
14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020)

Virtual Congress: 11-15 January 2021
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

CHOOSING THE SUBREGIONS IN THREE-LEVEL FROSCH
PRECONDITIONERS

Alexander Heinlein1, Oliver Rheinbach2,3 and Friederike Röver2

1 Institute of Applied Analysis and Numerical Simulation, Universität Stuttgart,
Pfaffenwaldring 57, 70569 Stuttgart, Germany.

E-mail: Alexander.Heinlein@ians.uni-stuttgart.de

2 Institut für Numerische Mathematik und Optimierung, Technische Universität Bergakademie Freiberg
Akademiestr. 6, 09599 Freiberg, Germany.

3 Universitätsrechenzentrum (URZ), Technische Universität Bergakademie Freiberg
Akademiestr. 6, 09599 Freiberg, Germany.

Key words: Domain Decomposition, Parallel Computing, Overlapping Schwarz, Mesh Partitioning,
Coarse Operator, Preconditioners, Trilinos

Abstract. Different graph partitioning methods, i.e., linear partioning, parallel hypergraph (PHG) par-
tioning, and two approaches using ParMETIS, are considered to generate an unstructured decomposition
of the second-level coarse operator of three-level FROSch (Fast and Robust Overlapping Schwarz) pre-
conditioners in the Trilinos software library. In our context, the parallel hypergraph method shows the
most consistent results.

1 Three-Level FROSch Preconditioners

FROSch (Fast and Robust Overlapping Schwarz) [7] is a parallel implementation of the Schwarz frame-
work and is part of the software library Trilinos [1]. It provides parallel implementations of the GDSW
(Generalized Dryja–Smith–Widlund) [5, 4] and RGDSW (Reduced-dimension GDSW) [6] overlapping
Schwarz preconditioners, which make use of exotic coarse spaces. We consider the extension of these
methods to three-level (R)GDSW preconditioners [9, 10], which arise from the recursive application of
the two-level methods. They are therefore based on a hierarchy of decompositions of the original do-
main Ω; the domain is decomposed into non-overlapping subregions {Ωi0}i=1,...,N0

, which are further
decomposed into non-overlapping subdomains {Ωi}i=1,...,N . Here, in order to build the subdomain hi-
erarchy, we proceed in reverse order: We first partition Ω into the non-overlapping subdomains. Then,
we build the dual graph of this decomposition based on the connectivity and obtain the subregions by
partitioning this graph. The non-overlapping subdomains are then extended by layers of elements, re-
sulting in overlapping subdomains {Ω′i}i=1,...,N with overlap δ, and the subregions are extended by layers
of subdomains to obtain the overlapping subregions {Ω′i0}i=1,...,N0

with overlap ∆.

1



A. Heinlein, O. Rheinbach and F. Röver

The three-level (R)GDSW overlapping Schwarz preconditioners are then of the form

M−1
GDSW−3L = Φ

( Third Level︷ ︸︸ ︷
Φ0K−1

00 Φ
T
0 +

Second Level︷ ︸︸ ︷
∑

N0

i=1 RT
i0K−1

i0 Ri0

)
Φ

T +

First Level︷ ︸︸ ︷
∑

N
j=1 RT

j K−1
j R j , (1)

where the restriction operators Ri to the overlapping subdomains and the respective matrices Ki = RiKRT
i

as well as the (R)GDSW basis functions Φ and the matrix K0 = ΦT KΦ are defined as in the two-level
methods; see, e.g., [4]. Furthermore, restriction operators Ri0 : V 0 → V 0

i := V 0(Ω′i0), corresponding to
the overlapping subregions Ω′i0, as well as coarse basis functions Φ0, spanning the (R)GDSW coarse
space V00 on the third level, are needed to build the three-level preconditioners; see [9, 10, 8] for more
details. Note that the three-level (R)GDSW approach is related to three-level or multilevel BDDC meth-
ods [16, 14, 2, 15]. Our undertaking is, software-wise, of course related to other important scalable
implementations of Schwarz methods, e.g., [12].

2 Implementation

The three-level extension of GDSW type preconditioners has recently been added to the FROSch frame-
work; see also [8]. The implementation is based on the Trilinos package Xpetra, which provides a
lightweight interface to the parallel linear algebra packages Epetra and Tpetra. Here, we only use the
newer Tpetra-based software stack. For the assembly of the system matrix, we employ the finite differ-
ence implementation based on a structured tensor product mesh and a structured domain decomposition
into rectangular subdomains from the Galeri package. In order to partition the dual graph corresponding
to the decomposition into the subdomains {Ωi0}i=1,...,N0

, we use the Trilinos package Zoltan2 [17]. It
provides an interface to the partitioning algorithms from the older Zoltan package and can also be linked
to third party libraries such as ParMETIS [13]. We solve the linear system assembled by Galeri using the
conjugate gradient (PCG) method from the Trilinos package Belos, preconditioned by FROSch. Both the
iterative solver and the three-level FROSch preconditioner are called using the unified solver interface
Stratimikos, and we iterate until we reach relative tolerance of 10−6. All tests were performed on the
Compute Cluster of the Fakultät für Mathematik und Informatik of the TU Freiberg. We use one subdo-
main for each MPI rank, and one MPI rank for each processor core. We use the INTEL compiler 2020.0
version 3.1.4. To solve the arising subproblems, we always use the PardisoMKL [3] sparse direct solver.

