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Abstract

This works encompasses a broad review of the basic aspects of the Discrete Element
Method for its application to general granular material handling problems with special
emphasis on the topics of particle-structure interaction and the modelling of cohesive
materials. On the one hand, a special contact detection algorithm has been developed
for the case of spherical particles representing the granular media in contact with the
finite elements that discretize the surface of rigid structures. The method, named Dou-
ble Hierarchy Method, improves the existing state of the art in the field by solving the
problems that non-smooth contact regions and multi contact situations present. This
topic is later extended to the contact with deformable structures by means of a coupled
DE-FE method. To do so, a special procedure is described aiming to consistently trans-
fer the contact forces, which are first calculated on the particles, to the nodes of the FE
representing the solids or structures. On the other hand, a model developed by Oñate
et al. for the modelling of cohesive materials with the DEM is numerically analysed to
draw some conclusions about its capabilities and limitations.

In parallel to the theoretical developments, one of the objectives of the thesis is to pro-
vide the industrial partner of the doctoral programme, CITECHSA, a computer software
called DEMPack (www.cimne.com/dem/) that can apply the coupled DE-FE procedure
to real engineering projects. One of the remarkable applications of the developments
in the framework of the thesis has been a project with the company Weatherford Ltd.
involving the simulation of concrete-like material testing.

The thesis is framed within the first graduation (2012-13) of the Industrial Doctorate
programme of the Generalitat de Catalunya. The thesis proposal comes out from the
agreement between the company CITECHSA and the research centre CIMNE from the
Polytechnical University of Catalonia (UPC).



Resum

Aquest treball compèn una àmplia revisió dels aspectes bàsics del Mètode dels Ele-
ments Discrets (DEM) per a la seva aplicació genèrica en problemes que involucren la
manipulació i transport de material granular posant èmfasi en els temes de la interacció
partícula-estructura i la simulació de materials cohesius. Per una banda, s’ha desen-
volupat un algoritme especialitzat en la detecció de contactes entre partícules esfèriques
que representen el medi granular i els elements finits que conformen una malla de su-
perfície en el modelatge d’estructures rígides. El mètode, anomenat Double Hierarchy
Method, suposa una millora en l’estat de l’art existent en solucionar els problemes que
deriven del contacte en regions de transició no suau i en casos amb múltiples contactes.
Aquest tema és posteriorment estès al contacte amb estructures deformables per mitjà
de l’acoblament entre el DEM i el Mètode dels Elements Finits (FEM) el qual governa
la solució de mecànica de sòlids en l’estructura. Per a fer-ho, es descriu un procediment
pel qual les forces de contacte, que es calculen en les partícules, es transfereixen de forma
consistent als nodes que formen part de l’estructura o sòlid en qüestió. Per altra banda,
un model desenvolupat per Oñate et al. per a modelar materials cohesius mitjançant el
DEM és analitzat numèricament per tal d’extreure conclusions sobre les seves capacitats
i limitacions.

En paral·lel als desenvolupaments teòrics, un dels objectius de la tesi és proveir al part-
ner industrial del programa doctoral, CITECHSA, d’un software anomenat DEMpack
(http://www.cimne.com/dem/) que permeti aplicar l’acoblament DEM-FEM en pro-
jectes d’enginyeria reals. Una de les aplicacions remarcables dels desenvolupaments en
el marc de la tesi ha estat un projecte per l’empresa Weatherford Ltd. que involucra la
simulació de tests en provetes de materials cimentosos tipus formigó.

Aquesta tesi doctoral s’emmarca en la primera promoció (2012-13) del programa de
Doctorats Industrials de la Generalitat de Catalunya. La proposta de tesi prové de
l’acord entre l’empresa CITECHSA i el centre de recerca CIMNE de la Universitat
Politècnica de Catalunya (UPC).
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Chapter 1
Introduction

Truesdell and Noll in the introduction of The Non-Linear Field Theories of Mechanics
[129] state:

Whether the continuum approach is justified, in any particular case, is a
matter, not for the philosophy or methodology of science, but for the experi-
mental test. . .

The ones that agree on that statement may also agree that the same applies for the
discontinuum approach in which the Discrete Element Method is framed on.

Before the introduction of the Discrete Element Method in the 70’s, lot of effort has
been placed in developing constitutive models for the macroscopic description of parti-
cle flows. However, the continuum based methods fail to predict the special rheology of
granular materials which can rapidly change from a solid-like behaviour in zones where
the deformation is small and rather homogeneous to a fluid-like behaviour with huge
variation and distortion that can be concentrated in narrow areas such as shear bands.
Within the DEM this behaviour, which is driven by the collisional and frictional mech-
anisms of the material, can be simulated at the grain level where each discrete element
corresponds to a physical particle. The quality of the results depends then on the accu-
racy in the representation of the shape of the particles and their interaction.

The DEM is nothing else than Molecular Dynamics with rotational degrees of free-
dom and contact mechanisms. In its first conception, the method was designed for



2 Introduction

simulations of dynamic systems of particles where each element is considered to be an
independent and non deformable entity which interacts with other particles by the laws
of the contact mechanics and moves following the Newton-Euler equations.

The simplicity of the method is in contrast however, with the high computation cost
which, in general, has associated to it due to the large number of particles needed in a
real simulation and the time scales that have to be resolved. Imagine a hooper discharge
problem which may require the computation of millions of particles simulated during
tens of minutes when, at the same time, the phenomena that rules the problem lies in
reproducing the behaviour of individual particles the interaction of which happens in
distances several orders of magnitude smaller than their particle diameter. This implies
that the necessary time steps to be used in the simulation have to be smaller than the
characteristic contact duration.

