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ABSTRACT

The paper introduces two methodological extensions of a design-space dimensionality reduction method,
namely the parametric model embedding (PME), that is particularly suitable for integration with
CAD/CAE parametric models and was developed for shape optimization in earlier work. The present
developments extend the use of PME to structural optimization problems, paving the way for efficient
design-space dimensionality reduction in complex fluid-structure interaction problems. PME is further
extended with the aim of making the methodology more efficient in representing design variations that
are potentially optimal (goal-oriented PME, GO-PME). PME and GO-PME are demonstrated for the
design-space dimensionality reduction and multi-objective optimization of a structural unit problem,
namely a simply supported beam under uniform load.

Keywords: Design-space dimensionality reduction; Structural optimization; Multi-objective opti-
mization; Unsupervised learning; Principal component analysis; Parametric model embedding.

1. INTRODUCTION

Simulation-driven optimization allows us to identify innovative design solutions and new concepts.
High-fidelity prime-principle-based solvers provide accurate design performance analyses, while opti-
mization algorithms drive the search for the desired optimal solution. This process is usually com-
putationally (very) costly especially if global optimization is sought after, as (i) high-fidelity solvers
are computationally expensive and (ii) many design performance evaluations are needed in global
optimization, facing the so-called curse of dimensionality (Serani et al., 2022).

A first remedy is to use supervised machine learning, also relying on multi-fidelity or multi-source
information as training data, with adaptive sampling procedures (Beran et al., 2020; Di Fiore et al.,
2021; Pellegrini et al., 2022). A second remedy is to use unsupervised machine learning to reduce the
design space dimensionality, thus alleviating the curse of dimensionality by directly tackling its main
cause (Diez et al., 2015; D’Agostino et al., 2020; Harries and Uharek, 2021). Recently, the authors
have developed the so-called parametric model embedding (PME) method, for the dimensionality re-
duction of parametric models in shape optimization for hydrodynamic and aerodynamic applications
(Serani and Diez, 2023; Serani et al., 2023). The method is based on the local shape modification and
is particularly suitable for integration with CAD/CAE parametric models. It has been successfully
applied to both hull-form and airfoil optimization. Nevertheless, it is not directly applicable to struc-
tural optimization as the local shape modification may have little influence on the global structural
performance.
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Figure 1: Test case: simply supported T-section aluminum beam subject to uniform load.

The objective of the present work is to introduce two methodological extensions of PME to struc-
tural optimization problems, which are essential to tackle complex design problems, with large design
spaces, and involving complex physics, such as the fluid-structure interaction (FSI) of high-speed craft
slamming in waves (Diez et al., 2022). Here, PME and its new goal-oriented variant are demonstrated
for the design-space dimensionality reduction and multi-objetctive optimization of a structural unit
problem, namely a simply supported beam under uniform load (see Fig. 1).

2. METHOD

The approach for design-space dimensionality reduction is based on the PME formulation for shape
optimization presented in Serani and Diez (2023). The principal component analysis (PCA) of an
augmented data matrixP is performed, and the most important principal directions of the design space
are identified, based on the variance resolved along each direction, which is given by the associated
PCA eigenvalue. This allows us to limit the design space exploration to those directions only.

2.1 PME for Shape Optimization

In shape optimization applications, the data matrix P is formed by a number of S instances of the
discretized shape modification vector D (dimensions L × S) augmented with the design variables U
(dimensions M × S):

P =

[
D
U

]
(1)

The PCA is embedded in a Hilbert space with a generalized inner product, which uses a weight matrix
W. Through the weight matrix, the effect of the design variable variation is not double-counted when
assessing the design-space variance, which is evaluated considering the discretized shape modification
vector only (for details, see the appendix in Serani and Diez 2023):

1

S
PPTWZ = ZΛ (2)

where Z and Λ contains the PCA eigenvectors (principal directions) and eigenvalues (variance), re-
spectively. Based on the above, the reduced-dimensionality representation P̂ of the data matrix P
is
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P̂ = Ẑ
(
ẐTP

)
= ẐX (3)

where Ẑ has dimensions (L+M)×N and contains the first N eigenvectors with the most variance; X
has dimensions N × S and contains realizations of the new, reduced-dimensionality, design variables.

This formulation is very effective in defining principal directions within the original (CAD/CAE) pa-
rameterization as the eigenvectors Z and/or Ẑ contain components referring to the original design
parameters, providing a very convenient embedding for their reduced-dimensionality representation
(Serani and Diez, 2023). Nevertheless, this is not directly applicable to structural optimization prob-
lems, as the variance associated to the local shape modification may have little influence on the global
structural response and design performance.

2.2 PME for Structural Optimization

A first methodological extension consists of including in the data matrix structure-relevant features
G (such as, e.g., section moments) in lieu of discretized (local) shape modifications, along with the
model parameters U:

P1 =

[
G
U

]
(4)

which is formally equivalent to the definition (1). Accordingly, the PCA problem and the reduced-
dimensionality representation of the data matrix become:

1

S
P1P

T
1WZ = ZΛ (5)

and

P̂1 = Ẑ
(
ẐTP1

)
= ẐX (6)

which embeds the original parameterization through the eigenvectors Ẑ. Please note that for the sake
of clarity, subscripts are used for the data matrix only.