3 Results

In this section, we will investigate numerically how different graph partitioning algorithms employed to
construct the nonoverlapping subregions {Ω′i0}i=1,...,N0

influence the performance of three-level FROSch
preconditioners. As a model problem, we consider linear elasticity with homogeneous Dirichlet bound-
ary conditions on the unit square [0,1]2 or unit cube [0,1]3, respectively. As mentioned before, we use
finite differences as the spatial discretization. To build the subregions, different partitioning methods are
compared: linear partitioning, which is denoted block-wise partitioning in Zoltan (Block), the parallel
hyper graph (PHG) partitioner from Zoltan, and two partitioning approaches based on ParMETIS. In
particular, for ParMETIS, we use either partitioning from scratch (P) or repartitioning (R) of the initial
partition. Here, the initial partition is the linear partition. We used ParMETIS Version 4.0.3. We present
results for the GDSW as well as for the RGDSW coarse space, where, for the RGDSW coarse space,

2



A. Heinlein, O. Rheinbach and F. Röver

Figure 1: Decomposition of 64 subdomains into 4 (top), 15 (middle) and 16 (bottom) subregions using the parallel
hypergraph (PHG), block-wise (Block), and ParMETIS approach. ParMETIS (P) uses partitioning from scratch
and ParMETIS (R) uses repartitioning of the initial distribution, which is the linear distribution. Each square cor-
responds to one subdomain and each color to one subregion. This partitioning determines the parallel distribution
of the second-level coarse operator K0 in FROSch and results in a different third-level coarse matrix K00.

we always consider Option 1 from [6, 11], which is completely algebraic. Note that, since the subre-
gions are built based on the dual graph of the domain decomposition, the subregions are identical for the
same configuration independent of the choice of the coarse space. However, the size of the GDSW and
RGDSW coarse spaces may still differ significantly. In order to investigate the influence of the different
partitioning algorithms on the three-level preconditioners, we focus on two aspects. First, we investigate
how the convergence, i.e., the number of iterations and the estimated condition number, depend on the
partitioning. Second, we will discuss the dimension of the coarse space on the third level V00 and thus the
size of the coarse matrix K00; cf. (1). In order to do so, we consider a structured domain decomposition
into 64 or 512 subdomains for two or three dimensions, respectively, and vary the number of subregions.

3



A. Heinlein, O. Rheinbach and F. Röver

Three-level GDSW preconditioner Three-level RGDSW preconditioner
PHG Block ParMETIS(P) ParMETIS(R) PHG Block ParMETIS(P) ParMETIS(R)

2D; #subdomains = 64
#subreg. dim(K0) = 483 dim(K0) = 147

4

iter 35 33 34 32 35 33 44 37
κ(M−1K) 19.7 24.8 19.6 17.6 17.5 15.1 30.7 21.7
dim(K00) 21 9 15 15 6 9 3 3

dim(K00)/#regs 5.3 2.3 3.8 3.8 1.5 2.3 0.8 0.8

15

iter 36 40 44 40 43 43 54 43
κ(M−1K) 21.9 32.5 30.8 29.2 26.5 26.3 43.1 25.8
dim(K00) 147 129 144 132 54 30 45 45

dim(K00)/#regs 9.8 8.6 9.6 8.8 3.6 2.0 3.0 3.0

16

iter 36 40 39 32 43 44 50 40
κ(M−1K) 21.4 33.1 24.8 21.2 26.5 27.1 40.3 24.8
dim(K00) 147 87 99 99 51 21 27 27

dim(K00)/#regs 9.2 5.4 6.2 6.2 3.2 1.3 1.7 1.7
3D; #subdomains = 512

#subreg. dim(K0) = 17 178 dim(K0) = 2 058

4

iter 48 51 49 52 49 44 52 54
κ(M−1K) 35.6 51.2 38.5 41.2 35.1 29.2 39.7 42.1
dim(K00) 66 18 30 66 6 18 6 6

dim(K00)/#regs 16.5 4.5 7.5 16.5 1.5 4.5 1.5 1.5

16

iter 59 59 67 67 57 54 61 61
κ(M−1K) 55.4 59.7 71.2 71.4 45.5 40.6 52.6 52.0
dim(K00) 1 056 174 402 402 180 42 42 42