In this sense, the implementation of the method using massive parallelization is some-
thing of crucial importance. Also the use of simple geometries such as spheres presents
a great difference to other more complex geometries such as polyhedra, NURBS, etc. in
the detection and characterization of the contacts. That is why still today the use of
basic spheres is intensively used.

In many real applications involving granular materials, the interaction with structures
and fluids are present. The employment of the FEM to simulate the structures involved
in those industrial applications can provide better understanding of the problem and,
therefore, could play an important role in the process of design optimization. To that
end an efficient coupling of the method with a FEM-based solver for solids is of special
interest.

Another field of interest of the application of the DEM is the simulation of material frac-
turing. The DEM as a discontinuum-based method has attractive features in contrast
to continuum-based methods in problems where large deformations and fracture are
involved. Many attemps have been done aiming to unify both the modelling of the me-
chanical behaviour of solid and particulate materials, including the transition from solid
phase to particulate phase. Nowadays however, the DEM still presents many drawbacks
and lack of reliability in the modelling of solids. Differently from other particle-based
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methods such as MPM, PFEM or SPH, the DEM shall not be regarded as a discretiza-
tion method for the solution of PDE.

The interest in the Discrete Element Method has exponentially increased since the
publication in 1979 of the first article by Cundall and Strack [24] and is still a hot topic
nowadays. This can be seen in fig. 1.1 where the number of publications related to
discrete element procedures from 1979 to 2016 are displayed. They were obtained from
Google Scholar with the following keywords in the title of the article: ’Discrete Element
Method/Model’, or ’Distinct Element Method/Model’, or ’Using a DEM’ or ’A DEM’
or ’With the DEM’ or ’DEM Simulation’. This does not include all the publications
related to DEM and may introduce other non related articles, however it gives a good
image of the tendency of research in the field.
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Figure 1.1: Number of publications from 1979 to 2016 obtained from Google Scholar
with the following keywords in the title of the article: ’Discrete Element Method/Model’,
or ’Distinct Element Method/Model’, or ’Using a DEM’ or ’A DEM’ or ’With the DEM’
or ’DEM Simulation’.

There is a great interest in the application of this method to a wide range of industrial
problems.
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1.1 DE-FE couplings

The term coupled DE-FE or combined DE-FE Method for soil and solid mechanics
applications appears in the literature with different meanings and can be quite confusing.
The most common ones are grouped here in 5 categories along with an example figure
(Fig. 1.2). Other categories for DE-FE couplings are for instance coupling with fluids,
thermal problems, etc.

(a) Particle-structure interaction: The two domains are calculated separately and
their communication is through contact models. This is the category in which the
thesis is mainly focused on. It is developed in Section 4.

(b) Two-scale models: These methods solve the problem at two different scales.
The micro-macro transition is accomplished employing an overlapping zone to
provide a smooth transition between a DE model (micro) and a FE material
description (macro). The coupling is achieved by the imposition of kinematic
constrains between the two domains. The original idea was presented by Xiao and
Belytschko [143] for Molecular Dynamics, Wellmann [136] applied it to granular
material while Rojek and Oñate [106] developed it for cohesive materials.

(c) Projection techniques: Coarse-graining, averaging and other projection tech-
niques are used to derive continuum fields out of discrete quantities. To do so,
often a reference mesh is required either for the calculation or simply for the rep-
resentation of the continuum results [64].

(d) Embedded DE on FE: This technique consists on embedding (typically spher-
ical) particles in the boundaries of FE models of solids and structures in order
to detect and enforce the contact [11]. Recently, this technique has been applied
to multi-fracturing in cohesive materials [146]. A FE-based method with failure
or crack propagation models is combined with embedded particles that assist the
detection and characterization of the contact forces.

(e) FE discretization of discrete entities: This category involves methods that use
a FE discretization to calculate the deformation of the particles and solve their
interaction using a DEM-like technique [40]. A particular case is the so called
DEM-Block method [69] which consists on a FE-based Method which elements
are connected through breakable spring-like bounds imitating the cohesive DE
models.
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(a) Particle-Structure (b) Two-scale. Taken from: Labra [63]

(c) Projection onto a FE
mesh

(d) Embedded particles.
Taken from: Zárate and
Oñate [146]

(e) Discretized DE. Taken
from: Gethin et al. [40]

Figure 1.2: Examples of different techniques that combine FE and DE methods

1.2 Objectives

This thesis has been developed in the framework of the first graduation of Doctorats
Industrials de la Generalitat de Catalunya (Industrial Doctorates of Catalonia). The
objectives defined for this work comprise an agreement between the research line de-
termined by the research centre CIMNE in the Polytechnical University of Catalonia
(UPC) and the business objectives of the society CITECHSA which is interested in
the exploitation of a DEM-based software in its application to industrial engineering
problems. In this regard, the objectives involve research, development of a code and
educational and dissemination actions.

On the one hand, the research has to be focused in a deep revision of the state of the art
of the Discrete Element Method in order to analyse and select the existing techniques
that have to be adapted and implemented for the solution of the problems of interest



6 Introduction

which are basically three:

• General application of DEM to granular material handling problems

• Particle-structure interaction

• DE models for the simulation of cohesive materials

The research has to be conducted from a general point of view determining the advan-
tages and drawbacks of the existing methods and proposing new developments that can
improve the state of the art. The theoretical contributions will be communicated by
dissemination actions.

The theoretical research in the above-mentioned topics have to accompanied by its im-
plementation into the open-source code DEMpack (www.cimne.com/dem). The code
will be developed with concerns on efficiency and parallelism as it is devised to be em-
ployed in real application projects. To that end, several GUIs for specific applications
will be developed. This will be done forming part of a larger group of researchers that
contribute to the development of the code.

Finally, the developments will be applied in ongoing projects of the research centre.

