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Summary. This work presents a ZZ-BD a posteriori error estimator tailored for 3-D
linear elastic fracture mechanics problems that are approximated by second-order pFEM-
GFEM formulations. The proposed error estimator is shown to estimate well discretization
errors in the energy norm, with the estimated discretization error converging at the same
rate as the exact discretization error. Also, the computed effectivity indexes are close to
the optimal value of 1 for a LEFM problem that exhibits 3-D effects.

1 INTRODUCTION

The Generalized/eXtended Finite Element Method (G/XFEM) is well-known as an
efficient and accurate methodology for the simulation of problems that generally face dif-
ficulties when treated by standard methodologies, such as the Finite Element Method
(FEM). These problems appear often within the context of Linear Elastic Fracture Me-
chanics (LEFM), for example, and because of this, interest in accurately simulating them
exists since the G/XFEM initial propositions [1, 2, 3, 4]. LEFM problems present two be-
haviors that cannot be easily treated by the FEM – the discontinuity that happens across
crack surfaces and the singularity that happens at its front. To deal with this, G/XFEM
incorporates into the approximation spaces functions that capture well those behaviors.
These functions are known as enrichment functions and they (i) allow the mesh to be
generated independently of the crack that exists in the problem domain, which comes in
handy when dealing with three-dimensional (3-D) simulations, and (ii) enable the numer-
ical method to achieve optimal convergence rates in the energy norm even for problem in
which these rates are bounded by the singularity strength when solved by the FEM.



Murilo H. C. Bento, Sergio P. B. Proença and C. Armando Duarte

Because of these good approximation properties, extensive research [5, 6, 7, 8, 9, 10]
has been done in the past decades aiming at developing first-order optimally convergent
approximations to LEFM problems. Despite delivering optimal convergence rates, it has
been shown [11], however, that first-order G/XFEM is not competitive with second-order
FEM that uses quarter-point elements, especially for 3-D problems. Due to that, second-
order optimally convergent G/XFEMs, customized to solve LEFM problems, have been
recently proposed [11, 12, 13]. The formulations presented in these works augment both
standard lagrangian FEM approximation spaces [13] and p-hierarchical FEM approxi-
mation spaces [11, 12] in order to insert into the G/XFEM approximation spaces the
discontinuous and singular behaviors of fractures. Nonetheless, in addition to using en-
richment functions, it is important to note that G/XFEM still needs local mesh refinement
around crack fronts in order to achieve optimal convergence. This must be considered es-
pecially for 3-D problems that violate the assumptions of the adopted singular enrichment
functions. While this local mesh refinement can be easily performed for simple cases, the
level of refinement that must be used with more complicated problems can be difficult to
be defined a priori. Adaptive refinement algorithms can address this issue and an impor-
tant ingredient for the development of such algorithms is an accurate a posteriori error
estimator able to estimate well global and local discretization errors associated with these
newly developed G/XFEM formulations.

This work presents a Zienkiewicz and Zhu block-diagonal (ZZ-BD) error estimator
[14] tailored to estimate discretization errors of second-order G/XFEM formulations for
3-D LEFM problems. The associated recovery procedure involves locally weighted L2

projections of raw stresses onto approximation spaces including high-order discontinuous
and singular stress fields. The basis functions for these improved, or recovered, stress
approximations are defined using a low-order partition of unity together with polynomial,
discontinuous, and singular recovery enrichment functions. The strategy introduced herein
for 3-D problems is based on the one proposed by the same authors in [15] for 2-D analyses.
The results presented in this contribution show that the ZZ-BD error estimator proposed
to solve 3-D LEFM problems with second-order pFEM-GFEM formulations accurately
computes estimated discretization errors in the energy norm, with them converging at
the same rate as the exact discretization errors. Also, the computed effectivity index of
the proposed error estimator is shown to be close to its optimal value.

2 SECOND-ORDER G/XFEM AND FEM

As introduced in Section 1, a posteriori error estimators are presented in this work for
second-order G/XFEM. The methodology is quite general, but here second-order formu-
lations that augment p-hierarchical FEM approximations are adopted. In this section,
a very brief overview of so-called pFEM-GFEM formulations [11, 12] used to solve 3-D
LEFM problems is presented. Comprehensive details of these formulations for both 2-D
and 3-D problems can be found, for instance, in [11, 12].

As mentioned before, pFEM-GFEM formulations able to solve LEFM problems aug-
ment pFEM spaces in order to insert into them the discontinuous and singular behaviors
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of fractures. In short, pFEM hierarchically augments linear FEM shape functions, as-
sociated with vertex nodes of a mesh, up to functions of the required degree p. The
pFEM-GFEM approximation space can then be written as

SpFEM-GFEM = SpFEM + SENR, (1)

with SENR a space built based on local approximation spaces glued together by a partition
of unity and SpFEM, in the case of second-order approximations, a space spanned by both
3-D vertex shape functions and edge shape functions that are built from the product
between two linear vertex shape functions. For an edge with vertices with indices α and
β, for example, the associated edge shape function φαβ(x) is given by the product of
vertex shape functions φα(x) and φβ(x), i.e., φβα(x) = φα(x)φβ(x).

