the interface displacement can be taken into account, even
though there is clear dependence. The predictor–corrector convergence is evaluated using relative
errors

‖un+1,k+1 − un+1,k‖0
‖un+1,k‖0 � tolu (28a)

‖pn+1,k+1 − pn+1,k‖0
‖pn+1,k‖0 � tolp (28b)

and for the coupling procedure the convergence of the interface displacement is assessed with

‖kn+1,k+1 − kn+1,k‖0
‖kn+1,k‖0

� tolc (29)

Remark 6
Along this section we have considered wn+1 independent of the iterative process for the sake
of clarity. However, this is not the general case. How to treat this mesh velocity in the iterative
algorithm has been pointed out in Remark 4.

Remark 7
The fixed point algorithms suggested in this section are not restricted to matching grids. A simple
projector of the interface unknown from the structure interface mesh to the fluid one (or vice versa)
would be needed for non-matching grids.

6. APPLICATIONS

6.1. Bridge aerodynamics

Among the different topologies of bridges, suspension bridges span the greatest distances. However,
the bending moments acting on the deck sections of this sort of bridges are relatively small. Even
though the span between piles is very large, the distance between cables, that in fact are working
as piles, is small. For this reason these structures are flexible and light. Their very low structural
damping make them sensitive to wind actions. While for other topologies the aeroelastic behaviour
is not considered important, for suspension bridges it represents a key aspect of the design process.

In this work we study the flutter phenomenon. This dynamic phenomenon is induced by the
fluid–structure coupling (the energy transfer). The flutter happens when the damping induced by
the fluid to the structure makes the overall structure damping negative. When this aeroelastic
phenomenon was not taken into account by the engineers it caused some historical failures of
bridges. One of the most important criteria of design is the flutter limit velocity (when flutter
occurs). An acceptable structure must have a large enough flutter limit velocity. A large gap
between the maximum velocity of design and this limit is required.

The flutter analysis has been developed by experimentation in wind tunnels. For instance, the
design of the Great Belt bridge (Denmark) involved more than 16 sections (see [25]). In wind
tunnels the flutter limit is obtained evaluating the aeroelastic derivatives. This methodology, that
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was originated in aeronautics, was extrapolated to bridge aerodynamics by Scanlan and Tomko
[26]. This experimentation process is very expensive and time consuming. Further, the Reynolds
number of the real problem cannot be reproduced in conventional wind tunnels. The increasing in
the capability of computers together with the improvement of numerical methods have motivated
in the last decade the use of computer methods for the analysis of bridge aerodynamics.

The present application is devoted to the evaluation of flexural and torsional frequencies of the
Great Belt bridge for a given inflow velocity and the direct flutter simulation using the methods
introduced in the previous sections. The finite element method together with stabilized predictor–
corrector and pressure-correction fluid solvers for the coupling have been used. The ALE framework
has allowed to formulate the flow problem in moving domains. Second-order accurate methods
(in time) have been considered. No turbulence modelling has been used, due to the fact that the
bridge deck is a bluff body, the flow is detached and the influence of the turbulence effects for this
case is less important than for the aeroelastic analysis of wings. However, for wide decks, the flow
re-attaches at a given point. Nevertheless, we use a stabilized finite element method motivated by
a multiscale approach. There is a recent trend among the computational mechanics community to
claim that this kind of methods can replace conventional turbulence models (see [27]).
6.2. The bridge model

For the numerical aeroelastic analysis of bridges, the 3D problem is usually reduced to a 2D
problem. In fact, this is also the usual procedure for wind tunnel tests. In order to simulate the
correct natural frequencies in the fundamental symmetric flexural and torsional modes, spring
stiffnesses are applied to the elastic centre of the cross-section. Lumped mass and moment of
inertia on the gravity centre have been introduced to simulate the mass and moment of inertia per
unit length. Furthermore, the 2D cross-section is considered to be a rigid body.

