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Abstract. Given a heterogeneous material, the mechanical behavior of its microstructure can
be investigated by an algorithm that uses the Fourier representation of the Lippmann-Schwinger
equation. Incorporating a model order reduction technique based on calculations with a reduced
set of Fourier modes, the computational cost of this algorithm can be decreased. It was shown
that the accuracy of this model order reduction technique strongly depends on the choice of
Fourier modes by considering a geometrically adapted rather than a fixed sampling pattern to
define the reduced set of Fourier modes. Since it is difficult to define a geometrically adapted
sampling pattern for complex microstructures, additionally a strain-based sampling pattern was
introduced. The accuracy and adaptability of this strain-based reduced set of Fourier modes is
shown by incorporating a polycrystalline microstructure.

1 INTRODUCTION

Constitutive equations are usually based on a number of assumptions and even with a large
number of material parameters, it is not always possible to fit the developed model to the actual
material behavior. In contrast to that, multi-scale methods allow the consideration of physical
and topological details of an evolving microstructure and thus an accurate representation of the
resulting material behavior. In this context, a method using the finite element (FE) method on
the macroscale and the fast Fourier transform (FFT) method on the microscale was introduced

1



Christian Gierden, Johanna Waimann, Bob Svendsen and Stefanie Reese

in [23] for the simulation of two-phase microstructures, while the FFT-based microstructure
simulation was established by Moulinec and Suquet [17, 18]. An extension of the FFT-based
microstructure simulation and FE-FFT-based two-scale simulation concerning polycrystalline
materials was presented in [14, 15] and [9]. General reviews presenting the state of the art of
the FFT-based and FE-FFT-based methods are given in [22, 16] and [7], respectively.
A drawback of such a highly resolved two-scale simulation is the extensive computational effort.
Therefore, efficient two-scale solution strategies have been introduced using for example a coarse
discretized microstructure for the entire simulation considering small [10] or finite [4] strains, or
using a precomputed database in general and the highly resolved microstructure simulation only
in macroscopic critical areas [12]. Other model order reduction (MOR) techniques are aiming
exclusively at an efficient FFT-based microstructure simulation taking into account a proper
orthogonal decomposition (POD) [2], low-rank tensor approximations [25] or a reduced set of
Fourier modes [11].
The focus of the present paper lies on the FFT-based microstructure simulation based on a
reduced set of Fourier modes. This MOR technique was first introduced considering a fixed
sampling pattern [11]. Since the accuracy of the method strongly depends on the choice of
considered Fourier modes, an improvement in accuracy was achieved by using a geometrically
adapted [5] or a strain-based [6] sampling pattern. In this work, we show how such a strain-
based sampling pattern for the reduced FFT-based microstructure simulation is also suitable to
capture the details of a complex microstructure, such as a polycrystal.
The paper is structured as follows: In Section 2 a brief review of the microstructural relations
considering a polycrystalline microstructure is given. After presenting the approach for the
reduced FFT-based microstructure simulation considering a strain-based sampling pattern in
Section 3, the numerical results are discussed in Section 4. The paper ends with a conclusion
and outlook in Section 5.

2 MICROSTRUCTURAL BOUNDARY VALUE PROBLEM

The quasi-static balance of linear momentum in absence of body forces on the microscale and
taking into account small strain kinematics for a heterogeneous microstructure Ω yields

divσ(x̄,x) = 0 ∀x ∈ Ω , (1)

with the stress σ(x̄,x) = σ(x̄,x, ε(x̄,x),γ(x)) depending on the macroscopic and microscopic
positions x̄ and x, the total strain field ε(x̄,x) and internal variables γ(x). The total strain
field ε(x̄,x) = ε̄(x̄) + ε̃(x̄,x) may additively be split into a constant macroscopic part ε̄(x̄) and
a microscopic fluctuating part ε̃(x̄,x), while the macroscopic stress σ̄(x̄) and strain ε̄(x̄) are
defined via the volume averages of their local fields:

σ̄(x̄) :=
1

V

∫
Ω
σ(x̄,x) dΩ and ε̄(x̄) :=

1

V

∫
Ω
ε(x̄,x) dΩ . (2)

Regarding the constitutive relations, a polycrystalline microstructure is taken into account. For
the sake of clarity, the dependence of all variables on the macroscopic and microscopic positions x̄
and x are not shown in what follows. A general overview of constitutive laws and kinematics for
crystal plasticity is given in [20]. Focusing on elasto-viscoplastic polycrystalline microstructures
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at small strains, the elastic stress-strain relation is defined by the linear relation σ = C : εe with
an additively split of the total strain ε = εe + εp into an elastic part εe and a plastic part εp at
each microscopic position x ∈ Ω. Considering only the dislocation slip as a plastic deformation
process, it is assumed that the evolution of the plastic strain is the sum of the contributions of
the individual slip systems α:

ε̇p =

nslip∑
α=1

γ̇αm
s
α . (3)

Here, γ̇α represents the plastic shear rate and ms
α = 1

2(dα⊗nα+nα⊗dα) denotes the symmetric
Schmid tensor with the slip direction dα and the slip plane normal nα. The plastic shear rate
is assumed to follow a Perzyna-type flow rule [19]

γ̇α = γ̇0 sgn(τα)

〈
|τα| − τ c

τd

〉p
, (4)

while τα = σ ·ms
α is the resolved shear stress within slip system α, τ c is the critical resolved shear

stress and γ̇0, τd and p are the reference shear rate, drag stress and rate sensitivity parameter.
The critical resolved shear stress τ c = τ c(γacc) is depending on the accumulated plastic slip
γacc =

∑
α

∫
|γ̇α|dt and it is assumed to follow the Voce-type isotropic hardening behavior

τ c(γacc) = τ c0 + (τ∞ − τ c0) tanh

(
(h0 − h∞)γacc

τ∞ − τ c0

)
+ h∞ γacc , (5)

with τ c0 , τ∞, h0 and h∞ as the initial critical resolved shear stress, the saturation shear stress,
the initial hardening modulus and the saturation hardening modulus, respectively.
Regarding the numerical implementation, the flow rule (Equation (4)) is discretized using an
implicit Euler scheme, while we use the enhanced power law subroutine introduced in [29]. The
unknown stress σ and critical resolved shear stress τc are obtained by solving the local set of
equilibrium equations (

rσ
rτ

)
=

(
εi+1
e − C−1 : σi

τ i+1
c − τ ic

)
!

=

(
0
0

)
(6)

with i being the iteration number.

3 REDUCED FFT-BASED MICROSTRUCTURE SIMULATION

To solve the microscopic balance of linear momentum (Equation (1)) for periodic microstruc-
tures, the FFT-based simulation approach [17, 18] may be used. Therefore, the polarization
stress τ = σ(ε) − C0 : ε, defined as the difference of the present stress and the stress within
an isotropic homogeneous reference material behavior C0, is introduced [8]. This leads to a
reformulation of the balance of linear momentum as

div
[
τ + C0 : ε

]
= 0 ∀x ∈ Ω , (7)

which may be solved using the Lippmann-Schwinger equation [13]:

ε = ε̄− Γ0 ∗ τ ∀x ∈ Ω (8)
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Here, ∗ represents the convolution integral between the Lippmann-Schwinger operator Γ0 and
the polarization stress τ . To solve this equation, it is transferred into Fourier space

ε̂(ξ) =

{
−Γ̂0(ξ) : τ̂ (ξ) for ξ 6= 0

ε̄ for ξ = 0
(9)

with (̂·) referring to any quantity in Fourier space and ξ representing the wave vector, which
gathers all the considered Fourier modes. The Lippmann-Schwinger operator in Fourier space
is explicitly known as

Γ̂0(ξ) =
1

2

(
Ĝ0
ik ξj + Ĝ0

jk ξi

)
ξl with (Ĝ0

jm)−1 = C0
jkmn ξk ξn for ξ 6= 0 . (10)

Moulinec and Suquet [17, 18] introduced a solution procedure, which makes use of this Fourier
representation of the Lippmann-Schwinger equation and a fixed point solver. In order to decrease
the computational effort of this simulation approach a MOR technique was introduced in [11]
which reduces the computations in Fourier space by taking into account only a reduced set of
Fourier modes. The accuracy of this technique directly depends on the number, but also on
the choice of incorporated Fourier modes. Therefore, in [5] a choice of modes based on the
representation of phases within a two-phase microstructure was introduced. This leads to an
increase in accuracy, especially in the linear elastic case. To further improve the accuracy of the
method for nonlinear material behavior a strain-based choice of Fourier modes was introduced
in [6]. Therefore, the considered sampling pattern is updated after each load step by taking
into account the norm of the strain field of the current load step and transferring it into Fourier
space to define the sampling pattern Sε for the next load step:

Si+1
ε : Use Fourier modes with highest amplitudes of ε̂iL2(ξ) = FFT{||εi(x)||} (11)

Such a strain-based sampling pattern also leads to accurate results when considering complex
microstructures, such as polycrystals, which will be shown in the following section.

4 NUMERICAL RESULTS

Let us consider a polycrystalline microstructure with 100 grains and the material parameters
of copper for a reference shear rate of γ̇0 = 10−3 1/s (cf. [15]) as shown in Figure 1, while the
12 slip systems of face-centered cubic (fcc) crystals are given by dα{111} and nα = [110].