1.3 Organization of this work

The document is structured as follows:

After the introduction and the objectives, chapter two reviews the basic aspects of
the Discrete Element Method that will set the basis upon which the developments in the
thesis are established. It includes a revision of the most common contact models and
integration methods. An assessment on performance, accuracy and stability is given to
help choosing the most appropriate integration scheme. The treatment of clusters of
spheres for the representation of non-spherical particles and the contact detection are
also discussed in detail.

Chapter three is dedicated to the contact detection between spherical Discrete Ele-
ments and triangular or planar quadrilateral Finite Elements. The chapter starts with
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a complete review of the state of the art and follows with a thorough description of the
strategy adopted for the global and local detection of contacts. The idea of using an
intermediate fast intersection test is introduced and later proved to be efficient within
an application example. Regarding the local resolution, the novel Double Hierarchy
Method for contact with rigid boundaries is presented. The description of the methods
is equipped with algorithm details, validation examples and limitations analysis.

The fourth chapter introduces the DE-FE coupling for the particle-structure interac-
tion problem. After an introduction to the solid mechanics formulation employed, the
coupled scheme is presented. The key point lies in the communication of the contact
forces, which are calculated by the DE particles, to the nodes of the FEs. The described
procedure proposes the distribution of the forces to all the FEs involved based on their
area of intersection with the particles. Several examples show that this strategy im-
proves the commonly used direct interpolation approach for the case of contacts with
deformable solids or structures. The good functioning of the coupling is assessed by
some tests with special attention placed on energy conservation.

The topic of DE modelling of cohesive materials such as concrete or rock is presented
in chapter five. It begins with an overview of the state of the art of the methods
available for this purpose together with a study of their limitations and capabilities.
After, the model developed by Oñate, Santasusana et al. is described along with appli-
cation examples where the numerical simulations and the laboratory tests are compared.

Chapter six is dedicated to the implementation of the code in the platform Kratos
constituting the DEMpack software together with remarks on the efficiency and paral-
lelitzation of the code.

Finally, the last chapter comprises the conclusions and the outlook of the work.
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model for multifracture analysis of concrete and geomaterials with DEM.

• M. Santasusana, E. Oñate, J.M. Carbonell, J. Irazábal, P. Wriggers. 4th. In-
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Chapter 2
The Discrete Element Method

The Discrete Element Method (DEM) was firstly introduced by Cundall in 1971 [23]
for the analysis of the fracture mechanics problems. Afterwards, in 1979, Cundall and
Strack [24] applied it to granular dynamics. The DEM in its original conception sim-
ulates the mechanical behaviour of a system formed by a set of particles arbitrarily
disposed. The method considers the particles to be discrete elements forming part of a
higher more complex system. Each discrete element has an independent movement; the
overall behaviour of the system is determined by the application of contact laws in the
interaction between the particles.

There exist two main approaches, namely the soft and the hard particle approach. The
soft particle approach is a time-driven method where particles are allowed to inter-
penetrate simulating small deformations due to contact. The elastic, plastic and fric-
tional forces are calculated out of these deformations. The method allows accounting for
multiple simultaneous particle contacts. Once the forces are calculated, the motion of
the particles is earned from the application of the classical Newton’s law of motion which
is usually integrated by means of an explicit scheme. The hard-particle approach, on
the other hand, is an event-driven method which treats the contacts as instantaneous
and binary (no-multi contact). It uses momentum conservation laws and restitution
coefficients (inelastic or frictional contacts) to determine the states of particles after a
collision. These assumptions are only valid when the interaction time between particles
is small compared to the time of free motion. A good review and comparison of the
methods can be found in [59]. This thesis is developed using the soft-particle approach.



12 The Discrete Element Method

The DEM, as a particle method, has been used in a very wide range of applications.
An important decision to take is to select which is the relation between a discrete ele-
ment in the simulation and the physical particles or media in the reality. On the one
hand, the one-to-one approach tries to assign a discrete element to every particle in
the domain. The method describes all the contact and other interaction forces between
particles with a model that only depends on the local relations and does not require
fitting. On the other hand, a very common approach is to simulate granular matter
or other media using discrete elements that represent a higher amount of material than
just one particle. This technique, known as coarse-graining or up-scaling [37], represents
a completely phenomenological approach which does require the fitting of parameters
out of bulk experiments. Both techniques are used to simulate particulate matter that
ranges from powder particles (μm) to the simulation of rock blocks (m).

Common applications of the Discrete Element Method are the simulation of granular
mater in soil mechanics. A soil can deform as a solid or flow as a fluid depending on
its properties and the situation. The use of DEM comes naturally as it can handle
both behaviours of the soil and also account for discontinuous and very large defor-
mations [49, 54, 136]. The DEM adapts also perfectly to the simulation of granular
material handling in industrial processes. Some examples of applications are silo flows
[59, 150], screw-conveyors [99, 100], vibrated beds [4, 21], ball mill processes [56, 84], etc.

Another application which is of special attention in this thesis is the particle-structure
interaction problem. This category encompasses, among others, particle-tyre simulations
[49, 91], shot peening processes [43, 90], impacts with flexible barriers [67], soil-structure
interaction [26, 136], etc. Some examples of applications are presented in section 6.3.

