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Abstract. The cardiac extracellular-membrane-intracellular (EMI) model enables the precise
geometrical representation and resolution of aggregates of individual myocytes. As a result, it
not only yields more accurate simulations of cardiac excitation compared to homogenized mod-
els but also presents the challenge of solving much larger problems. In this paper, we introduce
recent advancements in three key areas: (i) the creation of artificial, yet realistic grids, (ii) effi-
cient higher-order time stepping achieved by combining low-overhead spatial adaptivity on the
algebraic level with progressive spectral deferred correction methods, and (iii) substructuring
domain decomposition preconditioners tailored to address the complexities of heterogeneous
problem structures. The efficiency gains of these proposed methods are demonstrated through
numerical results on cardiac meshes of different sizes.

1 INTRODUCTION

Cardiac arrhythmias are significant causes of mortality, and numerical modeling plays a
crucial role in understanding their mechanisms and designing effective treatments. While ho-
mogenized models like the bidomain and monodomain models represent the action potential at
the tissue level, they lack details about arrhythmogenic cellular-level factors such as fibrosis or
ion channel distribution. To address this, we consider a recent cell-by-cell model that explic-
itly represents myocytes. Due to the size of such models, they pose new simulation challenges
related to mesh generation, time stepping, and preconditioning.

In this paper, we present a geometry and mesh generation approach for defining large-scale
computational meshes and introduce efficient adaptive time stepping and domain decomposi-
tion preconditioning techniques. We employ tetrahedral meshes based on the implicit surface
meshing of a random network of cells, which mimics real cardiac tissue [11]. This method has
been extended to represent 400 cells in 15 million tetrahedra.

Although the cell-by-cell model exhibits localized solution features, the overhead induced
by mesh adaptivity during simulation has proven to outweigh efficiency gains. To overcome
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this, we combine the spectral deferred correction (SDC) method as a higher-order time step-
ping approach with computationally inexpensive algebraic adaptivity [2]. This combination,
which can be interpreted as multi-rate integration, significantly speeds up simulations in both
homogenized and cell-by-cell models [1]. The approach utilizes nested subset selection on the
algebraic level and explicit embedded error estimates, incurring only negligible overhead.

Since the dominant diffusion and elliptic constraints in the cell-by-cell models necessitate
implicit time-stepping methods, we also propose a novel domain decomposition preconditioner
called balancing domain decomposition by constraints (BDDC) [8]. This preconditioner is
specifically tailored to the unique structure of cell-by-cell models, and we investigate its con-
vergence properties numerically.

To showcase the overall performance and convergence rate of our proposed approach, we
provide demonstrations on 3D cardiac simulations using a combination of SDC, algebraic adap-
tivity, and BDDC preconditioning.

2 THE EMI MODEL

The extracellular-membrane-intracellular (EMI) model of electrophysiology [9] describes the
myocardium as a collection of pairwise disjoint myocytes (Ωi)i=1,...,N which, together with the
extracellular space Ω0, cover the whole domain Ω ⊂ Rd, d ∈ {2, 3}, occupied by the my-
ocardium, i.e. Ω =

⋃N
i=0 Ωi. Ions can diffuse freely within each myocyte and in the extracellular

domain, subject to conductivities σi, which leads to electric intra- and extracellular potentials
ui ∈ H1(Ωi). Gap junctions between myocytes allow ion currents through passive channels,
while active channels regulate ion exchange between myocytes and the extracellular space. The
transmembrane current nTσi∇ui includes the ion current I ionij and the capacitive current Cmv̇ij.
The ion current depends on the transmembrane voltage vij = ui−uj defined on the membrane
Fij = ∂Ωi ∩ ∂Ωj, and wij comprising ion concentrations and channel states governed by a
nonlinear dynamic given by R. This setting results in the partial differential algebraic system

− div(σi∇ui) = 0 in Ωi

−nT
i σi∇ui = Cmv̇ij + I ionij (vij, wij) on Fij, i ̸= j

nTσi∇ui + ϵui = 0 on ∂Ωi ∩ ∂Ω

ẇij = R(vij, wij) on Fij, ij = 0

wij = 0 ij > 0.

(1)

Here, ni denotes the unit outer normal of Ωi for i = 0, . . . , N . We require I ionij (vij, wij) =
−I ionji (vji, wji) and wij = wji. The small value ϵ > 0 in the Robin boundary condition on ∂Ω
makes the solution unique, which for a pure Neumann problem would be defined only up to a
constant. An alternative normalization would be to require

∫
Ω
ϕu dx = 0 for some nonvanishing

function ϕ. The parameter values used for the EMI model are given in Tab. 1.