dim(K00)/#regs 66 10.9 21.1 21.1 11.3 2.6 2.6 2.6

45

iter 60 58 60 60 67 60 72 60
κ(M−1K) 65.6 50.3 59.6 55.2 45.5 40.6 52.6 52.0
dim(K00) 3 210 2 532 7 656 2 166 540 504 1 146 342

dim(K00)/#regs 71.3 56.3 170.1 47.0 12.0 11.2 25.5 7.6

64

iter 61 56 62 62 71 63 67 67
κ(M−1K) 63.4 55.7 93.7 93.7 74.1 57.2 69.8 69.8
dim(K00) 4 998 966 1 674 1 674 852 294 162 162

dim(K00)/#regs 78.1 15.1 26.2 26.2 13.3 4.6 2.5 2.5

101

iter 66 61 65 64 79 77 80 77
κ(M−1K) 68.9 62.1 68.6 64.7 87.8 84.1 93.6 84.2
dim(K00) 7 188 7 716 9 564 8 328 1 176 1 290 1 542 1 572

dim(K00)/#regs 71.2 76.4 94.7 82.5 11.6 12.8 15.3 15.6

Table 1: Number of PCG iterations Iter, condition number estimate κ(M−1K) and dimension of the coarsest
problem dim(K00) for the three-level extension with different number of subregions and partitioning methods.
We have H/h = 10, δ = 1 and ∆ = 1. In each row, the best results for the three-level GDSW and the RGDSW
preconditioner are marked in bold.

Robustness The different partitioning methods result in significantly different decompositions into
subregions; see Figure 1. This is the case even for a small number of subregions. On the other hand,
our algorithm results in similar numbers of iterations and condition number estimates for all partitioning
methods. We observe a slight increase in the number of iterations for an increasing number of subregions.
The effect is more visible for RGDSW; see Table 1.

Partitioning The different partitioning schemes result in different numbers of interface components,
i.e., faces, edges, and vertices. As a result, the size of the coarse matrix K00 may differ significantly. In
certain cases, we observe unconnected subdregions, which increases the number of interface components

4



A. Heinlein, O. Rheinbach and F. Röver

and therefore increases dim(K00); also see Figure 1. In our experiments, ParMETIS sometimes produces
a structured decomposition; see the cases of 4 and 16 subregions in Figure 1. In these cases, dim(K00)
is small: using 16 subregions instead of 15 subregions in two dimensions reduces dim(K00) to about
70% for ParMETIS as well as for blockwise partitioning; see Table 1. For PHG, we do not see this
effect when changing the number of subregions from 15 to 16: the size of dim(K00) stays the same for
GDSW and reduces only slightly for RGDSW. The results for the test case of 512 subdomains, using
45 and 64 subregions in three dimensions, is consistent with this observation. For 45 subregions, the
size of the K00 is significantly larger than for 64 subregions using ParMETIS (R), although we would
expect the contrary. Here, ParMETIS with partitioning from scratch results in dim(K00) = 7656 for the
GDSW coarse space using 45 subregions. This compares to dim(K00) = 1674 for 64 subregions. For
the RGDSW coarse space dim(K00) decreases by a factor more than 7: we have dim(K00) = 1146 (45
subregions) and dim(K00) = 162 (64 subregions); see Table 1. The PHG and the block approach show
more consistent results with respect to dim(K00). Note that ParMETIS (R), which uses repartitioning of
the linear partition, often yields a smaller dim(K00) compared to ParMETIS (P).

In total, the parallel hyper graph (PHG) method from Zoltan, which avoids unconnected subregions, as
well as the block-wise approach, avoid outliers with very large dim(K00) present in the other methods.

Conclusion Concerning the different graph partitioning method to generate the subregions, our algo-
rithm is robust in the condition number and the number of iterations. However, to keep the cost of
the sparse direct linear coarse solver low, we want to keep dim(K00) small. For certain special cases,
ParMETIS produces a structured decomposition resulting in a very small dim(K00). However, changing
the numbers of subregions slightly can result in a very large dim(K00) for ParMETIS (P). Here, repar-
titioning a linear decomposition using ParMETIS (R) can be a better choice. Although the results for
the block-wise partitioning show good results, we recommend the PHG partitioning method. We expect
that, for larger problems, the block-wise approach and, to a lesser extend, also ParMETIS (R) (using the
block-wise approach as initial partition) will suffer from elongated subregions, which will then result in
slower Krylov convergence.

Acknowledgements

The author acknowledge computing time on the Compute Cluster of the Fakultät für Mathematik und Informatik of Technische Universität

Freiberg (DFG project number 397252409), operated by the university computing center (URZ). The second and third author would like to

acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) under the DFG project number 441509557 within the DFG SPP 2256.