In Eq. (2), the enriched space SENR is customized to represent the discontinuous and
singular behaviors of LEFM problems. Therefore, this space can be split into SS

ENR,
which approximates the singularity at the crack front, and SD

ENR, which approximates
the discontinuity that happens across the entire crack surface. Based on this, a pFEM-
GFEM approximation space used to generate approximate displacement fields for LEFM
problems can be defined as

SpFEM-GFEM = SpFEM +
(
SS
ENR + SD

ENR

)
. (2)

In the approximations used in this work, SS
ENR is built based on Oden-Duarte (OD)

singular enrichment functions, modified by their discontinuous interpolant [11], and SD
ENR

is built based on high-order Heaviside enrichment functions. For details about the gener-
ation of spaces associated with high-order Heaviside functions and OD singular functions,
see [11, 12]. It is important to mention that in the formulations adopted in this work,
Heaviside functions are applied at all vertex and edge nodes whose support intersects the
crack surface but does not intersect the crack front and that OD functions are applied
at all vertex nodes that are at a distance smaller than rS from the crack front. In this
formulation, some nodes are enriched with both Heaviside and OD functions.

3 ZZ-BD ERROR ESTIMATOR

The second-order pFEM-GFEM summarized in Section 2 delivers optimally conver-
gent solutions and well-conditioned stiffness matrices for 2-D and 3-D LEFM problems.
Furthermore, it is much more efficient than first-order G/XFEMs and second-order FEMs
that use quarter-point elements around the crack tip or front. Besides delivering lower
error levels, the second-order pFEM-GFEM provides solutions with errors of the order
of O(h−2) in the energy norm. The definition of error estimators that estimate well dis-
cretization errors of formulations like those is of interest if one seeks (i) to evaluate the
solution accuracy for cases in which no analytical solution is available, which is most (if
not all) the situations of practical interest, and (ii) to improve the solution accuracy by
utilizing adaptive discretization refinement techniques. As presented in Section 1, the
Zienkiewicz and Zhu block-diagonal (ZZ-BD) error estimator [14, 15] is adopted. In sum-
mary, the ZZ-BD is an a posteriori, recovery-based error estimator that uses a recovery
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procedure involving locally weighted L2 projections of raw stresses onto an approximation
space for discontinuous and singular stress fields. Herein, ideas similar to those used in
2-D [15] are applied to second-order pFEM-GFEM formulations used to solve 3-D LEFM
problems. The main features related to the error estimator developed herein are that
(i) linear partitions of unity, associated with only vertices of tetrahedral finite elements,
are used as the weighting ZZ-BD partition of unity, (ii) polynomial recovery enrichment
functions of degree p = 2 are used to reach the same polynomial degree as the one used
to build the approximate displacement field, and (iii) shifted Heaviside functions are used
to mimic the discontinuity of the stress field along the crack surface and gradient of OD
functions [12] are used to mimic the 1/

√
r singularity that happens at the crack front.

Based on these three features, a recovered stress field σ∗(x) can be defined as

σ∗(x) = σ∗
P (x) + σ∗

D(x) + σ∗
S(x). (3)

In this equation, σ∗
P (x) is devoted to representing the piecewise continuous polynomial

part of the recovered stress field and, as mentioned before, is built based on linear par-
titions of unity and 3-D polynomial recovery enrichment functions. Furthermore, σ∗

D(x)
aims to approximate the discontinuity that also happens in the stress field across the
crack surface. This field is herein built based on linear partitions of unity and high-order
Heaviside enrichment functions, as presented in [15]. Finally, σ∗

S(x) aims to approximate
the singularity that happens at the crack front and, in this work, terms of the gradients
of OD functions are used as recovery enrichment functions to build it. As presented in
[15], four linear independent terms of the gradients of all four (2-D) OD functions are
used herein when dealing with problems with planar cracks and straight crack fronts.

Finally, for recovery-based a posteriori error estimators, as is the case of the ZZ-BD,
this recovered stress field σ∗(x) substitutes the exact stress field when computing the
energy norm of the discretization error. This allows one to define a measure known as
estimated discretization error in the energy norm ϵ∗, given by

ϵ∗ =
√
B(u∗ − û,u∗ − û), (4)

with B(·, ·) the bilinear form of the studied variational formulation.

