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Abstract. Simulation of flow through heterogeneous media often requires discretizing the 
flow domain into blocks and assigning an equivalent block conductivity value to each one 
of them. The process of defining block conductivities from point values is termed 
upscaling. A number of approaches to upscaling are available, most of which consider the 
uncertainty associated with any natural property, so that they cast the problem in a 
stochastic frame. Recently, Indelman and Dagan (1993a, b) provided a general stochastic 
methodology to upscaling in heterogeneous anisotropic formations by means of the 
dissipation energy function; unfortunately, they did not provide any "practical" method to 
compute block values from point ones. The objective of this work is twofold: First, we 
analyze different practical approaches to compute block conductivities and find that all of 
them provide very similar results in terms of actual computed values; second, we check 
that all approaches verify approximately a number of conditions stated by Indelman and 
Dagan (1993a). Specifically, we show analytically that for regular blocks, the 
methodologies of both Rubin and G6mez-Hernfindez (1990) and Desbarats (1992) (which 
we call "practical" methodologies) satisfy the condition that the effective conductivity 
obtained from a field where the elementary conductivities are defined over a certain 
support (we call this the actual formation) is identical to that obtained from the same field 
with conductivities defined at a larger support (upscaled formation). The analysis is 
carried out by working with the logarithm of block conductivities and using a small- 
perturbation expansion and thus is strictly valid for small variances. On the other hand, we 
show numerically that the two methodologies satisfy approximately an important condition 
stated in terms of the dissipation energy: that block-averaged dissipation values computed 
are indeed very close to the true dissipation values in each block. The agreement is even 
better if we consider statistical moments instead of point values. As an important 
conclusion we should note that all practical methodologies considered in this work 
perform equally well and, more important, constitute a simple way to treat an otherwise 
very complex problem. 

1. Introduction 

Heterogeneity is one of the main characteristics associated 
with many variables in nature. It is also one of the most difficult 
aspects in modeling groundwater flow and solute transport, 
both in porous and fractured media. One way of taking into 
account the complexity of the natural media would be to build 
deterministic models which incorporate natural heterogeneity 
in an explicit manner. Because of limitations on available data, 
this approach is not practical in real cases. An alternative is to 
consider natural variables as stochastic processes, character- 
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ized by a few statistical parameters. By using this approach, 
partial differential equations describing groundwater flow and 
solute transport become stochastic differential equations. So- 
lutions for the dependent variables are given also in statistical 
terms. 

One of the questions that arise in groundwater problems is 
how to treat heterogeneity in large-scale aquifer models. In 
some cases we are interested not in accurately reproducing 
aquifer behavior at the local scale, but in studying variables at 
some higher (maybe regional) scale. For that purpose it is 
important to find equivalent parameters, that is, those which 
reproduce the average behavior of the system discretized at a 
certain scale. This scale need not necessarily be the same at 
which we have obtained our measurements (data support). It is 
also important to notice that the average behavior at a given 

867 



868 SANCHEZ-VILA ET AL.: UPSCALING OF HYDRAULIC CONDUCTIVITIES 

scale is not reproduced by arithmetically averaging local values 
of aquifer parameters. 

The problem of finding equivalent parameters is termed 
upscaling, because it involves increasing the size of the domain 
over which they are defined. The most important reason for 
upscaling is the necessity of incorporating measurements taken 
at different supports (scales of observation). Another reason is 
a very practical one: Numerical solutions involve partition of 
the aquifers into meshes whose elements cannot be smaller 
than a certain size (in order to be handled by present available 
computers); unfortunately, this size is generally larger than the 
scale of our measurements. A closely related problem, fre- 
quently addressed in the literature, is the determination of 
effective properties in heterogeneous media. Effective param- 
eters are defined as representative values of the mean behavior 
through an ensemble of realizations, while equivalent param- 
eters are associated with a certain geometry and defined as 
spatial averages computed on a single realization. These two 
definitions should converge to the same value for very large 
geometries and under the assumption of ergodicity. 

When we partition the medium into blocks of a certain size, 
we face the following problem: Can we associate an equivalent 
value with each one of the blocks, and, if so, how can we 
compute it? Let us start by considering a large domain where 
a certain parameter (e.g., hydraulic conductivity) is defined at 
each point. Flow takes place in this domain under natural 
conditions. Now, if we partition the domain into blocks, we 
want to assign a value, termed upscaled, to each one of them, 
so that flow is "well" reproduced. At this point, a fundamental 
question arises about the uniqueness of the definition of block 
conductivity. In reality, we may have different definitions of 
equivalent parameter depending on what aspect of the behav- 
ior of the actual aquifer we want to reproduce. We have to 
acknowledge that upscaling will lead to a loss of information 
regarding the local scale, as we eliminate heterogeneity at 
scales smaller than the block size. As a general rule, we would 
like to reproduce the global behavior of the aquifer, while 
keeping the local behavior as close as possible to reality. Let us 
start by considering a certain parallelepipedic domain (block) 
inside a larger aquifer. We can extract this block and apply a 
head difference (AH) between two opposite faces (two lines in 
two dimensions), while applying a no-flow condition to the 
remaining boundaries. If the total flow through the block is Q, 
it is easy to define a block permeability, K b - Q/AH, which 
reproduces the global behavior. The main problem is that this 
definition is linked to the choice of boundary conditions, so 
that when we put the block back into the aquifer, the real 
boundary conditions are not as simple. Some alternative defi- 
nition must be sought. 

Indelman and Dagan [1993a, b] proposed a definition for 
block permeability (Kv) based on the concept of energy dissi- 
pation. They defined K V as a tensor which satisfies the follow- 
ing property: Energy dissipated at the block under natural 
boundary conditions is equal to the volumetric average of 
energy dissipated throughout the block. This definition is phys- 
ically correct, but mathematically difficult. The main problem 
arises from the fact that for a single flow field, one cannot 
derive the full tensor for each block from the exhaustive point 
K distribution. The reason is that the number of unknowns 

exceeds the number of equations. For that matter, equality can 
only be established in statistical terms (i.e., the first two statis- 
tical moments of energy), and even so, in many cases the 
structure of the tensor must be postulated, in order to reduce 

the number of independent unknowns. This indeterminacy in 
the exhaustive information case can be eliminated by using a 
different approach, the one by Rubin and G6mez-Herndndez 
[1990]. These authors selected a block in the real aquifer and, 
under natural conditions, computed average flow and average 
head gradient. They defined block permeability (K•,) as the 
tensor that relates both averages. This system cannot provide a 
unique solution, as the number of unknowns exceeds the num- 
ber of equations. To avoid this problem, the authors assumed 
K•, to be a scalar, so that flow and gradient volumetric averages 
are colinear. This methodology reproduces well the behavior 
of the whole aquifer, but at the same time provides a good 
representation of piezometric heads, whenever natural condi- 
tions are kept. It is not clear, however, that the same value 
would be obtained when these conditions are changed. 

From the previous paragraph, it is clear that a simple solu- 
tion cannot be found for the general case. In many situations, 
however, we deal with less complex problems, where the me- 
dium can be considered statistically isotropic (this is particu- 
larly true in two-dimensional media) and we partition it into 
blocks of regular shape. In this case, although we recognize 
that block permeability must still be defined as a tensorial 
parameter, we assert that for a statistically isotropic medium 
where blocks are either squares (in two dimensions) or cubes 
(in three dimensions) the tensor can be substituted by a scalar, 
providing solutions that are very good when comparing single 
values and excellent in statistical terms. This allows us to use 

simpler methodologies than the one by Indelman and Dagan 
for this simple and most common case. 

The objective of this work is twofold: First, we analyze dif- 
ferent practical approaches to compute block conductivities 
and find that all of them provide very similar results in terms of 
actual computed values; second, we check that all alternatives 
verify approximately the conditions stated by Indelman and 
Dagan [1993a]. In the process we eliminate some inconsisten- 
cies of published findings and give theoretical support to oth- 
ers. 