Since we just considered the microscale simulation, we prescribed any macroscopic load, i.e.
ε̄11 = 0.01 and ε̄22 = −0.01, but also any other macroscopic strain would be reasonable. The
investigated microstructure is discretized by n = 255×255 equidistant grid points and the results
of the reduced FFT-based simulation are evaluated by considering the following microscopic and
macroscopic error measurements:

Ē =
||σ̄ − σ̄ref||
||σ̄ref||

and E =
1

n

∑
n

||σ(n)− σref(n)||
||σref(n)||

(12)

Here, (·)ref refers to any quantity of the reference solution in which the full set of Fourier modes
was utilized. In addition, the microstructural stress difference ∆σ11 = |σ11 − σref

11 |, exemplarily
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φ1

180

−180

Figure 1: Microstructure with the ori-
entation of the first Eulerian angle φ1.

Material parameters
C11 = 170.2 GPa, C12 = 114.9 GPa, C44 = 61.0 GPa
τd = 10 MPa, p = 20
τ c0 = 0.1 MPa, τ∞ = 31 MPa, h0 = 51 MPa, h∞ = 1 MPa

for the 11-component, is investigated.
Figure 2 shows the evolution of the norm of the strain field ||ε|| and the identified strain-based
sampling pattern for R ≈ 0.8 % of considered Fourier modes for load steps 2, 20, 50 and 100
(from left to right). In the first load step, the full set of Fourier modes is used. In the beginning,
the material behaves elastically until the critical resolved shear stress is exceeded. Therefore,
the differences within the strain field and thus within the strain-based sampling pattern are
most significant within the first load steps (cf. step 2 and 20). After that, only small differences
occur.
The resulting stress fields σ11 and ∆σ11 of the reduced FFT-based microstructure simulation,

1.0e−4 ||ε|| 2.0e−4 1.0e−4 ||ε|| 3.4e−3 1.0e−4 ||ε|| 2.2e−2 1.0e−4 ||ε|| 4.4e−2

Figure 2: Norm of the strain field ||ε|| and corresponding strain-based sampling pattern with R ≈ 0.8 %
of considered Fourier modes for load steps 2, 20, 50 and 100 (from left to right).

considering R = 0.8 % and R = 11.6 % of Fourier modes and the reference solution are shown
in Figure 3. It can be seen, that even by taking into account only R = 0.8 % of Fourier modes,
the solution for the presented stress field σ11 is quite similar to the reference solution. This
is confirmed by the differences within the microstructural stress field ∆σ11. As expected, by
incorporating a larger amount of Fourier modes, such as R = 11.6 %, these differences become
even smaller.
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Corresponding results can also be seen by looking at the overall macroscopic and microscopic

σ11

85

−20

∆σ11

8.5

0

reference

R = 0.8 % R = 11.6 %

Figure 3: Microstructural fields: Top row: Strain-based sampling pattern for R = 0.8 % and R = 11.6 %
of Fourier modes. Middle row: Corresponding and reference stress fields σ11. Bottom row: Difference in
the stress fields ∆σ11.

errors E and Ē , shown in Figure 4. Both error measures decrease with higher number of Fourier
modes. In addition Figure 4 shows the relative CPU time t. Utilizing R = 0.8 % of Fourier
modes the CPU times may for example be decreased by 60 %.
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Figure 4: Macroscopic error Ē (left) and microscopic error E (right) for the 2D elastic microstructure
with one circular inclusion depending on the percentage of used Fourier modes R for the solution with
the fixed and adapted sampling pattern.
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5 CONCLUSION AND OUTLOOK

We presented the application of the reduced FFT-based microstructure simulation utilizing
a reduced set of Fourier modes for the simulation of complex microstructures, such as poly-
crystals. To bypass the difficulties of defining a geometrically adapted sampling pattern for a
polycrystalline microstructure, we used a strain-based sampling pattern for the choice of con-
sidered Fourier modes. Doing that, a reduction of CPU time of up to 60 % was achieved, while
the microscopic and macroscopic errors are reasonably low.
Up to now, we used the MOR technique only in terms of the basic fixed point scheme, introduced
by Moulinec and Suquet. Since much more efficient solvers are available nowadays, in future
works we will consider the application of using a reduced set of Fourier modes with different
solvers, such as fast gradient methods [1, 21] to reduce the computational costs in general. In
addition, we will show the application of the MOR technique considering a strain-based sam-
pling pattern, which evolves with increasing loading, to evolving microstructures by considering
for example polycrystals incorporating phase transformations [26]. Furthermore, to reduce the
effect of Gibbs oscillations [3] on the convergence behavior, we will also consider first- [27, 28]
and higher-order [24] finite difference approximations of the differential operators within the
spectral solver.
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