4 NUMERICAL EXPERIMENT AND BRIEF DISCUSSION

As mentioned before, 3-D problems of linear elastostatics that contain strong discon-
tinuities (cracks) are analyzed in this work. The following section presents an example
that aims to assess the accuracy of the proposed error estimator for 3-D LEFM problems
with planar cracks.

4.1 3-D edge crack problem

This problem consists of a rectangular prism,

Ω̄ = [−0.5, 0.5]× [−0.875, 0.875]× [−0.75, 0.75],
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with a through-the-thickness edge crack ΓC , as shown in Fig. 1. This is the same prob-
lem as the one analyzed in [12], in which the second-order pFEM-GFEM summarized in
Section 2 has been applied. A linear elastic material, with Young’s modulus E = 1 and
Poisson’s ratio ν = 0.3, is adopted and uniform tractions, with magnitude σ0 = 0.0025,
are applied at the boundaries in which x2 = −0.875 and x2 = 0.875. These tractions are
also depicted in Fig. 1. Dirichlet boundary conditions are applied to restrict rigid body
motion only.

x1

x2

x3

1.5
0.5

(0, 0, 0)

σ0 = 0.0025

σ0

Explicit representation of
crack surface

Figure 1: Geometry and boundary conditions of the 3-D edge crack problem.

The main objective of the simulations presented in this section is to assess the accuracy
of ZZ-BD estimated errors. This accuracy is measured by the error estimator effectivity
index θ, given by

θ = ϵ∗
/
ϵ, (5)

with ϵ∗ the estimated discretization error in the energy norm (cf. Eq. (4)) and ϵ the exact
discretization error in the energy norm. In this example, since the exact solution is not
known, values of ϵ are computed as

ϵ =

√
2
(
Uref − Û

)
, with Uref = 2.14693601005134× 10−5 (6)

a reference strain energy [12] and Û the approximated strain energy.
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In this section, four structured uniform meshes, obtained by subdividing the sides of Ω̄
by (8×14×12), (16×28×24), (24×42×36), and (32×56×48), are adopted. First, the
problem is solved using the second-order pFEM-GFEM presented in Section 2 and then,
following what is presented in Section 3, recovered stresses are obtained and the estimated
error is computed. To define the recovered stress field, polynomial recovery enrichment
functions are adopted at all mesh vertices. High-order Heaviside functions and terms of
the gradients of OD functions are also used. Figure 2 depicts these enrichments applied
to the mesh (16× 28× 24).

x1

x2

x3

Nodes enriched with
terms of the gradients of
OD functions

Nodes enriched with
both Heaviside and terms of
of the gradients of OD functions

Nodes enriched with
Heaviside functions

Figure 2: Illustration of the (16×28×24) discretization and adopted recovery enrichment functions. Blue
spheres • illustrate vertices enriched with Heaviside functions, red spheres • illustrate vertices enriched
with terms of the gradient of OD functions, and green spheres • illustrate vertices enriched with both
Heaviside and terms of the gradient of OD functions.

The results regarding exact discretization errors in the energy norm ϵ, estimated dis-
cretization errors in the energy norm ϵ∗, and effectivity indexes θ are presented in Table
1. A good accuracy for estimated values of the discretization error is obtained for all
performed analyses and this is inferred by the closeness between the effectivity indexes
and its optimal value of 1. It is noted that [16] recommends 0.8 < θ < 1.2, which is
the case for all simulations performed herein with results presented in Table 1. Based
on simulations not reported here, the same conclusions are obtained when the estimator
is applied to non-uniform meshes, as those used in [12]. These meshes lead to optimal
convergence rates.
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Table 1: Results of exact discretization error in the energy norm ϵ, estimated discretization error in the
energy norm ϵ∗, and effectivity index θ for the 3-D edge crack problem.

Mesh NDoFs ϵ ϵ∗ θ
( 8× 14× 12) 37 971 3.27× 10−4 3.25× 10−4 0.99
(16× 28× 24) 280 515 1.56× 10−4 1.57× 10−4 1.01
(24× 42× 36) 923 391 8.09× 10−5 8.62× 10−5 1.06
(32× 56× 48) 2 160 531 5.21× 10−5 5.79× 10−5 1.11

5 CONCLUSIONS

This work presents an initial contribution towards the development of an accurate and
computationally efficient a posteriori error estimator for 3-D LEFM problems approxi-
mated by second-order G/XFEM formulations. The a posteriori error estimator presented
herein consists of an extension to 3-D problems of what is proposed in [15] in a 2-D set-
ting. Based on the results presented herein, the proposed error estimator presents good
effectivity indexes also for 3-D LEFM problems. Further propositions, including those
related to other singular enrichment functions used in 3-D, mixed mode problems, prob-
lems with non-planar crack surfaces or non-straight crack fronts, and adaptivity guided
by the ZZ-BD error estimator, will be object of future works.
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