The paper is structured as follows: Section 2 presents a 
synthesis of different formulations to upscaling that appear in 
the literature, and their similarities are pointed out. Section 3 
is devoted to deriving analytically the statistical moments of log 
block conductivity based on the approach by Rubin and G6- 
mez-Herndndez [1990]. These moments are analyzed for the 
two- and three-dimensional cases separately. Specifically, we 
show analytically that the approaches of both Rubin and G6- 
mez-Herndndez [1990] and Desbarats [1992] satisfy the condi- 
tion that the effective conductivities of upscaled and actual 
formations are identical. Moreover, the moments of log block 
conductivities compare well with those given by other meth- 
odologies. This is demonstrated using a small-perturbation ex- 
pansion, and thus it is strictly valid for small variances. Section 
4 is devoted to numerical simulations in two dimensions which 

are used also to check analytical results from section 3. They 
are found valid at least up to point log conductivity variances 
equal to 1.0. Section 5 is entirely devoted to the numerical 
analysis of the dissipation function for different approaches. 
We show numerically that block-averaged dissipation values 
computed by practical methods are indeed very close to the 
true values. The agreement is even better if we consider sta- 
tistical moments instead of point values. Finally, a summary 
and some conclusions are stated. 
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2. Review of Different Formulations 

of Upscaling: Conjectures 
Literature in equivalent parameters is closely related to a 

problem which has been studied much longer: finding effective 
parameters '-- : •' "-•' tu! saturated" .... We uuw. must keep i,1 mmu tllilt 
under ergodicity, effective and equivalent values should con- 
verge to a unique solution for very large blocks. This is an 
important property because it provides a check to any study on 
equivalent parameters, as the limiting values for very large 
blocks can be obtained independently. Deriving effective pa- 
rameters is a classical problem that has been addressed by 
several authors since Matheron [1967], who quoted previous 
work from the Russian literature by Schvidler [1962]. Their 
work was carried out using analytical perturbation methods in 
infinite, ergodic, isotropically correlated fields. Their main re- 
sult was that for constant mean parallel flow in a two- 
dimensional infinite domain with stationary random function K 
of isotropic correlation structure, the effective hydraulic con- 
ductivity ref t was equal to the geometric mean of point values, 
KG. Gutjahr et al. [1978] expanded this work to one and three 
dimensions. Gelhat and Axness [1983] included anisotropic cor- 
relation structures. Dagan [1982] obtained similar values using 
a self-consistent approach. Others have relaxed some of the 
assumptions made by the above authors. Dagan [1982] and 
Kitanidis [1990] have studied gradually varying mean flow. Loa- 
iciga et al. [1993] considered the presence of trends in mean K. 
Naff [1991] analyzed radial flow. Neuman and Orr [1993] car- 
ried out a very comprehensive study where among many other 
things, they analyze the existence and properties of Kce in 
bounded domains, by explicitly taking into account boundary 
conditions. Their work has been expanded by E. K. Paleologos 
and S. P. Neuman (The effect of prescribed head boundaries 
on the effective hydraulic conductivity under uniform mean 
flow, submitted to Water Resources Research, 1994) for the 
particular case of constant head boundaries. After Smith and 
Freeze [1979], other authors have used numerical simulations. 
For example, Desbarats [1987] analyzed effective permeability 
in sand-shale formations. More recently, a large number of 
authors, since Journel et al. [1986], have used a combined 
analytical-numerical method to estimate effective parameters 
based on a power-averaging formula. G6rnez-Hernt•ndez and 
Gorelick [1989] used this type of formula to analyze a synthetic 
case. Ababou and Wood [1990] found the power-averaged 
value as a function of the different means of K: geometric, 
arithmetic, and harmonic. Desbarats [1992] analyzed the valid- 
ity of the formula for high variances. Ababou [1993] applied it 
for anisotropic heterogeneous formations. 

The literature in equivalent (block) parameters is more re- 
cent and, certainly, not as broad. A review of this literature 
provides us with a number of different approaches to upscaling 
that will be compared throughout the text. For that reason, in 
this section we summarize the most important points of each of 
them, so that the frame in which the rest of the work is carried 
out remains clear from the very beginning. Although we ac- 
knowledge the contributions of many authors to some of the 
approaches, we will denote each of them by the name(s) of the 
principal author(s). The order in which the approaches appear 
is strictly chronological. 

2.1. Approach 1: Darcian Definition 

This approach is outlined in Figure 1. It was introduced in 
the previous section and consists of isolating the block, impos- 
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Figure 1. Derivation of block conductivities. The approaches 
of Rubin and G6mez-Herngndez [1991] and of Indelman and 
Dagan [1993] are based on studying the block in Figure lb 
under the same conditions of the regional flow domain (Figure 
la). The Darcian approach is based on applying the boundary 
conditions indicated in Figure l c. 

inga uniform gradient ((H 2 - H•)/Lx), and computing the 
flow rate across it, using the true values of point conductivity. 
Block conductivity (transmissivity, actually, in a two- 
dimensional medium such as the one in the figure) would then 
be defined as: 

Q/Ly 
gexx = (S 2 _ Hi)/mx (1) 

Q being total flow entering (and leaving) the domain. Notice 
that we have called the conductivity thus defined K .... because 
a different value will be obtained, in general, if the gradient is 
imposed in a different direction. 

This approach is not really based on any single paper, but 
this is what most hydrologists would do when faced with the 
problem of defining an equivalent conductivity and hence we 
state that this could be called a "reasonable" approach. After 
all, (1) simply consists of numerically simulating the experi- 
ment of Darcy, who first defined hydraulic conductivity. 

With the exception of G6mez-Herndndez [1990, 1991], who 
used an approach similar to (1) for defining interfacial trans- 
missivities for finite differences models, no one has used this 
approach to derive theoretical results. This is probably a con- 
sequence of the difficulties associated with establishing the 
covariances between Kexx and heads and point conductivities 
away from the block. In fact, G6mez-Herndndez [1991] was 
forced to derive those covariances numerically, which requires 
much computer time. In this context, one should recall that the 
objective of this type of work is not only defining block K from 
true point values, which are not known in a real case, but 
defining the statistics of block K, which allow practical 
geostatistical work. 

A variation of this approach consists of substituting the 
no-flow boundaries by prescribed head boundaries. Along 
these, heads vary linearly, so that the gradient inside a homo- 
geneous block would be constant. This variation may be re- 
quired when dealing with anisotropic equivalent conductivities, 
something which falls beyond the scope of this work. 

2.2. Approach 2: Rubin and G6mez-Herm•ndez [1990] 

Rubin and G6mez-Hern•ndez [1990] provided the pioneering 
paper on the topic of block conductivity. By considering two- 
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dimensional flow, isotropic covariance structure, and square 
blocks, they gave the classical definition of block conductivity 
(considered to be a scalar) as the ratio between the average 
local flow and average gradient in a block of a certain size, both 
of them computed in the direction of the expected head gra- 
dient value (their equation (5)). So, they defined block con- 
ductivity Kt, as 

( Kb •xx dV = - qx dV 
v 

(2) 

where V is the block, Kt, block conductivity, qx local flux 
(Darcy's velocity) in the direction of the mean flow gradient, 
and Oh/Ox piezometric head gradient in the same direction, 
where h(x) is the solution of the flow problem, within the 
heterogeneous block, under uniform mean head gradient. The 
justification for this formula was not given, but if Darcy's law is 
averaged over the block, while assuming that average gradients 
in the exact and block-averaged domains are similar, then 

qx = Kxxjx + Kxyjy (3) 

qy = Kyxjx + Kyyjy (4) 

where Jx = Oh/Ox and the overbar stands for block averages. 
If the mean gradient is uniform and in the X direction, then 
symmetry considerations ensure (Kxy) = 0. This lends some 
support to the simplification of colinearity between q and Vh 
that is assumed in (2). 

In fact, (2) was originally derived in a vectorial form [Rubin 
and G6mez-Herndndez, 1990, equation (5)] and can only be 
used if average flux is parallel to average head gradient. The 
authors circumvented this problem by stating that in an isotro- 
pic medium they are indeed parallel. As shown by Indelman 
[1993], this need not be the case. G6mez-Herndndez [1991] 
solved the problem by using a tensorial block conductivity. 
Another possibility for avoiding ambiguities is by working with 
averages of projections over a given direction d. By multiplying 
both sides of the original equation in vectorial form by d, 
can be expressed as 

f• qd dV 
Kb = - •v Vhd dV (5) 

Now, taking d -- (1, 0) = Vx, these two quantities can be 
simply obtained as 

•.qd dV = fr xqn dF = Q•x• + Q2x2 + Q3XG3 + Q4XG4 
(6) 

fvVhddV= frhdndr- fvhV'ddV=(2-l)Ly 
(7) 

where Qi = fv, qn dF is the flow rate across the ith boundary 
and x Gi is the center of gravity of the boundary fluxes (see 
Figure lb). Rearranging terms and considering that 5; Qi - 0, 
we can rewrite (6) as 

f qd dV = Q• - Q2 2 
v 

-- Lx + 2 (xG3 -- XG4) 

+ (Q3 + Q4)( xG3 + xo4 2 x• + x2) 2 (8) 

The last term should be small both because Q3 -• -Q4 (what 
enters from the top will leave through the bottom in smooth 
fields) and because (xG3 + xo4) should be similar to (x• + 
x2). The second term can be neglected whenever xo3 -• xo4. 
Under these conditions, which are expected in a field with 
moderate 0-2v and uniform mean gradient in the X direction, 
Kex x equals Kt,. 

For the flow conditions defined in section 2.1 and Figure lc 
(Darcian approach), Q3 = Q4 = 0 and Q • = - Q2. There- 
fore substituting (6) and (7) into (5) leads to a Kt, value iden- 
tical to Kexx in (1). It is clear that under those conditions, the 
two definitions coincide. 

Rubin and G6mez-Hern•ndez [1990] noted that Kt, coincides 
with Keff for large V. By considering Kt,(x) to be a realization 
of an ergodic random function, they were able to derive the 
statistics (mean and covariance) of this function, both for the 
unconditional and conditional cases. Their work was expanded 
by G6mez-Hernandez [1991], who assumed Kt, (x) to be a multi- 
Gaussian random function and used the previous derivations 
to simulate directly block conductivity values conditioned upon 
measurements at the local scale. In fact, the most important 
point about the method of Rubin and G6mez-Hernfindez is, 
precisely, the possibility of conditioning the block conductivi- 
ties upon measurements taken with different supports. 