2.3 Goal-Oriented PME (GO-PME)

The second methodological extension aims at making the method more efficient in representing design
variations that are potentially optimal. This so-called goal-oriented extension of PME (GO-PME)
uses data subsets of G and U, namely G′ and U′, composed by a number S′ ≤ S of Pareto solutions
defined based on arbitrary criteria. Please note that, in general, the criteria may or may not be derived
from the structure-relevant features collected in G. Nevertheless, it is efficient to use criteria that use
features already available in G. The new goal-oriented data matrix is defined as:

P2 =

[
G′

U′

]
(7)
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which is, again, formally equivalent to the definitions (1) and (8). Accordingly, the PCA problem and
the reduced-dimensionality representation of the data matrix become (again, subscripts are used for
the data matrix only):

1

S
P2P

T
2WZ = ZΛ (8)

and

P̂2 = Ẑ
(
ẐTP2

)
= ẐX (9)

which provides the desired goal-oriented embedding of the original parameterization through the
eigenvectors Ẑ.

3. RESULTS

PME and GO-PME are applied to the structural optimization of a simply supported T-section alu-
minum beam subject to a uniform load w = 1000 N/m, with length L = 10 m, Young modulus

(a) (b)

Figure 2: PME: eigenvalues (a) and eigenvectors (b) provided by the PCA.

(a) (b)

Figure 3: GO-PME: eigenvalues (a) and eigenvectors (b) provided by the PCA.
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E = 70 GPa, and density equal to 2700 kg/m3 (see Fig. 1, left panel). Optimization objectives are
the reduction of the weight W and the maximum deflection δ (evaluated by beam theory), and the
design optimization problem reads:

minimize W (x), δ(x)
subject to xl ≤ x ≤ xu

(10)

where x is the design variable vector; xl and xu contain the design variable lower and upper bounds.
The number of design variables collected in x (original parameterizaiton) is M = 4. They are: web
height, H (10 cm ±10%), flange width, B (10 cm ±10%), flange height, h (6 cm ±10%), web width,
b (6 cm ±10%), see Fig. 1, right panel.

Structure-relevant features G included in the data matrix P1 are the section area A and the section
moments of inertia Ixx, Iyy. The design space is sampled using a Sobol sequence with 20, 000 points
and the data matrix is standardized. Finally, GO-PME uses non-dominated solutions considering: A
(minimize), Ixx (maximize), Iyy (maximize).

Figure 2 (a) shows the eigenvalues provided by the PCA for the PME problem. It may be noted that,

Figure 4: Pareto fronts obtained with PME and GO-PME reduced spaces (N = 1 and 2) compared to the
front obtained using the original parameterization (M = 4).
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using the current settings, the problem is nearly two-dimensional as only two eigenvalues are signif-
icantly different than zero. Figure 2 (b) shows the eigenvector components (embedding) associated
to the original parameterization, for the two most important eigenvectors. The data mean is also
shown and corresponds, in this case, to the variable domain center. Figure 3 (a) shows the eigenvalues
provided by the PCA for the GO-PME problem. The effects of the goal-oriented formulation can be
appreciated. Now the problem is nearly one-dimensional as the first eigenvalue is significantly larger
than the others. The first two eigenvectors also present remarkable differences, as Fig. 3 (b) shows.
Furthermore, the mean, also depicted, slightly differs from the variable domain center in this case.

Pareto fronts of weight W versus maximum deflection δ obtained with PME and GO-PME reduced
spaces (using N = 1 and 2 principal directions/variables) are compared in Fig. 4 to the front obtained
using the original parameterization, which uses M = 4. Pareto fronts are obtained by processing
20, 000 Sobol points in each design space. It may be noted how PME provides good results for N = 2,
which is consistent with the eigenvalue analysis in Fig. 2 (a). GO-PME provides good results for N
= 1 and remarkably good results for N = 2, which is consistent with the eigenvalue analysis in Fig. 3
(a) and demonstrates the efficiency of the goal-oriented formulation.

4. CONCLUSIONS AND FUTURE WORK

The present work introduced two methodological extensions of PME, a design-space dimensionality
reduction method particularly suitable for integration with CAD/CAE parametric models and de-
veloped for shape optimization of hydrodynamic and aerodynamic applications in earlier work. The
present developments extended the use of PME to structural optimization problems, paving the way
to tackling complex design problems, such as the FSI of high-speed craft slamming in waves. PME was
further extended here with the aim of making the methodology more efficient in representing design
variations that are potentially optimal (goal-oriented PME, GO-PME). PME and GO-PME were suc-
cessfully demonstrated for the design-space dimensionality reduction and multi-objective optimization
of a structural unit problem, namely a simply supported beam under uniform load. Starting from a
design space with M = 4 design variables, PME and GO-PME were able to successfully reduce the
design space dimension to N = 2 and N = 1 respectively, providing solutions very close to the target
Pareto front.

In future work, PME and GO-PME will be extended and applied to the FSI optimization of a 40
ft generic prismatic planing hull (GPPH) slamming in waves at high speed (Diez et al., 2022). The
aim of the study is to reduce the boat weight while preserving structural safety and fulfilling several
design requirements, such as desired range, payload, stability, and maneuverability capabilities. The
GPPH structural model consists of stringers, girders, bulkheads, frames, and plating, with 170 design
variables. Figure 5 shows the pressure distribution at a given time during slamming in regular waves

Figure 5: FSI problem: GPPH slamming in regular waves; pressure distribution (left) and von Mises stress on
frame, bulkheads, and girders (right).
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at Fr = 1.84 evaluated by CFDShip-Iowa (Huang et al., 2008) and the von Mises stress on frame,
bulkheads, and girders evaluated by nonlinear finite element analysis by COMSOL Multiphysics (e.g.,
Piccione et al. 2012).
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