3 MESH GENERATION

Computational meshes were generated as described previously [11], with modifications that
allowed us to produce larger samples. First we generated a random network of cell centers and
links, which were not allowed to deviate more than 15 degrees from a defined “fiber orienta-
tion”. Each half-link was then assigned the part of the tissue volume that was nearest to it.
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Parameter Value

σ>0 0.4 Sm−1

σ0 2.0 Sm−1

Cm 1× 10−4 Fm−2

Table 1: Parameters used in the EMI model, based on [9].

Figure 1: Overview of the mesh generation methods. Left: a network with 6 centers (black dots), 5 links, and
halflink domains. The dashed lines represent cell membranes. Middle and right: transverse and longitudinal
section of the level-set function, where red colors code the inside of the cells. The narrow spaces between the
cells (about one tenth of the cell diameter in reality) made it necessary to discretize the domain boundaries
before computation of the level-set function.

The boundaries between these domains were discretized inside a tetrahedral mesh. Using these
boundaries and the links themselves we determined a level-set function that defined the cell
membranes. The level set was discretized by the Mmg remeshing software [4]. The halflink
domains were preserved through level-set discretization and then merged for each center, re-
sulting in cell domains that determined the locations of the intercalated disks, the structures
that connect the cells electrically and mechanically. The resulting poor-quality mesh was then
improved with a second application of Mmg. In contrast to our previous work [11], we merged
the extracellular parts of the cell domains before remeshing. This made the remesher’s task
much easier, because the junctions of multiple domain boundaries, often joining at small an-
gles, were hard to preserve. This modification, together with recent improvements in the Mmg
software, allowed us to generate samples that were orders of magnitude larger than the few
dozen myocytes reported before.

A domain decomposition for parallel computations was made by combining the intracellular
domains of several cells and expanding them until the extracellular volume was completely
partitioned as well. Thus, cells were never split across partition boundaries. Necessarily, the
partition boundaries could coincide with cell membranes and intercalated disks.

Fig. 1 shows an overview of the mesh generation methods, Fig. 4 the four meshes used in
this study, and Fig. 2 the intra- and extracellular domains of a single cell.

4 ALGEBRAIC ADAPTIVITY IN HIGH ORDER TIME STEPPING

The depolarization and repolarization fronts travelling through the domain are highly lo-
calized, calling for high spatial resolution at the front position but allowing for much coarser
meshes in regions far from the front, reducing the problem size considerably. This can be
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Figure 2: Each myocyte (orange) is surrounded by an extracellular subdomain (green). As illustrated here
for a location near a model boundary, the extracellular domains can be considerably larger than the cells when
these are sparse.

achieved by adaptive mesh refinement and coarsening [3]. Unfortunately, the overhead of error
estimation, mesh modification, and re-assembly often compensates the reduction of computa-
tional work due to the smaller problems to be solved. Here we consider a recent approach to
spatial adaptivity with spectral deferred correction time stepping [1, 2] that works purely on
the algebraic level without incurring significant overhead and thus can achieve a substantial
speedup. Combining this algebraic adaptivity with ladder methods [10] improves the efficiency
gain further.

4.1 Algebraic adaptivity with spectral deferred corrections

Spatial semi-discretization of (1) with finite elements results in a large scale differential-
algebraic system

Bż = Az + F (z) (2)

of index one for z = [u,w] ∈ RNh+nh . Here, A contains the infinitely stiff diffusion term, and
F represents the nonlinear ion channel dynamics. Note that w is restricted to the membranes,
but may be vectorial, whereas u is defined on the whole domain, but is scalar. Consequently,
Nh ̸= nh. Since time derivatives only appear on the membranes, the matrix B is singular, such
that implicit L-stable integration methods such as an implicit-explicit (IMEX) Euler scheme

(B − τA)zk+1 = zk + τF (zk) (3)

for a step size τ have to be used [7]. Spectral deferred correction (SDC) methods turn a
low order basic scheme such as (3) into a higher order scheme by solving the defect equation
Bδ̇z = Aδz + F (z + δz) − F (z) + [Az + F (z)− ż] for a given approximate trajectory z on a
certain time horizon, using the basic scheme [6, 12]. The term in brackets is independent of δz
and can be treated explicitly by high-order quadrature on a collocation time grid. Updating
the initial guess z ← z+ δz and repeating yields a stationary iteration that converges to a high
order collocation solution. Choosing a Radau quadrature with n collocation points and taking
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m iterations yields an L-stable IMEX Runge-Kutta scheme of order min{2n − 1,m} with nm
stages.

In electrophysiology simulations, the SDC corrections have a dominantly local support
around the fronts. Based on an error estimator based on the linear convergence of the sta-
tionary iteration, thresholding corrections for determining the relevant subregion still requiring
higher accuracy, and restricting subsequent iterations to that subregion has been shown to
reach the desired uniform tolerance [1]. The selection of the subregions and the formulation of
the restricted problems can be done purely on the algebraic level of finite element coefficients,
as shown in Fig. 5, which is computationally cheap and thus turns the reduction in problem size
directly into faster solution. Wall clock time speedup factors over a conventional SDC iteration
are given in Tab. 3 for grids of different size. Since the depolarization front width stays fixed,
the speedup increases slightly with the domain size.