2.3. Approach 3: Desbarats [1992] 

Another group of authors use numerical or semianalytical 
approaches to the upscaling problem. Durlofsky [1991, 1992] 
assigns block permeability values in two-dimensional forma- 
tions by numerically averaging the velocity field calculated on 
fine-scale grids over periodic boundary conditions. Desbarats 
[1992] takes an empirical approach which gives surprisingly 
good results. He defines Kr,(x) as a spatial "power average" of 
the point random function K(x) over volume V and analyzes 
the exponent that best fits numerical simulations. He conjec- 
tures that block conductivities can be obtained by a power- 
averaging expression of the form 

Kv= F K(x)WdV (9) 
v 

where w = 0 is equivalent to geometric averaging. The mean 
and variance of Yr- = In Kr, are linearly approximated by 

(¾) + 

Var (Yv) = Cr (11) 

where 

(12) 

and Cy is the covariance function of Y = In K. The covariance 
function of Yr-can also be derived in a simple manner. Based 
on numerical simulations, Desbarats showed that for three- 
dimensional uniform gradient flow, and cubic blocks, co = 1/3 
leads to Kr, values very close to those obtained using (1) (an 
unequivocal sign that he also considers (1) to be reasonable). 
The simplicity of this approach makes it very appealing. More- 
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over, his numerical proof seems unquestionable. For cubic 
blocks, isotropic covariance, and uniform mean gradient, Des- 
barats [1992] showed numerically that the definition of block 
conductivity by Rubin and G6mez-Hermindez [1990] (equation 
(2)) leads to conductivities very similar to those obtained with 
(9). 

Desbarats [1992] based his approach on the usefulness and 
simplicity of the method, but recognized the desirability of 
theoretical support. Moreover, the fact that a rational number, 
1/3, can be found for to suggests some theoretical significance. 

2.4. Approach 4: Indelman and Dagan [1993a, b] 
and Indelman [1993] 

Finally, Indelman and Dagan [1993a, b] considered the gen- 
eral problem of upscaling in anisotropic heterogeneous forma- 
tions with blocks of any shape. They defined equivalent block 
conductivity K as the tensor which maintains energy dissipa- 
tion in a block. That is, energy dissipated at the block under 
natural boundary conditions, computed with the K point values 
from the actual formation, should be equal to the energy com- 
puted with R corresponding to the upscaled formation, under 
natural boundary conditions. In practice, this equality is pur- 
sued only in a statistical sense. Energy dissipation is defined as 
the rate of dissipation of mechanical energy per unit weight of 
fluid and given by e(x) = Vh t ß K- Vh. The approach is based 
on the dissipation energy, a concept that can be considered 
fundamental, because its minimization leads to the flow equa- 
tion. In fact, early work on finite element solutions of the flow 
equation were based on minimizing the numerical approxima- 
tion to the dissipation function (such an approach has now 
been abandoned in favor of the Galerkin method, which is 
easier to generalize). Ironically, some energy is lost when dis- 
cretizing the flow domain, so that numerical dissipation is 
smaller than exact dissipation (this would lead to the contra- 
diction of having to use a K larger than the true K for homo- 
geneous fields). Fortunately, in the tests we have performed 
(radial flow and one-dimensional flow with uniform recharge), 
this difference is negligible for any reasonable discretization. In 
addition to its nice properties (positive-definiteness and addi- 
tivity), the practical reasons for the choice of e(x) are the 
following: (1) If the block dissipation computed in the upscaled 
field, •(x), keeps the statistics (mean and covariance function) 
of the average dissipation in a block •'(x), then the global 
response of the aquifer is identical in the actual and upscaled 
fields. (2) Flow rates and heads should be very close in the 
actual and upscaled fields if •(x) equals •(x) block to block. 

Indelman and Dagan stated a third condition that should be 
satisfied by K, namely, that it should be independent of the 
head gradient. They called this a desirable property and it is 
much richer in content than it seems on a first glance (for 
instance, it is what forced us to use the subindex xx in (1)). 

The problem with this approach is that it does not provide 
any formula to compute K(x) for a given block. As a result, 
comparisons with the other approaches are hard. Therefore we 
will approach the problem indirectly and show that using a 
constant conductivity Kex x indeed maintains the average dissi- 
pation for the simple boundary conditions defined in (1): 

•'exact: LxLy Vhq dV = LxLy hqn dF 
v F 

Q(H2- H•) 

LxLy 
(•3) 

H2- H1 Q 

e(Kexx) = VhKexxVh = Lx Ly (14) 
Therefore according to the third condition of Indelman and 
Dagan [1993a, p. 919], if a Rxx exists, it should be independent 
nf the lncal gradient. Th•q [xx qhr•lrt h• •q,,al tr• /d xx7hir. h 
ensures that the dissipation function is maintained. 

Their study is applicable to parallel uniform average flow. 
They showed that for K to be a scalar random function of 
isotropic covariance, the block has to be isotropic as well, i.e., 
a circle in two dimensions. For other block shapes, K is a 
tensor of anisotropic covariance. Indelman and Dagan [1993b] 
and Indelman [1993] derive the first two moments of upscaled 
permeability for the two most common cases addressed in the 
literature: two-dimensional isotropic and three-dimensional 
axisymmetric covariance and for parallelepipedic averaging 
elements. 

2.5. Summary and Conjectures 

As we have seen, no fewer than four approaches are avail- 
able for the problem of obtaining equivalent block conductiv- 
ities. This is somewhat puzzling. It is clear that the hydraulic 
behavior of a general heterogeneous block cannot be exactly 
reproduced by a single conductivity, whether scalar or tensor. 
Hence one is forced to define block conductivity in some ap- 
proximate way. Depending on the criteria used in the defini- 
tion, one will derive different approaches for computing block 
conductivities. Defining block conductivity independently of 
that of neighboring blocks leads to the Darcian approach. 
Approach 2 is a consequence of ensuring that flux parallel to 
the mean gradient is equal in the actual and upscaled forma- 
tions. Approach 3 is the result of seeking a simple averaging 
equation that maintains global behavior (i.e., flow rates) in the 
upscaled medium equal to that of the aquifer. Finally, ap- 
proach 4 is based on imposing preservation of dissipation en- 
ergy. While one would be tempted to make statements regard- 
ing the relative merits of the approaches, the discussion 
presented thus far suggests that they are indeed very similar. 

We find it puzzling that this apparent similarity has not been 
reflected in the literature, thus far. In fact, some of the pub- 
lished findings are rather disturbing. For example, Indelman 
[1993] concluded that the expected value of conductivity for 
square blocks is anisotropic, even for isotropic covariances. No 
theoretical support exists for the appealing approach by Des- 
barats. Indelman and Dagan [1993] stated that the effective 
conductivity derived from the upscaling of Rubin and G6mez- 
Hermindez [1990] is different from that derived from point 
values. Rubin and Gbmez-Hermindez [1990] concluded that 
(Kt,) decreases with block size. Some of these apparent puzzles 
may be caused by the fact that Rubin and G6mez-Hernfindez 
worked with Kt,, instead of Yt, = In Kt,. Hence our first task 
will be to derive the statistics of Yt, using the definition of 
Rubin and G6mez-Hernfindez. This choice is not based on any 
assumption about the superiority of this method, but rather on 
the fact that it is the most manageable. In any case, such an 
approach will suffice to solve the above puzzles, as shown in the 
next two sections. The rest of the paper will be devoted to 
verifying the conjecture about the similarity of all approaches. 
This will be achieved numerically for the most part, but we will 
prove analytically that working with Kt,, as defined by Rubin 
and G6mez-Hermindez [1990], indeed keeps the expected value 
and covariance function of the average dissipation function. 
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3. Proposed Methodology and Statistics of Yo 

3.1. Analytical Developments 

This section is devoted to deriving the statistics of Yb based 
on the definition by Rubin and G6mez-Herndndez [1990] (sec- 
tion 2.3). The starting point will be (3) which can be written in 
a shorter form: 

qi(x) = -gb(x)ji(x) i = 1, "', n (15) 

where the overbar stands for volumetric average, j(x) is our 
notation for head gradient, n is dimensionality of the problem, 
and q(x) represents flow at the local scale, which is given by 
Darcy's law: 

q(x): -K(x)j(x) (16) 

where K(x) is point hydraulic conductivity value, taken as a 
scalar. 