In particle-fluid flow modelling, the difficulty relies on the particulate phase rather than
fluid phase. Therefore, a coupled CFD-DEM approach [149] is attractive because of its
capability to capture the particle physics. This comprehends a large family of applica-
tions which includes gas fluidization, pneumatic conveying flows, particle coating, blast
furnace, etc. [150]. Applications in civil and marine engineering are rock avalanches into
water reservoirs [127], sediment and bed-load transportation in rivers and sea [16, 30, 77],
etc. A comprehensive literature review on the applications of DEM to the simulation of
particulate systems processes can be found in the work published by Zhu et al. [150].
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In recent years the DEM has also been object of intense research to the study of multi-
fracture and failure of solids involving geomaterials (soils, rocks, concrete), masonry and
ceramic materials, among others. Some key developments can be found in [29, 52, 65, 96].
In the cohesive models the contact law can be seen as the formulation of the material
model on the microscopic level. Cohesive bonds can be broken, which allows to simulate
the fractures in the material and its propagation. The analysis of solid materials within
the DEM poses however, a number of difficulties for adequately reproducing the correct
constitutive behaviour of the material under linear (elastic) and non-linear conditions
(section 5).

2.1 Basic steps for DEM

From a computational point of view a basic DEM algorithm consists of three basic steps:

Figure 2.1: Basic computational scheme for the DEM

After an initialization step, the time loop starts. First, the neighbouring particles for
every discrete element needs to be detected (section 2.2) as well as the contact with
rigid boundaries included in the simulation domain (chapter 3). Afterwards, for every
contacting pair a the contact model is applied (section 2.5) to determine the forces and
torques that have to be added to the rest of actions to be considered on a particle.
Finally, given all the forces and the torques, the equations of motion are integrated and
the particle’s new position is usually calculated by means of an explicit time marching
scheme (section 2.6). At this point, new contacts have to be detected and thus, the loop
starts again. This sequence repeats over time until the simulation comes to an end.
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2.2 Contact detection

Due to the method formulation, the definition of appropriate contact laws is fundamen-
tal and a fast contact detection is something of significant importance in DEM. Contact
status between individual objects, which can be two DE particles or a DE particle and
a boundary element (chapter 3), can be calculated from their relative position at the
previous time step and it is used for updating the contact forces at the current step. The
relative cost of the contact detection over the total computational cost is generally high
in DEM simulations. Therefore, the problem of how to recognize all contacts precisely
and efficiently has received considerable attention in the literature [86, 139].

Traditionally, the contact detection is split into two stages: Global Neighbour Search
and Local Contact Resolution. By the application of this split the computational cost
can be reduced from O(N2), in an all-to-all check, to O(N · ln(N)).

Global Contact Search

It consists on locating the list of potential contact objects for each given target body.
There are two main basic schemes: the Grid/Cell based algorithms and the Tree based
ones, each of them with numerous available versions in the literature.

Figure 2.2: Grid/Cell-based structure Figure 2.3: Tree-based structure

In the Grid based algorithms [87, 89, 140] a general rectangular grid is defined dividing
in cells the entire domain (figure 2.2). A simple bounding box (rectangular or spheric) is
adopted to circumscribe the discrete elements (of any shape) and is used to check in a ap-
proximate way which are the cells that have intersection with it. Those intersecting cells,
store in their local lists the particles contained in the bounding boxes. The potential
neighbours for every target particle are determined by selecting all the elements stored
in the different cells where the bounding box of that target particle has been assigned to.
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In the Tree based algorithms [12, 38, 68, 138] each element is represented by a point
p at coordinates Xp. Starting from a centred one, it splits the domain into two sub-
domains. Points that have larger coordinate (X i ≥ X i

p) are placed in one sub-domain
while points with smaller coordinates (X i < X i

p) in the other sub-domain. The method
proceeds for next points alternating every time the splitting dimension i and obtaining
a tree structure like the one shown in figure 2.3. Once the tree is constructed, for every
particle the nearest neighbours is determined following the tree in upwind direction.

Han et al [42] compared the most common Global Neighbour Search algorithms (cell-
based and tree-based) in simulations with spherical particles. Numerical tests showed
better performance for the cell based algorithms (D-Cell [140] and NBS [87]) over the
tree-based ones (ADT [12] and SDT [38]), specially for large-scale problems. It should
be noted also that the efficiency depends on the cell dimension and, in general, the size
distribution can affect the performance. Han et al [42] suggest a cell size of three times
the average discrete object size for 2D and five times for 3D problems. It is worth noting
that, using these or other efficient algorithms, the cost of the Global Neighbour Search
represents typically less than 5 percent of the total computation while the total cost of
the search can reach values over 75 percent [49], specially when the search involves non-
spherical geometries since it requires, in general, the resolution of a non-linear system
of equations (see the case of superquadrics [15, 136] or polyhedra [14, 32, 94]). In this
sense, the focus should be placed on the Local Contact Resolution check rather than on
optimizing the Global Neighbour Search algorithms.

Local Resolution Check

The local contact detection basically consists in determining which of the potential
neighbours found during the global search algorithm constitute an actual contact with
the target particle and to determine their contact characteristics (point of contact, nor-
mal direction, etc.). The case of spheres is trivial (fig. 2.4), contact exists if the following
condition is met:

‖Ci −Cj‖ < Ri +Rj (2.1)

and the normal and point of contact can be easily determined as it will be detailed in
section 2.4.
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Figure 2.4: Spherical particles in contact

The problem of contact determination becomes complex and time consuming when
other geometries such as superquadrics, polyhedra or NURBS are used to represent
the particles or boundaries. A way to improve the efficiency is to take advantage of
the temporal coherence. Normally the duration of a contact is encompassed by several
calculation time steps and therefore the particle positions will only change a little bit.
In this regard, it seems wise to perform the contact detection after several time steps
instead of at every time step aiming to reduce the computational cost that it involves.
However, if the contacts are not determined when the particles start to collide, the in-
dentations will achieve high values which will lead to inaccurate results and numerical
instabilities (section 2.6.4).

A possible solution for this issue is the use of a technique known as Verlet neighbouring
lists [131, 136]. It consists on using enlarged bounding boxes in the global search so that
more remote particles are stored as well. This local Verlet list need no update during
several time steps since the particles move only small distances every step. This way it
can be assured that no contacts are missed along the simulation and the frequency of
the search is reduced. This method is efficient for cases with high dispersion of particles.