REFERENCES

[1] Trilinos public git repository. Web, 2018. https://github.com/trilinos/trilinos.

[2] S. Badia, A. F. Martı́n, and J. Principe. Multilevel balancing domain decomposition at extreme
scales. SIAM J. Sci. Comput., 38(1):C22–C52, 2016.

[3] Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli. State-of-the-
Art Sparse Direct Solvers, pages 3–33. Springer International Publishing, Cham, 2020.

[4] C. R. Dohrmann, A. Klawonn, and O. B. Widlund. Domain decomposition for less regular subdo-
mains: overlapping Schwarz in two dimensions. SIAM J. Numer. Anal., 46(4):2153–2168, 2008.

5

https://gepris.dfg.de/gepris/projekt/397252409
https://gepris.dfg.de/gepris/projekt/441509557


A. Heinlein, O. Rheinbach and F. Röver

[5] C. R. Dohrmann, A. Klawonn, and O. B. Widlund. A family of energy minimizing coarse spaces
for overlapping Schwarz preconditioners. In Domain decomposition methods in science and engi-
neering XVII, volume 60 of Lect. Notes Comput. Sci. Eng., pages 247–254. Springer, Berlin, 2008.

[6] C. R. Dohrmann and O. B. Widlund. On the design of small coarse spaces for domain decomposi-
tion algorithms. SIAM J. Sci. Comput., 39(4):A1466–A1488, 2017.

[7] A. Heinlein, A. Klawonn, S. Rajamanickam, and O. Rheinbach. FROSch: A Fast And Robust
Overlapping Schwarz Domain Decomposition Preconditioner Based on Xpetra in Trilinos, pages
176–184. Springer, 2020. Preprint https://kups.ub.uni-koeln.de/9018/.

[8] A. Heinlein, A. Klawonn, O. Rheinbach, and F. Röver. A three-level extension for fast and ro-
bust overlapping schwarz (FROSch) preconditioners with reduced dimensional coarse space. In
preparation.

[9] A. Heinlein, A. Klawonn, O. Rheinbach, and F. Röver. A three-level extension of the GDSW
overlapping Schwarz preconditioner in two dimensions. In T. Apel, U. Langer, A. Meyer, and
O. Steinbach, editors, Advanced Finite Element Methods with Applications: Selected Papers from
the 30th Chemnitz Finite Element Symposium 2017, pages 187–204. Springer, Cham, 2019.

[10] A. Heinlein, A. Klawonn, O. Rheinbach, and F. Röver. A three-level extension of the GDSW
overlapping Schwarz preconditioner in three dimensions. In R. Haynes, S. MacLachlan, X. Cai,
L. Halpern, H. H. Kim, A. Klawonn, and O. Widlund, editors, Domain Decomposition Methods in
Science and Engineering XXV, pages 185–192, Cham, 2020. Springer International Publishing.

[11] A. Heinlein, A. Klawonn, O. Rheinbach, and O. B. Widlund. Improving the parallel performance
of overlapping Schwarz methods by using a smaller energy minimizing coarse space. In P. E.
Bjørstad, S. C. Brenner, L. Halpern, H. H. Kim, R. Kornhuber, T. Rahman, and O. B. Widlund,
editors, Domain Decomposition Methods in Science and Engineering XXIV, pages 383–392, Cham,
2018. Springer.

[12] Pierre Jolivet, Frédéric Hecht, Frédéric Nataf, and Christophe Prud’homme. Scalable domain de-
composition preconditioners for heterogeneous elliptic problems. In Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13,
pages 80:1–80:11, New York, NY, USA, 2013. ACM.

[13] G. Karypis and K. Schloegel. ParMETIS-parallel graph partitioning and sparse matrix ordering
library version 4.0. Technical report, University of Minnesota, Department of Computer Science
and Engineering Minneapolis, March 2013.

[14] J. Mandel, B. Sousedı́k, and C. R. Dohrmann. Multispace and multilevel BDDC. Computing,
83(2-3):55–85, 2008.

[15] J. Sı́stek, B. Sousedı́k, J. Mandel, and P. Burda. Parallel implementation of multilevel BDDC.
In Numerical mathematics and advanced applications 2011, 2011. 9th European conference on
numerical mathematics and advanced applications, Leicester, UK, September 59, 2011.

[16] X. Tu. Three-level BDDC in two dimensions. International Journal for Numerical Methods in
Engineering, 69(1):33–59, 2007.

[17] The Zoltan2 Project Team. The Zoltan2 Project Website.

6

https://kups.ub.uni-koeln.de/9018/

	Three-Level FROSch Preconditioners
	Implementation
	Results