Considering mean gradient uniform and parallel to the x 
direction and expanding both q(x) and j(x) in their expected 
value plus a perturbation (in a classical small-perturbation 
approach; e.g., see Dagan [1989]), we get 

(qi) + q•(x) = --gb(x)[(ji) + iS(x)] (17) 

where (q 1) and (J l) (which do not depend on x for the uni- 
form mean flow case) stand for expected values of q(x) and j(x) 
in the x direction; the rest of the elements of the expected 
value vectors are equal to zero, and primed values are pertur- 
bations. By projecting (17) in the direction of the mean flow, 
considering Y(x) = In K(x) and expanding it also into a mean 
(Y) (which is taken as constant throughout the domain) plus a 
zero-mean perturbation Y'(x), G6mez-Herndndez [1991] ar- 
rives at the following expression for Kb(X): 

i y, 2(x ) + (Y' (x)j[(x) Kb(X) -- KG 1 + Y' (x) + 7 (-f•) 

- Y'(x)/[(x)) 1 (18) 
Now, taking logarithms, 

1 y, 2(x ) Yb(X) =lnKG+ln 1 +Y'(x)+• 

] + (-f•) (Y'(x)j[(x) - Y'(x)/[(x)) (19) 
and assuming again small perturbations, we can write 

1 
' Y'2(x) + (Y' (x)j[(x) Yb(X)- In Ko + Y' (x) + • (-•1) 

1 2 

- Y'(x) j[(x)) - •(Y'(x)) + O(0-}) (20) 
Treating Yb(X) as an ergodic random function, we can derive 
its first two statistical moments. For its expected value (which 
again does not depend on the location x), and taking into 
account that volumetric average and expected value (averaging 
over the ensemble of realizations) are interchangeable, we get, 
after dropping the terms higher than second order in 0-v 

1 

i O'er .ql_ (Cyjl(O) __ Clo.1) _ 1 (Yb): (Y) + • (-f•) 7Cy (21) 

where Cy and Cyj 1 are short forms of the averages of the 
covariance functions throughout the block V. These short 
forms are given by 

Cr = •-• Cv(x, x') dx dx' (22) 

C•O, = V2 Cv,(x, x') dx dx' (23) 

Cyjl(X , X t) is the cross covariance (Cyjl(O) -- Cyjl(X , x) being 
the cross variance) between Y(x) and a/ax'[h(x')]. This can 
be expressed as a function of the cross covariance between 
Y(x) and h(x') (that is, Cyh(X, x')) by 

O 

Cv(x, x') = (Y' (x)j[(x')) = Ox • Cyh(x, x') (24) 

and as Cui(0 ) = -(0-}/n) (1'1) for the case of statistical 
isotropy [e.g., Gutjahr et al., 1978], (21) can be rewritten 

(Yb) = (Y) + 5- 0-}- (--•) Cvj,- • Cv (25) 
This formula is independent of block shape. Later, we will find 
a simplified result for the particular case of squared or cubic 
blocks. Now we want to derive the corresponding second-order 
moments; for that purpose we first obtain the perturbation 
term: 

Y;(x) = Y' (x) + 0(0-}) (26) 

From here we can find the covariance function, which is given 
by 

= (Y;(x)Y;(x')) = (Y' (x) Y' (x')) 

= V2 Cv(x, x') dx dx' + 0(0-}) (27) 
x) x,) 

where V(x) is the symbol for a volume V centered at point x. 
From this expression we can directly find the variance by just 
making V(x) = V(x') and thus getting, after dropping the 
terms higher than second order in o-v, 

0-}b = Cy (28) 

The variance of Yb (X) with respect to block size is plotted in 
Figure 2 for the three most common variogram models (expo- 
nential, spherical, and Gaussian) for a two-dimensional isotro- 
pic case and squared upscaling blocks. In this and the following 
figures, block size is normalized by the integral scale I. Inte- 
gration of the covariance function corresponding to (22) was 
carried out numerically using a Gauss-Cauchy algorithm with 
16 Gauss points per square. It can be seen that in plotting 0 -2 
(normalized by 0-}) versus block size, the three variogram 
models give very similar curves (particularly for large block 
sizes). Equation (28) can also be written as 

0-•b = a0-• (29) 

where a - Cv/0-2v is a function of normalized block size and 
variogram model selected, as shown in Figure 2. 

The limiting cases can be easily obtained. For very small 
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Figure 2. Normalized variance of Y•,(o'•%/o'}.) versus nor- 
malized block size for three different variogram models of Y in 
a two-dimensional domain. 

blocks we have V -• 0, Cv = o-} and Cyj 1 : --(o-•/rt)(jl), 
so that 

lim (Yb)= (Y) (30) 
V-->0 

lim o-2vb = o-2v (31) 
V-->0 

On the other hand, when V --> •, Cv = Cvi• - 0, leading to 

lim (Yb)= (Y) + o'2v 5- (32) V-->o• 

lim o-2vb -- 0 (33) 
V-->o• 

As a result, we get that for small blocks (at the point scale), 
block and point values coincide (as should be the case). For 
very large blocks, (32) and (33) imply that Y•, tends to a single 
deterministic value (the variance tends to zero) so that 

lim Kb = exp (lim (Y•)) -- KG exp o-2v •- V--• V-->o• 

(34) 

which is exactly the value for the effective hydraulic conduc- 
tivity derived by Gutjahr et al. [1978], among others, for statis- 
tically isotropic media, written in an exponential form (as sug- 
gested by Gelhar and Axness [1983]). In short, these results 
validate (25) and (28), at least for the limiting cases. 

The next step is to go back to (25) and develop a simplified 
expression for the simple shapes analyzed in this work (square 
and cubes). For this purpose we need to relate Cyi • to Cv. This 
is carried out in Appendix A, where it is found that for square 
(n = 2) or cubic (n = 3) blocks 

9' 1) (35) C• -- 

independent of block size (naturally, block size is already in- 
cluded in the expression of Cv). When substituting this ex- 
pression into (25), we arrive at the following expression 

1 1 

and writing again Cy as ao-•. ((28) and (29)), we get a very 
simple formula: 

(Y•) = (Y) + •- (1 - a)tr2v (37) 
Equations (28) and (37) are the final expressions for the •o 
first statistical moments of Y• for square (n = 2) or cubic 
(n = 3) blocks, valid up to first order in •}. Expressions 
identical to (28) and (37) could also be obtained separately 
from (18) by assuming that Y• is a multi-Gaussian random 
•nction. In this case we can relate the mean and variance of 

Y• with the statistical moments of K• (which were given by 
G6mez-Hem•ndez [1991]) using the following expressions: 

(Y•) = In (K•)- (•d2) (38) 

• = In [1 + (ff•/(Kb)2)] (39) 

and dropping again the terms higher than first order in •}. 
This assumption of multi-GaussianiW of Y• is based on the 
work by Fenton and G•ths [1993], who used a Monte Carlo 
approach to conclude that the probabilistic distribution of 
block conductivities could be considered lognormal up to, at 
least, • = 2.83. The advantage of the derivation adopted in 
the paper (equations (20) and on) with respect to the one 
suggested in the last paragraph is that we avoid the need for 
assumptions about the distribution of Y•. 

3.2. Discussion of the Two-Dimensional Case 

We start by analyzing the statistical moments of Y• devel- 
oped in the previous section for a general case, apply them to 
the two-dimensional case, and move later to the three- 
dimensional case. Substituting n = 2 into (37), we get 

(Y•) = (D (40) 

so up to first order in •}, we obtain 

exp ((Y•)) = Ko (41) 

That is, the expected value of Y• remains constant (up to first 
order in •}) and equal to In Ko, for any size of the averaging 
square block. On the other hand, the variance decreases, going 
from the original point value, •, to zero, as the block size 
increases (equations (29), (31), and (33)). At the limit, for ve• 
large block sizes, we get a Dirac delta distribution for the 
random variable Y•, i.e., a deterministic value, Y• = In Ko 
(which, in this case, coincides with In Ke• ). On the contras, 
(K•) is not invariant with block size; for ve• large blocks, (K•) 
tends to Ko (thus equal to Ke•), as the decrease in the variance 
makes the lognormal and normal distributions ve• similar. 
Instead, for small values, (K•) tends to the arithmetic mean of 
the point K values. This explains the decrease in (K•) versus 
block size obse•ed by G6mez-Hemdndez [1991]. 

If we now consider Y• to be multi-Gaussian, as suggested in 
the previous section, we can derive the upscaled effective con- 
ductivi• reft in a •o-dimensional domain as equal to exp 
((Y•)) = Ko (this is based on Matheron [1967], among many 
others), thus veri•ing one of the conditions stated by Indelman 
and Dagan [1993a], namely, that the effective value in the 
upscaled medium must prese•e that in the actual formation, 
ref t. We must state that this condition is not satisfied if K• is 
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Figure 3. Statistical moments (mean and plus or minus one 
standard deviation) of Yt, as a function of normalized block 
size, for the three-dimensional isotropic case. Variogram 
model for Y is exponential. The asymptotic value of Kt, for 
large blocks is also displayed. 

considered to be multi-Gaussian. Later, we will check the re- 
maining conditions stated by Indelman and Dagan, for a par- 
ticular numerical case. 

Our solution compares exactly with that of Desbarats [1992]. 
Substituting 60 = 0 (corresponding to two dimensions) in (10) 
and (11), we get (29) and (40). 

The last verification of the findings for the two-dimensional 
case arises from comparison with the numerical work pre- 
sented by Fenton and Griffiths [1993]. They showed that the 
mean and variance of block conductivities defined using the 
Darcian approach are closely approximated by (40) and (29), 
respectively. This supports our earlier contention about the 
similarity of the two definitions, namely, (1) and (2). 