In the framework of this dissertation, a basic cell-based algorithm [140] is chosen which
has been parallelized using OMP. The geometries used for the particles are only spheres
or clusters of spheres and thus the local detection is efficient. The treatment of the
contact with FE representing rigid or deformable boundaries is extensively discussed in
chapter 3.
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2.3 Equations of motion

In the basic soft particle DEM approach the translational and rotational motion of
particles are defined by the standard equations for the dynamics of rigid bodies. For
the special case of spherical particles, these equations can be written as:

m ü = F (2.2)

I ω̇ = T (2.3)

where u, u̇, ü are respectively the particle centroid displacement, its first and second
derivative in a fixed coordinate system X, m is the particle mass, I the inertia tensor,
ω is the angular velocity and ω̇ the angular acceleration.

The forces F and the torques T to be considered at the equations of motion (eq. 2.2
and eq. 2.3) are computed as the sum of:

(i) all forces Fext and torques Text applied to the particle due to external loads.

(ii) all the contact interactions with neighbouring spheres and boundary finite elements
Fij, j = 1, · · · , nc, where i is the index of the element in consideration and j the
neighbour index of the entities (particles or finite elements) being in contact with
it.

(iii) all forces Fdamp and torques Tdamp resulting from external damping.

This can be expressed for every particle i as:

Fi = Fext
i +

nc∑
j=1

Fij + Fdamp
i (2.4)

Ti = Text
i +

nc∑
j=1

rijc × Fij +Tdamp
i (2.5)

where rijc is the vector connecting the centre of mass of the i-th particle with the contact
point Pcij with the j-th particle (eq. 2.8). Fij and Fji satisfy (Fij = −Fji). Fig. 2.5
shows contact forces between two spherical particles.
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The rotational movement equation (2.3) is a simplified version of the Euler equations
coming from the fact that a sphere has constant coefficients for its three principal inertia
axes which are independent of the frame. The complete equations can be found in section
2.7 where the case of generic particle shapes is discussed.

2.4 Contact kinematics

The forces and torques that develop from a contact event are derived from the contact
kinematics at the point of contact Pcij. The local reference frame in the contact point
is defined by a normal nij and a tangential tij unit vectors as shown in figure 2.5.

(a) Contact between two particles (b) Contact force decomposition

Figure 2.5: Kinematics of the contact between two particles

The normal is defined along the line connecting the centres of the two particles and
directed outwards from particle i.

nij =
Cj −Ci

‖Cj −Ci‖
(2.6)

The indentation or inter-penetration is calculated as:

δn = Ri +Rj − (Cj −Ci) · nij (2.7)

where Cj, Ci are the centre of the particles and Ri, Rj their respective radius.

The vectors from the centre of particles to the contact point rij
c and rji

c are in general
dependent on the contact model. they should take into account the contribution of each
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particle to the equivalent stiffness of the system. Eq. 2.8 describes the simple case of
two linear springs with different Young’s modulus set in serial:

rij
c =

(
Ri +

Ej

Ei + Ej

δn

)
nij (2.8)

The position of the contact point can then be determined from any of the particles:

Pcij = Ci + rij
c = Cj + rji

c (2.9)

The velocity vij at the contact point is determined by eq. 2.10 taking into account the
angular and translational velocities of the contacting particles, as shown in fig. 2.5.

vij =
(
ωj × rji

c + vj

)
−
(
ωi × rij

c + vi

)
(2.10)

In case of contact with a boundary b, the velocity of the rigid (or deformable) structure
at the contact point has to be determined. If finite elements are used to discretize
the boundaries, typically the velocities can be interpolated from the nodal velocities by
means of the shape functions Nk (see chapter 4). Equation 2.10 is then modified to:

vib =

nb∑
k=0

Nk(Pcib) · vk −
(
ωi × rij

c + vi

)
(2.11)

The velocity at the contact point can be decomposed in the local reference frame defined
at the contact point as:

vij
n =

(
vij · nij

)
· nij (2.12a)

vij
t = vij − vij

n (2.12b)

And thus, the definition of the tangential unit vector becomes:

tij =
vij
t∥∥vij
t

∥∥ (2.13)
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Now the contact force Fij between the two interacting spheres i and j can be decom-
posed into its normal Fij

n and tangential Fij
t components (Fig. 2.5):

Fij = Fij
n + Fij

t = Fnn
ij + Ftt

ij (2.14)

The forces Fn, Ft are obtained using a contact constitutive model. Standard models in
the DEM are characterized by the normal kn and tangential kt stiffness, normal dn and
tangential dt local damping coefficients at the contact interface and Coulomb friction
coefficient μ represented schematically in Fig. 2.6 for the case of two discrete spherical
particles.

Figure 2.6: DEM standard contact rheology

Some of the most common models are detailed in the next section 2.5. The models used
in a combined DE-FE strategy are described in Chapter 4.

2.5 Contact models

The contact between two particles poses in general a complex problem which is highly
non-linear and dependent on the shape, material properties, relative movement of the
particles, etc. Theoretically, it is possible to calculate these forces directly from the
deformation that the particles experience during the contact [55]. In the framework of
the DEM however, simplified models are used which depend on a few contact parame-
ters such as the particles relative velocity, indentation, radius and material properties
such as the Young’s modulus and Poisson’s ratio toghether with some parameters that
summarize the local loss of energy during the contacts.
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The most common model is the so-called linear spring-dashpot model (LS+D) proposed
by Cundall and Strack [24] which has an elastic stiffness device and a dashpot which in-
troduces viscous (velocity-dependent) dissipation. This model, while being the simplest
one, happens to yield nice results as described in the work from Di Renzo and Di Maio
[28] for the case of elastic collisions and in the work of Thornton [125] for the case of
inelastic collisions. This model is described in section 2.5.1.