In order to obtain the equations governing the displacement of the bridge section, Newton’s
law is formulated on the gravity centre, and the spring force depending on the displacement of
the structure is applied to the elastic centre. When the gravity centre and the elastic centre are
in different positions, the resulting governing equations are non-linear. However, assuming that
the rotation angle is small, the equations can be easily linearized. Thus, the linearized ordinary
differential equation (ODE) that governs the displacement of the structure reads as follows: find
the displacement vector ds ∈ R3 (for a 2D problem) that contains the translation and rotation of
the structure such that

Md̈s + Cḋs + Kds = f (30)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix and f is the external
force exerted over the structure (including force and moment). This external force depends on the
displacement of the structure, that is, f= f(ds), and thus the problem is non-linear. The linearized
mass matrix has the following expression:

M=
⎛⎜⎝

m 0 −sx

0 m sy

−sx sy I


⎞⎟⎠
where m, I
, sx and sy denote the mass, inertial moment and static moments associated to the elastic
centre (per unit length), respectively. The damping coefficients are usually given as a percentage
logarithmic decrement.
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For the time integration of the ODE (31) we use the unconditional stable constant-average-
acceleration scheme, also called trapezoidal rule, which is described by the following set of
equations: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Md̈n+1
s + Cḋn+1

s + Kdn+1
s = fn+1

dn+1
s =dns + �t ḋns + �t2

4
(d̈n+1

s + d̈ns )

ḋn+1
s = ḋns + �t

2
(d̈n+1

s + d̈ns )

This second-order accurate scheme is particularly appropriate for the case under consideration due
to the fact that preserves the energy of the structure, given by

Es = 1
2 ḋs · Mḋs + 1

2 ds · Kds (31)

which is an important feature when analysing the aeroelastic stability of the structure.

6.3. The coupling model

As justified in Section 2, we consider (25) as fluid–structure solver for the numerical simulation
of bridge aeroelasticity because this scheme inherits the good properties (stability and accuracy)
of implicit procedures together with a low computational cost (split fluid system and one loop for
the predictor–corrector and coupling).

As it is widely known, explicit procedures can lead to undesirable numerical instability, being
more instable for higher-order time approximations (see [3, 24]). Due to the fact that we want to
assess the stability of the coupling problem, intimately related to the energy transfer between fluid
and structure, the use of an implicit procedure that avoids these instabilities is justified. Further, the
implicit procedure tends to the solution of the monolithic coupled system, eliminating the splitting
error associated to staggered procedures.

Due to the complexity of external flows that appear in aeroelastic applications, and its highly
transient behaviour, the use of second-order methods are worth it, and even more when no extra
computational cost is introduced. We have used here the BDF-2 scheme, both for the time integra-
tion of the momentum equation and for the evaluation of the mesh velocity in the fluid domain. By
doing this, and as it is proved in [11] for the convection–diffusion equation, the ALE formulation
does not spoil the second-order of accuracy of the fluid solver. The movement of the fluid domain
has been computed by solving the discrete problem (24).

We point out that when the structure is considered to be a rigid body, the interface equation
(14) has the following integrated form

−S−1
s

(∫
�t

Sf(k) d�

)
= k (32)

where k= k(ds) andSs(k) gives the forces and moments (not the stresses) that cause a displacement
k. Likewise, Sf(k) contains not only the components of the normal stress exerted by the fluid,
but also the moments per unit of area (length if d = 2), and therefore the integral of Sf(k) gives
the total force and moment exerted by the fluid on �t . In this case we use a fixed point iterative
method to solve the non-linear interface problem (32). More precisely, the method used here is
the integral version of the iteration scheme stated in (25).
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Table I. Properties of the Great Belt bridge.

Mass per unit length, m (kg/m) 2.27× 103

Vertical static moment on elastic centre
per unit length, sy (kgm/m) 1.61× 104

Mass moment of inertia on elastic centre
per unit length, I
 (kgm2/m) 2.47× 106

Vertical spring stiffness, ky (N/m2) 8.78× 103

Torsional spring stiffness, k
 (Nm/m2) 7.21× 106

Vertical logarithmic damping, ly (%) 1
Torsional logarithmic damping, l
 (%) 0.6

Figure 2. Space domain of analysis and mesh used for the simulation.