3.3. Discussion of the Three-Dimensional Case 

Let us now analyze the three-dimensional case. Substituting 
n = 3 into (37), we get 

•(1 - a)O-2y (42) (¾•) = (¾) + • 
so that, up to first order in cry., we obtain 

exp ((Yb)) = Ka exp ['a(1 - a)o-2v] (43) 
In this case it is found that (Yt,) grows from the starting value 
in the original field, (Y), to the effective value derived in the 
literature (as a = 1 for small blocks and a = 0 for large ones). 
To check our formulation, we can compute Kc• again, as we 
did for the two-dimensional case. By assuming statistical isot- 
ropy of Yt,, we can again use here the formula developed by 
Gutjahr et al. [1978] for the three-dimensional case written in 
exponential form: 

• cr2r•) (44) Ref t = exp ((Yb) + g 

By substituting (42) and (29) in (44) we get 

'- 1 1 ot O.2y) ref t = exp ((r) + •(1 - a)rr} + • 

10'2y) = reft (45) = exp ((Y) + • 

so that the necessary condition stated by Indelman and Dagan 
[1993a] is again verified. Figure 3 shows the statistics of Yt, as 
a function of block size for o-• = 1.0 and (Y) = 0. In the 

figure, we plot the expected value (Yt,) (equation (42)), as well 
as plus or minus one standard deviation (_+o-yb, computed 
from (29)). It is clear from the figure that for very large blocks 
Kt, tends toward a single deterministic value (as the variance 
decreases with block size), which corresponds exactly to the 
effective hydraulic conductivity in a three-dimensional infinite 
domain. This result can only be compared in the analytical 
literature to that given by Indelrnan [1993], since neither Rubin 
and G6mez-Herndndez [1990] nor G6mez-Herndndez [1991] ad- 
dressed the three-dimensional case. Indelman considered that 

the expected value of block conductivity, (K), is an anisotropic 
tensor, even for blocks of cubic shape in isotropic domains, 
with the only exception for the limiting case of small blocks. 
Otherwise, the horizontal component, (•'11), is always larger 
than the vertical one, (K33). In our methodology, (Yt,) is taken 
as a scalar, independent of the mean flow direction, and is 
given by (42). Figure 4 is a comparison between the two for- 
mulations. In the figure we plot the first-order expansion of exp 

1 

((Yt,))/KG (which is equal to i + g(1 - a)o-•. from (43)), for 
the particular case cr2v = 0.5. These values were the same as 
used by Indelman to obtain results for the three-dimensional 
isotropic case with cubic upscaling blocks [Indelman, 1993, 
Figure 8] and thus allow direct comparison. In Figure 4, KG1 
and KG3 indicate the geometric means of the tensoffal com- 
ponents in the horizontal (Kol = KG2) and vertical (KG3) 
directions, given by Indelman. Keg is shown for purposes of 
comparison. It is possible to derive analytically that up to first 
order in cr2v 

KG•KG2Ko3 = (exp (yo))3 (46) 

with the KGi values given by Indelman, and the term on the 
right-hand side given by (43). 

Finally, we should note that our solution compares very well 
with that given by Desbarats [1992], developed from an empir- 
ical averaging rule (equation (9)). By using a value of 60 = 1/3 
in (10) and (11), we can reproduce exactly (29) and (42). In his 
paper, Desbarats found, precisely, that 60 = 1/3 is the best value 
that fits his numerical simulations. This can be taken as a 

numerical proof of our methodology for the three-dimensional 
case. Furthermore, Desbarats stated that the fact that power 60 
turned out to be a rational number suggested some theoretical 
significance. Our findings indeed support this contention. 

o 

• ': KG 1 /KG o \ 

• ".\ ......... KG3/K G 
m '., eq. (43) 

• .•.. Kef I / K G --- 

0. 1. 2. 3. 4. 5. 

Block Size ! I 

Figure 4. Comparison between directional geometric means 
of block conductivity values [Indelman, 1993] with a scalar 
approach (equation (43)), for o-2v = 0.5. Values are presented 
versus normalized block size. 
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4. Numerical Simulations' Check 

on Analytical Developments 
This section is devoted to numerical simulations in two- 

dimensions, intended to confirm (or reject) the analytical re- 
sults derived in section 3. In the next section we will use the 

same simulations to compare the different formulations in 
terms of total energy dissipation. This will allow us to check 
our basic conjecture, the similarity of all methodologies. At 
this point our general idea is to generate a two-dimensional 
heterogeneous hydraulic conductivity field and to use the 
methodology of upscaling with different block sizes to find the 
sample mean and variance of Y•,. These numbers are com- 
pared with the analytical developments in section 3 and found 
to be in excellent agreement. 

The first step consisted of generating a two-dimensional 
field. We considered a square domain, discretized into 420 x 
420 square elements of equal size. Each of them was assigned 
a K value (values defined over this small support will be con- 
sidered as "point values"). The 176,400 values were generated 
with the program GCOSIM3D [G6mez-Herndndez and Journel, 
1993], which uses a sequential simulation algorithm to gener- 
ate realizations from a multi-Gaussian random function. For 

that reason the hydraulic conductivity field was taken as one of 
all the possible realizations from a multi-Gaussian random 
function Y, with constant mean and isotropic, stationary cor- 
relation structure. We used a spherical correlation function, 
with an integral scale equal to 5 units of length. The statistics 
of the generated field are sample mean, Ym = --0.001, and 
sample variance, s2v = 1.005. Skewness in the distribution of 
point Y values was checked by computing the asymmetry co- 
efficient (AC), equal to -0.04 (very close to zero). To verify 
that the input conditions were satisfied, we show the histogram 
(Figure 5) and the raw variograms in the x and y directions 
(Figure 6). This allows us to check both Gaussianity of the 
point values and isotropy in the correlation structure. Despite 
some departures in the variograms from the proposed model, 
we can consider the realization to be representative of the 
input conditions. Figure 7 is a grey plot of the final field; it is 
a four-tone plot, where point K values, classified in quartiles, 
range from solid (high values) to open (low ones). 

I I I 

.... Sample hist. I ......... The0r. pdf ß 

/ 

,r 

Y values 

Figure 5. Probability density function (pdf) corresponding to 
the final Y field generated with GCOSIM3D. The pdf corre- 
sponding to a Gaussian distribution with the same mean and 
variance is plotted for purposes of comparison. 
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Figure 6. Exhaustive sample variograms in the x and y di- 
rections for the final Y field. Model used as input in 
GCOSIM3D is also shown for purposes of comparison. 

The second step involved solving flow in this field for some 
simple predefined boundary conditions. We imposed a con- 
stant mean gradient in the x direction. This is easily done in a 
rectangular domain aligned with the coordinate axis, by impos- 
ing no-flow conditions on the sides parallel to the x axis and 
constant, but different, prescribed head values (H•, H2) on the 
sides parallel to the y axis. Then, the mean gradient (j' •) equals 
(H 2 - H•)/L x, L x being the total length in the x direction. 
The flow solver used was a finite element computer code, 
FAITH [Sdnchez-Vila et al., 1993], which is specially designed 
to solve the steady state flow and transient solute transport 
equations in a two-dimensional heterogeneous medium dis- 
cretized into a very large number of rectangular elements (up 
to a few hundred thousand). 

The final step consisted of computing the K•,(x) values. We 
divided the domain into a series of square blocks, each of them 
comprising a number of the original elements. Since FAITH 
gives, as an optional output, the head value at each node 
and/or the head gradient at each element, the integrals in (2) 
can be approximated by sums over the elements that form a 
block. Hence K•, is given by 

0 

• ge •xx he 
e 

Kb(x): (47) 0 

• •xx he 
e 

where e stands for values computed at the element and the 
sum extends to all elements included in a block V. 

The same process was repeated for different block sizes. 
Statistics of the K•, values thus computed are shown in Table 1, 
which contains the sample mean (Y•,,m), sample variance (s2vb) 
and asymmetry coefficient (AC) of Y•, for different block sizes. 
Also shown in Table 1 is the factor Fb,m, defined as 

Fb,m = exp (Yb,m)/K G (48) 

Equation (41) indicates that under ergodicity, this factor 
should remain equal to one for any block size in a two- 
dimensional case. For blocks larger than 84 x 84 elements, the 
second- and third-order moments were not computed, because 
the number of Y•, values was not enough to obtain meaningful 
statistics. In order to compare sample variances (s2vb) with 
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Figure 7. Final K field with point values classified into quar- 
tiles. The more heavily shaded areas denote higher point K 
values. 

theoretical values (or}.), Table 1 also displays what we note as 
•/ n r corrected variances (s•.•.c). This correction factor accou ts fo 

the difference between "real point values" and "point values" 
at the element size used for numerical computations. Theoret- 
ical statistical moments were derived by assuming a local scale 
which is very small compared to the integral scale. In our 
numerical simulation we considered, for practical reasons, the 
local scale to be one fifth of the integral scale. Thus when going 
to the smallest possible blocks (1 x 1 elements), we are already 
filtering out the variability at smaller scales. As the theoretical 
a for our elements is equal to 0.9413 for the spherical vario- 
gram, the sample variances are corrected by this value. 