4.2 Ladder methods

The speedup that can be achieved with the algebraic adaptivity outlined above is limited
by the number m of SDC iterations. This holds for the extreme case when after the first
iteration, which needs to be performed on the whole domain, the following iterations involve
just a negligible number of degrees of freedom. A further improvement is possible if the first
iteration does not involve all n collocation points, but just one. So-called ladder methods,
refining the collocation grid every second iteration, reduce the computational cost, but also
yield a larger discretization error, and have been found not to improve the efficiency of ODE
integration because they require more iterations for the same accuracy [10].

This changes if the computational cost for the iterations is not uniform. With algebraic
adaptivity, the computational cost of the first iteration is much higher than for the later iter-
ations. Consequently, the upper bound for the speedup is increased from m to nm. As a very
coarse model of impact of ladder methods on accuracy and effort, we will assume the following:

1. Standard SDC converges linearly with a contraction factor ρ < 1. This is in general
satisfied, with 0.15 ≤ ρ ≤ 0.6 the usual range for reaction-diffusion equations [12].

2. Algebraic adaptivity does not affect the reached accuracy and hence convergence rate.
With a proper choice of drop tolerance, this is in general the case [1].

3. The number of degrees of freedom retained in iteration i scales as Nri for some r < 1.
The actual number of retained degrees of freedom is, of course, highly problem dependent,
but a factor r = 0.5 appears to be realistic.

4. The larger basic time step in ladder methods increases the contraction factor to ρq, with
q < 1. Asymptotically, this is a rather pessimistic assumption, since after 2n iterations,
the full collocation grid is reached and the ladder method’s contraction rate reaches ρ.
Up to then, of course, larger contraction factors are observed.

With these assumptions, and performing m = 2n−1 iterations to reach the full time discretiza-
tion order of Radau collocation, we face a computational effort proportional to

W :=
m−1∑
i=0

nri = n
1− r2n−1

1− r
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Figure 3: Expected speedup due to ladder methods applied in addition to algebraic adaptivity for different
numbers n of collocation points and larger contraction factors ρq.

for standard SDC with algebraic adaptivity. For ladder methods with algebraic adaptivity, the
number of iterations is about m = (2n − 1)/q to reach the same truncation error. With a
slower convergence rate ρq, the number of retained degrees of freedom scales as Nriq and thus
decreases slower, but there are also just ⌊i/2 + 1⌋ collocation points in each iteration. Thus,
with a = rq and m = ⌈(2n− 1)/q⌉, the computational work is roughly proportional to

⌈(2n−1)/q⌉∑
i=0

(⌊
i

2

⌋
+ 1

)
rqi ≈ 2− a+ am+1((m+ 2)a− (m+ 3))

2(1− a)2
=: Wlad. (4)

The expected speedup W/Wlad due to using ladder methods with algebraic adaptivity is shown
in Fig. 3 for r = 0.5 and different values of n and q. As can be expected, larger speedups are
predicted for more collocation points (larger n) and less impact of the ladder approach on the
convergence rate (larger q). Also apparent is that for small n and q, an actual slowdown must
be expected.

The empirical speedup observed in the examples considered here is reported in the last
column of Tab. 3.

5 DOMAIN DECOMPOSITION PRECONDITIONERS

The basic IMEX Euler scheme (3) requires the solution of globally coupled equation systems
of the form B−τA. The matrix B−τA is positive definite if the nullspace of the pure Neumann
problem is eliminated by applying Robin boundary conditions as defined in (1). For large grids
with many myocytes as shown in Fig. 4, iterative solvers are essential, and the method of choice
is preconditioned conjugate gradients (PCG).

Among the numerous available options we consider a BDDC preconditioner [5] specifically
tailored to the geometrical structure of the EMI model [8]. BDDC splits the mesh in several
non-overlapping subdomains and decomposes the system matrix M = B − τA into a corre-
sponding block-diagonal system by replicating degrees of freedom associated to the interface
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mesh vertices myocytes extr. regions degrees of freedom

(a) 332,179 44 44 394,106
(b) 522,489 86 86 628,586
(c) 1,314,675 208 208 1,664,019
(d) 2,521,502 415 415 3,286,868

Table 2: Properties of the meshes shown in Fig. 4.

between subdomains in each block. Approximate global continuity is preserved by adding few
constraints such as continuity at subdomain corners or vanishing average jumps over subdomain
interfaces. Since there are very few such constraints, the Schur complement with respect to
the block-diagonal part is relatively small, and can therefore be solved efficiently using direct
solvers. This yields an approximate solution with artificial jumps across subdomain interfaces,
which are subsequently removed by averaging the solution at the interfaces and computing local
solutions on subdomains given these Dirichlet boundary data. The resulting approximate solu-
tion is usually quite good, and thus BDDC used as a preconditioner exhibits very low condition
numbers of the preconditioned system.