Even though fixed point algorithms have a good convergence for aeroelastic applications, we
have used the Aitken acceleration technique for scalar equations. We define the residual of the
interface equation as

r(kk) = − S−1
s

(∫
�t

Sf(k
k) d�

)
− kk

Exploiting the fact that the structure is considered to be a rigid body, the relaxation parameter
can be obtained from the expression for scalar equations. In this case, we consider the diagonal
relaxation matrix

xk =

⎛⎜⎜⎜⎝
�k
x 0 0

0 �k
y 0

0 0 �k



⎞⎟⎟⎟⎠
that verifies

xk(r(kk) − r(kk−1))= kk − kk−1
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Figure 3. Movement of the bridge for an inflow velocity uin = (50, 0)m/s: (a) vertical displacement vs time;
and (b) vertical velocity vs time; (c) vertical acceleration vs time; (d) rotation angle vs time; (e) angular

velocity vs time; and (f) angular acceleration vs time.
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Figure 4. Bridge energy vs time for inflow velocity uin = (50, 0)m/s.
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Figure 5. Fourier transform of vertical displacement and rotation angle of the bridge
for inflow velocity uin = (50, 0)m/s: (a) vertical displacement: amplitude vs frequency

and (b) rotation angle: amplitude vs frequency.

The relaxed version of a fixed point iteration applied to (32) is

kk+1 = − xkS−1
s

(∫
�t

Sf(k
k) d�

)
+ (I − xk)kk

A deep study of relaxation methods in a fluid–structure framework can be found in [7].
The stopping criterion (28)–(29) has been used with a tight tolerance for the fluid–structure

coupling and looser for the pressure convergence. The aim is to reach the implicit fluid–structure
configuration without too many iterations and unnecessary pressure accuracy.
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Figure 6. Contours of the pressure at different time steps (increasing time from left to right and from top
to bottom) for inflow velocity uin = (50, 0)m/s.

6.4. Assessment of frequencies and direct flutter simulation

This section is devoted to the numerical simulation of the flutter limit and the assessment of
frequencies of the Great Belt bridge (Denmark). The parameters that define the problem have
been summarized in Table I and have been extracted from [28]. The problem domain and its
finite element discretization is shown in Figure 2. We have used an unstructured mesh of 48 453
linear triangles for this simulation. A time step size of 0.01 s has been considered. The horizontal
movement is restricted, as it is usually assumed. We do not know which are the appropriate elastic
coefficients when analysing the real sized problem with the real inflow velocity. For this reason
we have assumed the elastic coefficients used for the dimensionless approximation analysed by
Selvam and Govindaswamy [28]. It has to be taken into account that this assumption affects the
obtained results and complicates the comparison to wind tunnel experiments.
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Figure 7. Movement of the bridge for inflow velocity uin = (55, 0)m/s: (a) vertical displacement vs time;
(b) vertical velocity vs time; (c) vertical acceleration vs time; (d) rotation angle vs time; (e) angular

velocity vs time; and (f) angular acceleration vs time.
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Figure 8. Bridge energy vs time for inflow velocity uin = (55, 0)m/s.

Given an inflow velocity of uin = (50, 0)m/s, we obtain the temporary response of the bridge.
The Reynolds number in this situation is over 107. In Figures 3(a), (b) and (c) we show the vertical
displacement, velocity and acceleration. Figures 3(d), (e) and (f) show the rotation angle, angular
velocity and angular acceleration. We plot the results after some time of computation. In Figure 4
we plot the energy of the structure, defined in (31). These plots prove the stability of the structure.

Using a Fourier fast transform we have obtained the frequencies associated to the vertical
displacement (flexural frequency) and rotation angle (torsional frequency). We show these results
in Figures 5(a) and (b). In both cases a clear dominant frequency governs the movement.