A few remarks can be made from Table 1. First, it is clear 
that the mean value remains approximately constant for any 
block size, even though the small-perturbation hypothesis 
(cry. << 1) is not met. In fact, the values of Fb, m never differ 
by more than 0.8% from the theoretical value 1.0, in agree- 
ment with (41). The small differences can be attributed to the 
finite size of the domain and to the nonperfect fit between the 
model and the two directional variograms. A small departure 
of the variograms could account for a slight anisotropy, which 
can cause the mean to deviate from its theoretical value. The 

fit would be much better if we averaged a number of different 
realizations (Monte Carlo), instead of a single one. In any case, 
the agreement can be considered excellent. 

We can now compare the analytical expression for the vari- 
ance of Yo, which is given by (29), with the corrected sample 
variances in Table 1. This is done in Figure 8, where we plot 
theoretical (cr•.o, equation (29)) versus corrected sample vari- 

s 2 ances ( Vo.c)- Although, again, (29) was obtained by consider- 
ing cry. much smaller than one (here it is 1.005), we can see that 
the results tend to agree very well. 

The third important issue to analyze is Gaussianity of the 
block conductivity univariate distribution. We can check this 
assumption in our numerical example by looking at AC values 
in Table 1. In a symmetrical distribution (such as Gaussian) 
this value should remain equal to zero. We can see that AC 
always remains small, except for blocks bigger than 35 x 35 
elements, possibly due to the reduction in the sample size. 
Anyway, a visual confirmation of both symmetry and Gaussi- 

anity can be obtained by the representation of the normalized 
histogram. This is done in Figure 9 for a couple of block sizes, 
10 x 10 and 20 x 20 (corresponding to 2 and 4 times the 
integral scale). In the same plot the theoretical probability 
density functions (pdf) of two Gaussian distributions with the 
same means and variances (taken from Table 1) are displayed. 
Agreement is considered very good. 

5. Numerical Simulations: Check o• Necessary 
and Sufficient Conditions 

As discussed earlier, Indelman and Dagan [1993a] state that 
any upscaling methodology should satisfy a number of condi- 
tions. This section is devoted to analyzing those conditions for 
the different methodologies considered throughout the paper. 

The first step consisted of generating block conductivity val- 
ues. We considered two methodologies: Darcian (section 2.1) 
and Rubin and G6mez-Hern•ndez (summarized in section 
2.2). Desbarats's methodology is not analyzed here, as it was 
already studied in his paper [Desbarats, 1992] and found to be 
very similar to both approaches, at least up to rr} = 1.0. We 
consider again our original heterogeneous field (shown in Fig- 
ure 7) and select a certain block size, 10 x 10 elements (two 
integral scales). The Kv values for the second methodology 
were already found in the previous section (the statistics ap- 
pear in Table 1). For the Darcian methodology we proceeded 
as follows: We selected blocks of size 10 x 10, isolated them 
from the rest of the medium, and solved the flow problem for 
each single block under the conditions stated in section 2.1. 
From here we could obtain the Ke• conductivity values. Figure 
10 shows the correlation between the values obtained by the 
two approaches; the 1:1 line is also plotted. Correlation can be 
considered excellent. We should note again that rr• = 1.0, 
and that the correlation will not necessarily be as good for 
higher variances. 

We now come to check whether the above block conductivity 
fields satisfy the conditions stated by Indelman and Dagan 
[1993a]. The first one is a necessary condition that can be 
stated as follows: The effective conductivity of the upscaled and 

Table 1. Sample Statistics of Yb for Different Block Sizes 

Block 

Size Y•,,m F•,.m s•,o s•,o. c o-•,• AC 
1 x 1 -0.0012 1.000 1.005 0.946 0.946 -0.041 
2 x 2 0.0053 1.000 0.910 0.856 0.887 -0.049 
3 x 3 0.0063 1.006 0.834 0.785 0.830 -0.054 
4 x 4 0.0061 1.007 0.783 0.738 0.772 -0.059 
5 x 5 0.0065 1.008 0.728 0.685 0.717 -0.061 
6 x 6 0.0063 1.007 0.676 0.637 0.662 -0.067 
7 x 7 0.0065 1.008 0.618 0.582 0.610 -0.060 

10 x 10 0.0066 1.008 0.481 0.453 0.467 -0.117 
12 x 12 0.0067 1.008 0.412 0.388 0.386 -0.179 
15 x 15 0.0060 1.007 0.314 0.295 0.291 -0.111 
20 x 20 0.0040 1.005 0.219 0.206 0.190 -0.112 
28 x 28 0.0048 1.006 0.136 0.128 0.110 -0.106 
30 x 30 0.0039 1.005 0.106 0.099 0.096 -0.034 
35 x 35 0.0001 1.001 0.082 0.078 0.071 -0.240 
42 x 42 0.0023 1.003 0.060 0.057 0.050 -0.279 
60 x 60 0.0035 1.004 0.035 0.033 0.035 -0.146 
84 x 84 0.0032 1.004 0.019 0.018 0.022 -0.259 

105 x 105 0.0043 1.005 ............ 
140 x 140 0.0037 1.005 ............ 
210 x 210 0.0036 1.005 ............ 
420 x 420 0.0045 1.006 ............ 
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eq. (29) 
ß ß ß Numerical 

Block Size / I 

16. 18. 

Figure 8. Comparison between Yb variances; corrected (s2•b,c 
in Table t) and theoretical (rr2•b in (29)). 

actual formations must be equal. This was analyzed for the 
approach by Rubin and G6mez-Hernfindez in section 3. The 
last condition, considered as "desirable" by the authors, is that 
the block conductivity should depend only on the statistical 
structure and on block partitioning and not on head gradient. 
It is easy to see that this is verified by the Darcian approach. As 
the two methodologies give very similar values (Figure t0), we 
conclude that indeed both of them provide good agreement of 
the two conditions previously stated. In any case, the condi- 
tions we want now to focus on are the "sufficient" ones, which 
can be expressed in terms of the dissipation function, defined 
in section 2.4. "Sufficient" conditions mean that energy dissi- 
pation in a block should be equal for both the actual medium, 
['(x), and the upscaled medium, a(x). In reality, since both •, 
and •' are random functions, these conditions can only be 
pursued in a statistical sense. Then, equality of the first two 
moments of the random functions becomes a sufficient condi- 

tion for the necessary one. 
For purposes of comparison we first have to compute the 

"true" (reference) dissipation values. We considered again our 
blocks of size 21 x 21. As we already solved the flow problem 

i • i • i • I • i 

........ Gauss pdf 
• B!. 20 x 20 l/l\ 
-- Gauss pdf 

-2. -1. O. 1. 2. 

Y (block) 

Figure 9. Sample-normalized histogram of Yt• for t0 x t0 and 
20 x 20 block sizes. The pdfs corresponding to Gaussian distri- 
butions with the same means and variances are also shown. 

2 

1 

-1 

10 4 10 4 10 ø 101 10 2 
Kb (section 2.2) 

Figure 10. Comparison between block conductivity values 
given by the Darcian (Kexx) and Rubin and G6mez-Hernfin- 
dez's (Ko) approaches. 

under certain boundary conditions, we can obtain the dissipa- 
tion values at the element size, in the actual domain, e(x). 
Now, considering again the total domain divided into blocks, 
we can get dissipation values in a block, •(x, V) (implying that 
•' depends both on location and block size), by simply integrat- 
ing e(x) over the block. We can, then, obtain the mean, •m, 

2 which can be considered good estimators of and variance, s•, 
2 These will be our reference values. Any method- (•) and o-•. 

ology should give values close to these in order to verify the 
"necessary conditions" for the "sufficient" ones. Then, our 
reference option (option 1) to compute • will be 

•e 

•'1(V) •' Z Vhi'Ki' Vhi (49) 
i=1 

where rt e is number of elements in a block (in our particular 
example equal to t00), Ki is conductivity of element i, and Vhi 
is head gradient, considered constant throughout the element. 

The next step is to analyze the two different approaches of 
upscaling cited previously. Therefore our second option for 
computing r, (x, V) is based on using Ko values as proposed by 
Rubin and G6mez-Herndndez [1990]. Then, we replace the 
original K field by the upscaled one and again solve the flow 
problem in the upscaled medium. To avoid numerical differ- 
ences between this option and the previous one, we divided 
each block into 100 squared elements (reproducing the mesh 
at the local scale), but now assigned to each element a value 
equal to K o. We have again a 420 x 420 element domain, but 
only 42 x 42 different values. The new head values will be 
denoted by hø(x). Option 2 will then be to compute •' as 

ne ne 

•2(V)= • Vh•.Kb. Vh•=Kb • Vhf. Vh• (S0) 
i=1 i=1 

where Vh/ø are computed at the element size. 
The third option is based on the Darcian approach. Hence 

we compute block conductivities, K .... and repeat the proce- 
dure explained above, i.e., replace the actual by the upscaled 
medium and again solve the flow problem under the same 
boundary conditions. Head values obtained from this new field 
will be denoted by he(x), so that option 3 becomes 
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Table 2. Comparison of Mean and Variance Values of 
Block Dissipation 

Correlation 

Option e b,m X l 0-2 2 -3 $eb,m X ] 0 Factor (r) 

1 (reference) 1.275 4.07 
2 1.281 3.70 
3 1.277 3.74 
4 1.285 4.16 
Theoretical 1.273 -.. 