In a second level of complexity, we find models that derive from the theory of Hertz-
Mindlin and Deresiewicz. Hertz [47] proposes that the relationship between the normal
force and normal displacement is non-linear. Mindlin and Deresiewicz [82] proposed a
general tangential force model where the force-displacement relationship depends on the
whole loading history as well as on the instantaneous rate of change of the normal and
tangential force or displacement. This model was adapted to the DEM by Vu-Quoc and
Zhang [132] and later by Di Renzo and Di Maio [28]. This model is quite complicated
and requires high computational effort. Other simplified models exist [28, 125, 130]
which consider only the non-slip regime of the Mindlin theory [81]. The model pre-
sented in section 2.5.2 is the simplified model by Thornton et al. [125], labeled HM+D.

Other models exist in literature which introduce plastic energy dissipation in a non-
viscous manner. This includes the semi-latched spring force-displacement models of
Walton and Braun [133] which uses, for the normal direction, different spring stiffnesses
for loading and unloading. Similarly, Thornton [123] introduced a model in which the
evolution of the contact pressure can be approximated by an elastic stage up to some
limit followed by a plastic stage.

Unless the contrary is specified, the HM+D contact law will be used in examples of the
thesis. In general, the criterion suggested here is to employ this model with the real
material parameters whenever the physics of the contact have influence in the simulation
results. In other cases, where the details of the contacts are not relevant, both linear and
Hertzian contact laws can be used as a mere penalty technique being the stiffness value a
trade-off between simulation time and admissible interpenetration. The model presented
for the cohesive materials in chapter 5 is an extension of the linear law (LS+D).
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2.5.1 Linear contact law (LS+D)

The model presented here corresponds to a modification of the original model from
Cundall and Strack [24] in which the damping force is included in the way the contact
rheology has been presented (figure 2.6).

Normal force

In the basic linear contact law the normal contact force Fn is decomposed into the elastic
part Fne and the damping contact force Fnd:

Fn = Fne + Fnd (2.15)

The damping part is a viscous force which models the loss of energy during a contact.
It also serves as a numerical artifact that helps to decrease oscillations of the contact
forces which is useful when using an explicit time scheme.

Normal elastic force

The elastic part of the normal compressive contact force Fne is, in the basic model,
proportional to the normal stiffness kn and to the indentation (or interpenetration) δn

(eq. 2.7) of the two particle surfaces, i.e.:

Fne = knδn (2.16)

Since no cohesive forces are accounted in the basic model. eq. 2.16 holds only if δn > 0,,
otherwise Fne = 0. The cohesive contact will be considered in Chapter 5.

Normal contact damping

The contact damping force is assumed to be of viscous type and given by:

Fnd = cn · δ̇n (2.17)

where δ̇n is the normal relative velocity of the centres of the two particles in contact,
defined by:

δ̇n = −(Ċj − Ċi) · nij (2.18)
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The damping coefficient cn is taken as a fraction ξ of the critical damping cc for the
system of two rigid bodies with masses mi and mj connected by a spring of stiffness kn
with:

cn = ξcc = 2ξ
√
meqkn (2.19)

with 0 < ξ ≤ 1 and meq is the equivalent mass of the contact,

meq =
mimj

mi +mj

(2.20)

The fraction ξ is related with the coefficient of restitution en = −δ̇after
n /δ̇before

n , which is
a fractional value representing the ratio of speeds after and before an impact, through
the following expression (see [92]):

ξ =
− ln en√
π2 + ln2 en

(2.21)

Contact duration

The equation of motion describing the collision of particles with the LS+D model in
the normal direction is achieved solving the differential equation resultant from the
application of equation 2.2 in a frame centred at the point of contact:

meq δ̈n = −(knδn + cnδ̇n) (2.22)

Eq. 2.22 can be rewritten as [92]:

δ̈n + 2Ψ(δ̇n) + Ω2
0 δn = 0 (2.23)

Where Ω0 =
√

kn/meq is the frequency of the undamped harmonic oscillator and
Ψ = ξΩ0 = cn/(2meq) is the part accounting for the energy dissipation.

The solution of the eq. 2.22 for the initial conditions δn = 0 and δ̇n = v0 and for the
sub-critical damped case1 (Ω2

0 −Ψ2 > 0 or ξ < 1) reads:

δn(t) = (v0/Ω) e
−Ψt sin (Ωt) with Ω =

√
Ω2

0 −Ψ2 (2.24)

1The cases of critical and super-critical damping yield to other solutions which can be found in [121]
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And the relative normal velocity of the spheres:

δ̇n(t) = (v0/Ω) e
−Ψt (−Ψsin (Ωt) + Ω cos (Ωt)) (2.25)

Now the contact duration can be determined from the condition δn(tc) = 0, which
combined with eq. 2.24 gives:

tc = π/Ω (2.26)

Note that the contact duration does not depend on the initial approaching velocity δ̇n(t)

which is obviously wrong as the formulation is not derived from the theory of elasticity
[55] (see section 4.4 for more details).