We show pressure contours at different time steps in Figures 6.
The average number of iterations needed for the convergence of the integral version of method

(25) to the monolithic system for a given time step is around 4 iterations per time step for an
inflow velocity of 50m/s.

In a second step, we increase the inflow velocity until we reach the aeroelastic instability. The
flutter phenomenon appears for an inflow velocity of 55m/s. We plot the same values as before
in Figures 7 and 8. We easily see in this case that the flutter instability appears for this velocity. In
fact, the instability is translational and torsional (see Figures 7(a) and (d)). We plot velocities and
accelerations for vertical displacement and rotation angle in Figures 7(b) and (c) and 7(e) and (f).
The aerodynamic instability is clearly shown from the increase of the structure energy (Figure 8).

Obviously, the number of iterations needed for the inflow velocity of 55m/s increases with the
structure energy. We end this section with the plots of pressure at different time steps in Figure 9.

6.5. Aeroelastic derivatives using numerical experimentation

A different approach to the direct flutter simulation is the calculation of the aeroelastic derivatives.
This is the procedure when using wind tunnel tests. We refer to [26] for an introduction to this
methodology.
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Figure 9. Contours of the pressure at different time steps (increasing time from left to right and from top
to bottom) for inflow velocity uin = (55, 0)m/s.

Rossi [29] has used the same fluid–structure code for the assessment of aeroelastic derivatives,
reproducing wind tunnel tests. The forced-vibration and free-vibration methods have been used.
For the first one, the bridge movement is fixed, and therefore no fluid–structure coupling procedures
apply, simplifying the problem to the solution of the fluid system using the pressure segregation
method (17)–(21)–(20). For the free-vibration method scheme (25) has been applied in an explicit
fashion (only 1 iteration per time step) for the assessment of aeroelastic derivatives. In both cases,
the results obtained are in agreement with the wind tunnel experiments, as expected, because
the wind tunnel test is being simulated, the comparison is fair. Furthermore, the problem is less
challenging, because it involves adimensionalized problems with lower Reynolds numbers. Finally,
no elastic coefficients are needed a priori.
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7. CONCLUSIONS

The coupling methods proposed herein for the calculation of the flutter limit have shown a sound
behaviour in aeroelastic applications. The coupling method proposed converges to the monolithic
problem. That is, the coupling process does not introduce any extra error (apart from the tolerance
of the stopping criterion). Furthermore, this method shows a good convergence behaviour for this
kind of problems and high-order (in time) procedures can be designed without compromising
stability.

The other key point is the fact that the present methods uncouple the velocity and pressure
computation, that implies a high reduction of the computational cost of the fluid problem, the
bottle neck of aeroelastic simulations, making implicit procedures more affordable.

We have considered in the applications a second-order stabilized pressure segregation method
(predictor–corrector versions) together with a second-order ALE formulation, a second-order struc-
ture solver and a coupling iterative procedure that tends to the monolithic system. Thus, the overall
fluid–structure coupling procedure used is second-order accurate in time, an important property
for highly transient external flows that appear in aeroelastic applications.

We have applied this methods to the aeroelastic analysis of a bridge deck. The flutter velocity of
55m/s has been obtained by direct simulation, increasing the inflow velocity until the instability
appears. This velocity differs from the 65–70m/s obtained using the aeroelastic derivatives theory
assessed with wind tunnel tests. However, this gap could be expected, since the problems solved
are very different. It seems that the elastic coefficient that should be used for the direct analysis
of flutter in dimensional form has to be higher than the one used for the scaled problem.

In fact, reproducing the wind tunnel tests using the same fluid–structure code, the numerical
results are in exceptional agreement with the wind tunnel results when assessing the aeroelastic
derivatives, as reported in [29].

The fluid–structure schemes suggested in the present work are fixed point type algorithms that
work well for aeroelastic applications. For hemodynamics applications, where the added mass
effect is critical, these kind of methods do not work well. Splitting procedures that are well suited
to this kind of applications and subsequent coupling procedures that tend to the monolithic solution
are being explored. Promising results have already been presented in [30].
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