0.967 

0.967 

0.995 

•3(V) = • Vh•. rex x ß Vh, e. = rex x E Vh•. Vh• (51) 
i=1 i=1 

The two previous options have in common that flow must be 
solved again and that head gradients are computed at the 
element size. 

The last option we want to consider is a somewhat mixed 
approach. It does not require one to solve the flow problem 
again, but takes the head values from the original field, h(x). 
Then, option 4 to compute energies is 

•'4(V) = //e X (Vh' go' Vh) (52) 

where again Vh are computed at the block size (similar to 
option 1). Although this last option may seem cumbersome, it 
is easy to ascertain that it gives the exact results both for blocks 
with size corresponding to the element, where •'4 = 
Vh-K. Vh = •, and for very large blocks, where •'4 : 
KceVh ß Vh = Kce (/.•)2, which is the exact expression for (e), 
as given in Appendix B, equation (B12). For intermediate 
block sizes, we show in Appendix B that by considering small 
perturbations, the energy function provides the same first two 
moments as option 1, i.e., (•) = (•4) and C•l = C•4 , at least 
up to first order in rr2•. 

Statistical moments of block dissipation are summarized in 
Table 2, where the mean value of block dissipation (et,•), as well 

s 2 as the variance (. eb,n)' is displayed. It can be seen that mean values 
agree very well with theory, with differences that never exceed 1% 
of the reference value. In the same table we also present the 
theoretical value, which is given, for example, in (B12) and (B19). 

Variances also behave quite well with respect to the refer- 
ence value. In general, it can be seen that options 2 and 3 give 
a somewhat smaller value (-•10% smaller), while option 4 
gives a closer one (-•3% error). We have to keep in mind that 
rr2• = 1.0, far from the small-perturbation hypothesis, so that 
the error in this last case can be considered acceptable. An- 
other way to check agreement between the different options is 
to directly compare block energies. For this purpose, we plot in 
Figure 11 block energy values for the reference case with 
respect to the three other options: 2, 3, and 4, respectively. The 
1:1 lines are also plotted for comparison purposes. Remember 
that a perfect correlation here is what Indelman and Dagan 
call "sufficient" conditions. We see again that the best results 
are obtained with option 4. 

6. Summary and Conclusions 
Different approaches to upscaling of hydraulic conductivity 

in isotropic heterogeneous media have been studied for the 
case of square or cubic upscaling blocks. A literature review 
provided at least three practical upscaling approaches and a 

general methodology giving a number of conditions that any of 
them should verify. The three practical methods include a 
Darcian type approach (basically reproducing Darcy's experi- 
ment), power averaging (which reduces to geometric averaging 
for two dimensions), and defining block conductivity as the 
ratio of average flux to average gradient. On the other hand, 

o10 

-2 

oO •p Oo 

o• oO- ø', o 
o •B 

0 '2 10 -1 
e(block) option 1 

-2 

10 '2 

/ 

10 '1 
e(block) option 1 

10 ø 

-2 
10 

10 '2 

o 

e(block) option 1 

Figure 11. Comparison between block energy values given 
by (a) option 2, (b) option 3, and (c) option 4 with respect to 
the reference values (option 1). 
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Indelman and Dagan [1993a] argued that upscaling should be 
based on preserving dissipation energy in the blocks. 

Our work has been motivated by conjecturing that all these 
approaches are indeed very similar. Such a conjecture is based 
both on numerical simulations (Desbarats [1992] in three di- 
mensions and Fenton and Griffiths [1993] in two dimensions) 
and on the analysis of limiting cases, as discussed in section 2. 
The method of Rubin and G6mez-Herndndez [1990] is identical 
to the Darcian one when parallel flow is imposed at the block 
scale (boundary conditions of Figure lc). Under these condi- 
tions, dissipation energy is preserved. In this case, as block con- 
ductivities are independent of flow conditions (a "desirable" con- 
dition), those approaches are indeed the appropriate ones. 

With this motivation in mind, our work can be dMded in V, vo 
parts (somewhat mixed throughout the paper for brevity): first, 
verifying that the three "practical" approaches are very similar 
and, second, showing that all of them preserve, approximately, 
dissipation energy. For the first objective, we have derived the 
statistics of Y•, (equal to In K•,, K•, being computed by Rubin 
and G6mez-Hernfindez's method). By means of a small- 
perturbation approach, we were able to find analytically the 
first two moments of block log conductivity, considered as a 
random function. In the two-dimensional case we found (Y•,) 
= (Y), independent of block size, while in three dimensions, 1 

(Y•,) = (Y) + • (1 - a)o-2v. The variance is given by o-2vb = 
ao-2v, where a is a function of normalized block size (block size 
divided by integral scale), variogram model, and dimensional- 
ity; a is easily obtained by a numerical quadrature. These 
formulas coincide with the ones given empirically by Desbarats 
[1992] and by Fenton and Griffiths [1993]. 

Comparison between the Darcian and Rubin and G6mez- 
Hernfindez's approaches was performed numerically. We 
found them to give very similar values (even more so in statis- 
tical terms), at least up to o-2v - 1.0 (Figure 10). 

Validation of the three "practical" approaches with the pro- 
posal of Indelman and Dagan [1993a, b] is more difficult be- 
cause these authors did not provide any methodology for com- 
puting actual block conductivities from point conductivities. 
Hence we have checked that the "practical" approaches in- 
deed satisfy the conditions suggested by these authors, which 
are of two types. First, to ensure that the statistics of fluxes are 
kept, it is necessary that Keff --- •eff and it is sufficient that the 
mean and covariance function of the block dissipation energies 
are identical in the actual and upscaled fields. Second, to en- 
sure that head statistics are also kept, the actual spatial distri- 
bution of block dissipation energies must be close in the actual 
and upscaled fields. We have shown that the "practical" meth- 
ods meet these requirements in a satisfactory way. 

For one thing, we have shown analytically, under small per- 
turbations, that Keff derived from the statistics of Y•, is identical 
to that derived from the statistics of Y, both for two and three 
dimensions. This result was verified numerically for the two- 
dimensional case. We should stress that Indelman and Dagan 
[1993a] stated the opposite, arguing that Rubin and G6mez- 
Herndndez's [1990] method did not ensure ref t = •eff' In fact, 
this equality is only true if K•, is taken as lognormally distrib- 
uted. Lognormality of K•, was proved numerically in a two- 
dimensional example. 

Deriving the mean and covariance function of block- 
averaged dissipation (•) when using the "practical" methods 
of upscaling is not easy. For the purpose of theoretical deriva- 
tions, we were forced to approximate head gradients computed 
with upscaled permeabilities by block-averaged values of the 

true gradients. With this simplification we have proven that the 
mean and covariance function of the true • are identical to 
those obtained with K•, (Appendix B). 

Furthermore, we checked numerically that the block- 
averaged dissipation computed by the practical methods is 
indeed very close to the true value in each block (Figure 11). 

Some important conclusions can be stated from these re- 
sults. First, all upscaling approaches studied in this work seem 
to provide similar results for block conductivity values, agree- 
ment that is striking in statistical terms. Second, we have found 
that at least up to o-2v = 1.0, simple approaches to upscaling 
that consider block K as scalar give results which can compete 
with the general approach, where K•, is treated as a tensor 
[Fluuctuly• tile ;•C•[./11kl ClOIIL;IUblOII iS ½II-IIV trlle for rathvr ernall 

variances). These are, indeed, good news because, first, the 
methodologies are simple and, second, they allow us to derive 
theoretical results. It should be stressed, however, that treating 
block K as a scalar may not be valid for complex flow fields or 
for larger variances. Certainly, tensorial block K are required 
for elongated blocks. 

Finally, we should stress that one of the most important 
motivations of upscaling is conditioning block values upon 
measurements taken at different supports. At this point, it is 
important to remember that only Rubin and G6mez- 
Hern•ndez's formulation, working either with K•, [G6mez- 
Herndndez, 1991] or with Y•,, as we propose, can handle con- 
ditioning in a direct way. 

Appendix A: Relationship Between Cry, and Cr 
In this appendix we want to derive (35) analytically. The 

starting point is the relationship between Cyh (X, X') and Cy(x, 
x') given, for example, by Dagan [1989, equation 3.3.12]' 

Vj2, Ch(X, X') = --jVx,CCX, X') 
Note that in our formula a minus sign appears, due to the 
difference between Dagan's definition of j --- -Vh, and ours, 
j--- Vh. 