The EMI geometry suggests a natural decomposition of the computational domain Ω along
the cell membranes into subdomains Ωi representing the myocytes and extracellular domain.
Since the potentials ui are discontinuous across membranes, there are two different degrees of
freedom associated to each interface vertex, and both of them are replicated in both subdomains.
This BDDC design has been proved to exhibit the expected almost mesh-independent condition
bound and demonstrated to yield a highly effective preconditioner in 2D problems [8].

Here, we consider larger 3D problems. This leads to a large extracellular subdomain, which is
challenging for direct solvers and causes imbalance with the many smaller myocyte subdomains.
We therefore subdivide the extracellular space into several subdomains. Introducing an interface
condition of the same mathematical structure as gap junctions between these subdomains allows
extending the BDDC design seamlessly to subdivided extracellular space. On these interfaces,
we impose an ion current Iion(v) = σvirtv with a large conductivity σvirt, realizing an interior
penalty discontinuous Galerking discretization, such that the solution is almost continuous.

6 NUMERICAL RESULTS

We have applied the algorithmic approaches described in Sec. 4 and 5 to four grids of
different size shown in Fig. 4. Their properties are given in Tab. 2. Since the potential values
jump across membranes, the number of degrees of freedom in a piecewise linear finite element
discretization exceeds the number of mesh vertices by a small fraction.

We simulated the EMI model (1) on these grids with SDC on a Radau IIA time grid with
three collocation points. The number of degrees of freedom retained in every SDC iteration is
shown in Fig. 5 over the course of the whole simulation. The clearly visible significant reduction
of system size translates into a reduction of wall clock simulation time, given as speedup over
plain SDC in Tab. 3. Since the domains are larger than the one considered before [1], but
the excitation front width remains the same, the observed speedup is slightly larger (4–6 here,
3–4 before). Since the computational cost of the SDC iterations with algebraic adaptivity
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(a) (b)

(c)

(d)

Figure 4: Different 3D meshes, detail in Table 2. Dimensions are indicated in micrometers; the largest model
(d) is 1mm long. Individual myocytes are differentiated by color.

Figure 5: Number of degrees of freedom of the EMI model on grid (a) from Tab. 2 used in the SDC iterations
versus simulated time. Left: pure algebraic adaptivity. Right: algebraic adaptivity combined with ladder
methods.
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is no longer uniform, ladder methods yield a further moderate but consistent increase of the
speedup by 20–50%, which is well within the range predicted by the quite coarse efficiency model
worked out in Sec. 4.2. The number of retained dofs, however, exhibits a strong oscillation,
which suggests that the combination of algebraic adaptivity and ladder methods deserves more
investigation.

mesh AA AA + Ladder ratio

(a) 4.526 5.342 1.180
(b) 4.753 5.973 1.257
(c) 5.432 8.252 1.519
(c) 5.863 8.847 1.509

Table 3: Computational speedup due to algebraic adaptivity (AA) applied to standard SDC and to ladder
SDC methods, over non-adaptive SDC. With 3 collocation points used, the additional speedup due to ladder
methods is within the range expected from the coarse efficiency model (4).

We tested both unpreconditioned CG and BDDC-preconditioned CG for solving the full
systems. As expected, BDDC reduces the iteration count dramatically, and leads to resolution-
independent convergence due to the bounded condition number of the preconditioned system,
see Tab. 4. Despite the increased computational effort per iteration introduced by the precon-
ditioner, the computational time is also reduced by a large factor.

dofs
CG-noPrec BDDC

itr CPU time(s) k2 itr CPU time(s) k2

33,698 1111 6.595 24,390 11 0.105 52
75,122 2388 58.711 83,610 12 0.307 134
132,930 2500 69.238 32,560 12 0.630 157
207,122 5209 608.205 138,080 10 0.771 229
297,698 4606 400.290 305,810 10 1.245 196

Table 4: Iteration count and condition number(k2) estimate for unpreconditioned and BDDC-preconditioned
CG on problems of different size.

7 Conclusion

We have made significant progress towards achieving efficient large-scale EMI model simu-
lations, focusing on three key aspects: (i) robust creation of artificial but structurally realistic
myocardium geometries and grids, (ii) efficient spatial adaptivity for higher-order time step-
ping, achieved through a combination of algebraic adaptivity and ladder SDC methods, and
(iii) development of BDDC preconditioners tailored for complex 3D piecewise continuous elliptic
problems.

The numerical results demonstrate that the proposed methods are effective, efficient, and
allow scaling EMI computations to larger domain sizes than previously attainable.
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