The coefficient of restitution can be rewritten as:

en =
−δ̇n(tc)

δ̇n(0)
= e−πΨ/Ω (2.27)

The inverse relationship allows the determination of the parameter cn of the model from
the restitution coefficient en, with the intermediate calculation of Ψ:

Ψ =
− ln en√
π2 + ln2 en

Ω0 (2.28)

Finally, the maximum indentation can be obtained from the condition δ̇n(t) = 0:

δmax = (v0/Ω0)e
−Ψ

Ω
arctan (Ω/Ψ) (2.29)

Note on tensional forces

It has been appointed by different authors [92, 111, 125] that this simple model presents
unrealistic tension force when the particles are separating if the damping force is large
enough (Fig. 2.7). Normally in the implementation of the codes the normal force
is constrained to be exclusively positive, i.e Fn ≥ 0 always, as no tractions occur in
frictional cohesion-less contacts. In this situation the definition of the contact duration
should be modified as it has been derived by Schwager and Pöschel [111].
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Figure 2.7: The different stages of a normal collision of spheres with a viscous damped
model. Taken from: Fig. 1 in Schwager and Pöschel [111]

The determination of the damping coefficients and the maximum indentation vary ac-
cordingly. It is not possible to derive an explicit expression for the damping coefficient
cn in function of the restitution coefficient en. Fitting curves are proposed in [125].

Tangential frictional contact

In the original model from Cundall and Strack [24] the relationship between the elastic
shear force Ft and the relative tangential displacement Δs is defined through a regular-
ized Coulomb model. The update of the tangential force at time step n+ 1 reads:

F n+1
t = min

(
μFn, F

n
t + ktΔsn+1

)
(2.30)

Several authors (including the original paper) calculate the increment of tangential
displacement at a given time step n, Δsn, as

∥∥vij,n
t

∥∥ ·Δt. In our in-house code imple-
mentation it is calculated from the integration of the relative displacement and rotation
in the local frame:

Δsn =
∥∥uij · tij

∥∥ (2.31a)

uij =
(
Θj × rji

c + uj

)
−
(
Θi × rij

c + ui

)
(2.31b)

In the original paper [24] the damping is included only during the non-sliding phase
(Ft ≤ μFn) and it is applied afterwards as an extra force which opposes the relative
velocity. The magnitude of the damping force is evaluated as ct ·

∥∥vij
t

∥∥ where ct the
tangential damping coefficient. In other authors’ works and also in our code implemen-
tation it is chosen to include the dissipation in the check for sliding. In case of sliding
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(Ft = μFn), extra decision on how to distribute the resultant tangential force in elastic
and dissipative part have to be taken. This will not be discussed here. Eq. 2.30 modifies
as:

Ftrial
t = Fn

t + ktΔsn+1 tij + ctv
ij,n+1
t (2.32a)

Fn+1
t = min

(
μFn,

∥∥Ftrial
t

∥∥) Ftrial
t

‖Ftrial
t ‖ (2.32b)

The previous time step forces are transferred from its previous local coordinate frame
to the new local contact frame with a rotation of the force vector (section 2.7.1).

Selection of the stiffness and damping parameters

The selection of the normal stiffness kn is, in the LS+D model, a design parameter. The
general rule of thumb is that the value of kn should be large enough to avoid excessive
particle inter-penetration but at the same time should be small enough to permit rea-
sonable simulation time steps (section 2.6.4) [118].

Cundall and Strack [24] investigated several values for the relation κ = kt/kn in the
range [2/3, 1], obtained from the following expression:

κ =
2(1− ν)

2− ν
(2.33)

The values for the damping in the original paper [24] are selected as a proportion β of
the respective stiffnesses:

cn = βkn (2.34a)

ct = βkt (2.34b)

Normally, the selection of β will be based on the desired restitution coefficient through
eq. 2.19 and 2.21. Alternatively, Schäfer [113] suggests a value of kt equal to two-
sevenths of the normal stiffness coefficient and a damping ct as half of the normal
damping coefficient. Thornton [124], in his turn, suggests a value of kn that yields the
same contact duration as the one predicted by the Hertzian theory (section 2.5.2).



Contact models 27

2.5.2 Hertzian contact law (HM+D)

As introduced in section 2.5, there exist in literature several contact laws under the
framework the Hertzian contact theory [47]. The model chosen for this dissertation is
an adaptation of the one referred as HM+D model in the work by Thornton [125] due
to its balance between simplicity and accuracy in both elastic [28, 124] and inelastic
collisions [125]. This is a model based on the original one by Tsuji [130] in which the
tangential spring is provided by the no slip theory of Mindlin [81].

The magnitude of the normal force can be calculated as:

Fn =
2

3
knδn + cnδ̇n (2.35)

The tangential update has two branches whether the normal force is increasing (load-
ing phase) or decreasing (unloading case). For the loading phase the tangential force
is increased as usual due to the tangential displacement (Eq. 2.36a). In the unloading
phase, however (Eq. 2.36b), the tangential force must be reduced (even with no tangen-
tial displacement) due to the reduction in the contact area. The interpretation of this
is that the previous tangential force can not longer be supported [125].

F n+1
te = F n

te + kn+1
t Δsn+1 for ΔFn ≥ 0 (2.36a)

F n+1
te = F n

te

(
kn+1
t

kn
t

+ kn+1
t

)
Δsn+1 for ΔFn < 0 (2.36b)

Finally, the check for sliding is performed restricting the maximum tangential force to
the Coulomb’s friction limit:

F trial
t = F n+1

te + ctv
ij
t (2.37a)

F n+1
t = F trial

t if F n+1
t < μFn (2.37b)

F n+1
t = μFn if F n+1

t ≥ μFn (2.37c)

The stiffness parameters were described by Tsuji [130] following from the Hertz theory
[47] and the works of Mindlin and Deresiewicz [82]:
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kn = 2E∗√Reqδn (2.38a)

kt = 8G∗√Reqδn (2.38b)

The same for the damping parameters:

cn = 2ξ
√
meqkn (2.39a)

ct = 2ξ
√

meqkt (2.39b)

The expressions presented here (eq. 2.38 and 2.39) are a generalization to the case of
two spheres i and j colliding with different values of R, E, ν and m. This generalization
includes the case of a sphere i colliding with a fixed wall j which will be discussed in
section 2.5.3.