In the simple case analyzed, j --- (j•, 0, 0), so (A1) can be 
rewritten as 

0 

Vx,Cvh(X, x ) -- --j• Ox' Cv(x, x') (A2) 
This is a Poisson type equation which can be solved with the 
aid of Green's functions, so that 

Cyh(X, X') = jl • Cv(x, x")G(x', x") dx" (A3) 

where f• is an infinite domain; integration by parts leads to 

Ch(X, X') = fa CCx, x") 0 • G(x', x") dx" 

We can now use (24) to compute Cri•(x , x'): 
0 

C•i(X , X t ) --- OX ! Cyh(X X t ) 

(A4) 

0 0 = -jl Cv(x, x") -- G(x' x") dx" Ox' • ' 

(A5) 
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If we look at the expression of G(x', x") in an unbounded 
domain, we see that 

G(x', x") -f(Ix' - x"{) (A6) 

so that 

0 0 0 0 

, ,, G(x' x") .... Ox x ' Ox' Ox" f({x' x l) 

OX • X" --X • ) f'(Ix' - x") i•v _ •'1 
X t -- X") 2 

= -f"(]x'- x"l)•;_ 
f ' (lx' - x"]) 

I xt -- X"] 2 

(A7) 

while 

02 0 ( x"-x' ) Ox,, 2 G(x', x") = x' x" • f'(I - [)l•;-•;'l 
(X t -- X") 2 

-f"(lx'- x") Ix;- •i • + 
f ' (Ix' - x"l) 

' - x" 2 

(A8) 

three dimensions). For this particular case, simple inspection 
of (All) allows us to conclude that the same value for the 
n-tuple integral will be obtained if we simply replace (x' - x") 
by (y' - y") or (z' - z". This is so because of the symmetry 
of the integrand and because the integration domain remains 
unchanged. This means that under, and only under, this con- 
dition the second partial derivative 02/0.15 "2 in (A9) can be 
perfectly exchanged with 02/Oy "2 or 02lOg "2. This allows us to 
conclude 

Cv, = j• • Cz(x, x") - V•2,,G(x ' , x") dx" dx dx' 
v 

(A12) 

where n is the dimensionality of the problem. And again, using 
Green's function properties, we can find the final expression: 

Cu• = W• • CCx, x") - •(x' - dx dx' 

11fvfl•Cv(x,x,)dxdx, --jl = -J' •-• n n Cv (A13) 

where/5( ) is the Dirac delta function. This last expression is 
(35), which we were seeking. 

so, we can rewrite (A5) as 

Cvj,(x, x') = j• Cz(x, x") G(x' x" dx" a--•4 , (A9) 

which will prove to be a very useful expression in our next 
derivations. 

Now, what we are really interested in is computing the spa- 
tial average of (A9); i.e., we want to get 

Cv' = V 2 C•j,(x, x') dx dx' 
v 

02 

Ox,, 2 G(x', x") dx" dx dx' (A10) 

This can be expanded using (A8) and assuming Cy(x, x") = 
•(Ix- x"l): 

C u, =j• • #(Ix- x") 

(x' - x" 2 f'(Ix' - x") ß f"(lx'- x"l) Ix' Ix I --_7i•+ ,_ x,,• 

(Ix, x.I ß - - Ix •- •l'J dx" dx dx' (All) 
Let us consider now the case of V being a parallelepiped 

with equal sides (i.e., a square in two dimensions or a cube in 

Appendix B: Check on "Sufficient" Conditions 
for Option 4 

Our starting point is the definition of the dissipation func- 
tion e(x), as given by Indelman and Dagan [1993a], written, 
using the variables in this paper, as 

e(x) = Vh t. g. Vh (B1) 

We want to check an alternative to computing e(x) in a block: 

•'(x) = Vh t' gb' Vh (B2) 

referred to as option 4 in the text. We want to prove that this 
formulation verifies what Indelman and Dagan [1993a] note as 
sufficient conditions: 

(e(x)) = (P(x)) C•(r) = Cs(r) (B3) 

By using a small-perturbation expansion it is easy to show 
[Indelman and Dagan, 1993b] that e(x) can be written, using 
the same variables that appear in the text, as 

(e)=Ko[(1 + •) (j)2 + 2(j) ' (Y'Vh') + (Vh" Vh')] 
(B4) 

e'(x) = Kv[Y'(j) 2 + 2(j). Vh'] = Kv[Y'(j•) 2 + 2(j•)j]] 

(B5) 

Ce(r)- K•[(j•)4Cr(r) + 4(j•)3Crj•(r) 4- 4(j•)2Cj•(r)] 

(B6) 

We have seen in the text that (Y' (Oh'/OXl)) = -(o'•/n)(jl); 
now we want to evaluate (Vh'(x) ß Vh'(x)). For that purpose 
we can use equation 1.4.15 of Dagan [1989], 
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•lh -- (Vh' (x). Vh' (x)) = --[V2Ch(r)]r=0 (B7) 

and using the Fourier transform (FT) technique, 

Ah-- (2 rr)n/2 k20h(k)e -ikr dklr= 0 (B8) 

with k -- ]k], where k is the wave number vector. Now, using 
equation 3.7.13 of Dagan [1989], we can express it by the FT of 
C•,(r), and taking r -- 0, we have 

Ah-- (jl)2 • k•2 (2rr)n/2 •-5 0½k) dk (B9) 

ß ((j[Y') + (j[ ?')) + (j[j[) + 
= KG[ (J•)2(1 +•----})+(j•)(Cv.l(O)+Cv.,) 

Using the properties of differentiation of random functions, we 
know that 

Now we have to distinguish the two- and three-dimensional 
cases; in two dimensions we switch to polar coordinates (k• = 
k cos 0, k 2 = k sin 0), and we get 

Ah,2 = • COS 2 00v(k)k dk dO 

(j•)2 kOv(k) dk ( )2 o• ki 2 2 = • o'} (1 + k212) 3/2 dk 
(j•)2o-•, 

2 (B10) 

In the three-dimensional case, instead, we switch to spherical 
coordinates (k• -- k sin 0 cos •b, k 2 - k sin 0 sin •b, k 3 - k 
cos 0), and we get 

(2•') 3/2 sin 3 0 cos 2 •'v(k)k 2 d• dO dk 

(j•)2 4rr f0 © (2rr) 3/2 3 Ov(k)k 2 dk - 

(j•)2o'•, 

(2 rr) •/2 3 tr} 

3 (Bll) 

02Chh 02Chh 
Cjlj 1 + Cj2j2- OXl 2 Ox22 - --V2Chh (B15) 

where IDagan, 1989, equation 3.3.13] 
02 2 2 

V2VlChh(Xl' X2) -- --(/1) 2 SEX1, X2) (B16) 

Solving this equation with the aid of Green's function, 

V2Chh "- •-• V2Chh(X1, X2) dx2 dxl 

-- • •X32 CI/(x3, x2)G(x1, x3) dx3 dx2 dx• 

- •--5 Cv(x3, x2) • G(x•, x3) dx3 dx2 dx• 

(B17) 

and again using symmetry considerations (as in Appendix A), 
we get 

V2Chh "- --• C½X3, X2) • Vx•3G(x•, x3) dx3 dx2 dx• 

So, in general, Ah,n '-- (j 1)2tr2•/n for n = 2, 3; thus we get our 
final expression for (e) in an isotropic medium 

1 

(e)=Ko(jl)2[l+(• - nl---) rr•] K '2 -- -- eft(11) (B12) ß _1 t3(x• - x3) dx3 dx2 dx• - - -7-c (B]8) 

Our next step is to derive (•,) based on (B2), again by using 
small-perturbation expansion (similar to (16) and (18)), 

t' - VhtKt, Vh = q .j = K((j) + j')- (j) + j' 

y, 2 = (j)'- + (j)'¾, + (j),- , •-+2(j).j +(j).j'y' 

+ (J}' J' Y' + J' ' J'J (B13) 
and as (j) = ((j •), O, O) and taking the expected value, 

So, we can get our final expression, 

2 n n F 

=Kc(j•)2[i+ 
1 

which is the first condition we were seeking. The rest of this 
appendix will be devoted to analyzing the condition on second- 
order moments. For that purpose we have to keep in mind the 
definition of •'(x) given by Indelman and Dagan [1993a, equa- 
tion (6)], which in our notation is 
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•(x) = • e(x') dx' (B20) 
x) 

so that 

C•(x, x') = •-• (e' (x")e' (x"')) dx" dx'" 
x) x') 

= V 2 Ce(x", x'") dx" dx'" = Ce(r) (B21) 
•'(x) •'(x') 

with r = x - x'. By substituting in (B6), we get an expression 
for C, up to first order in 

C• = K2o[(j•)4Cv(r) + 4(j•)3Wvj•(r) + 4(j•)2Cj•(r)] (B22) 

This value must be compared to Cs. Our starting point is (B13) 
and (B14). By subtracting them, we get up to first order 

•' (x) = •(x) - (•) = KG(j•)2Y ' + 2KG(j•)j[ (B23) 

so that 

We = (•' (x)&' (x')) = K2•[(j•)4(Y ' (x) Y' (x')) 

+ 4(j•)3(Y ' (x)/[(x') + 4(/•)2(j•(x) j[(x'))] 

= K2•[(j•)4Cv(r) + 4(j•)3Cv•,(r) + 4(/•)2C•,•,(r)] 

(B24) 

so we see up to first order in o-} 

C•(r) -- Cs(r) (B2S) 

thus verifying the second sufficient condition. 
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