Req = RiRj/(Ri +Rj) (2.40a)

meq = mimj/(mi +mj) (2.40b)

E∗
eq =

(
(1− ν2

i )/Ei + (1− ν2
j )/Ej

)−1 (2.40c)

G∗
eq = ((2− νi)/Gi + (2− νj)/Gj)

−1 (2.40d)

Although the selection of the stiffness has here a physical meaning, it is common practice
however, to diminish its value to increase the calculation speed in simulations where
the correct contact duration and rebound angles are not of capital importance. The
derivation of the force-displacement relationship and the collision time by the Hertzian
theory are described in the Appendix A.

2.5.3 Contact with rigid boundaries

Rigid boundaries are commonly introduced in a DE simulation to model the interaction
of particles with mechanical components that can be either fixed or have an imposed
rigid body motion. Although they are normally discretized with a FE mesh for contact
detection purposes (section 3.1), they are not calculated by means of a FE procedure.
The rheology of a particle i contacting a FE j is presented in figure 2.8.
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Figure 2.8: DE-FE standard contact rheology

Same as for DE/DE contact, Hertzian contact law is preferred to model the contacts
or impacts in a physical basis. Alternatively the linear contact law can still be used
as basic penalty method. The adaptation of the presented Hertzian contact law to the
case of rigid boundaries is straightforward, it simply requires the particularization of the
equivalent contact parameters summarized in 2.40 setting: Rj → ∞ and mj → ∞. The
normal stiffness of the wall is left as an input parameter so that a certain elasticity of
the wall can be modelled. Since the tangential displacement of the wall will be in most
cases much smaller than the particle’s one, it is recommended to be set Gj → ∞ [130].
The equivalent values become:

Req = Ri (2.41a)

meq = mi (2.41b)

E∗
eq =

(
(1− ν2

i )/Ei + (1− ν2
j )/Ej

)−1 (2.41c)

G∗
eq = Gi/(2− νi) (2.41d)

The stiffness and damping parameters are modified accordingly inserting these equiva-
lent values in eq. 2.38 and eq. 2.39. The friction value to be employed in this case is a
new parameter to be introduced, which is characteristic of the contact between the two
materials involved and might be different from the particle-particle friction.

Additionally, special contact laws can be applied which model other effects such as a
specific dynamic response, wear, plasticity, thermal coupling, etc. [1, 66, 104].
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2.5.4 Rolling friction

It should be noted that the use of spherical particles to represent real materials may
lead to excessive rotation. To avoid this effect the rolling resistance approach has been
used. This approach consists in imposing a virtual resistive torque which is proportional
to the normal contact force and opposites the rolling direction. The rolling resistance
torque Tr is defined as;

Tr = −ηrRr|Fn| ω
rel

|ωrel| (2.42)

where ηr is the rolling resistance coefficient that depends on the material, Rr is the
smallest radius of the DEs in contact and ωrel the relative angular velocity of both DEs.
Note that Rr = Ri for the case where particle i is in contact with a wall (Rj → ∞).

An improvement to the classical Rolling Resistance Model A presented by Wensrich and
Katterfeld [137] has been developed by Irazábal [53] in order to avoid the instabilities
that appear when ωrel is close to 0.

2.6 Time integration

The equations of motion introduced in section 2.3 can be numerically integrated to ob-
tain a solution of the problem. Traditionally there are two strategies to achieve this: a)
An explicit scheme where the information at the current (or previous steps) suffices to
predict the solution at the next step. b) An implicit scheme, which requires the solution
of a non-linear system of equations to compute the state at the new time step. The
disadvantage of the explicit schemes is that they require the time step to be below a
certain limit in order to be stable. Implicit schemes instead, are unconditionally stable
and thus, allow for larger time steps.

Some analysis on both implicit and explicit methods for discrete element simulations
showed that the second one is generally preferable [97, 108]. Implicit algorithms turn to
be not efficient for DEM simulations because of the nature of the dynamics of particles
where relatively large motions are simulated combined with very small characteristic
relative displacements between particles during contact events. In order to correctly
capture the dynamics of the contact, the time resolution should be several times smaller
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than the duration of these contacts [108]. Under this condition, the explicit integration
yields sufficient accuracy and the time step is generally below its stability limits (see
section 2.6.4). Following the same reasoning, low order explicit schemes are usually
preferred rather than higher order ones. Another important outcome of the use of an
explicit integration is the easier parallelization of the code and the avoidance of lin-
earization and employment of system solvers.

In other situations where the same contacts are kept for large simulation times, such
as cohesive models for DE (chapter 5), the use implicit schemes can be advantageous.
Otherwise, the stiffness matrices have to be rebuild, in general, at each iteration and
time step due to the formation and destruction of contacts. Amongst the most popular
implicit approaches in DEM is the Discontinuous Deformation Analysis [58].

2.6.1 Explicit integration schemes

In the present dissertation an explicit integration is used. Next, four different one-step
integration algorithms with similar computational cost are described and compared in
this section. The derivation of these methods comes from the application of the Taylor
series approximation to the second order differential equations of motion (2.2) that
describes the problem.

f(t+Δt) = f(t) +
f ′(t)
1!

Δt+
f ′′(t)
2!

Δt2 +
f ′′′(t)
3!

Δt3 + ... (2.43)

Forward Euler

The forward difference approximation of the first derivative of a function reads as:

f ′(t) =
1

Δt
(f(t+Δt)− f(t)) (2.44)

The terms can be rearranged to obtain an integration formula:

f(t+Δt) = f(t) + Δtf ′(t) (2.45)

which is applied to the integrate the acceleration and the velocity respectively:
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u̇n+1 = u̇n +Δt ün (2.46)

un+1 = un +Δt u̇n (2.47)

The truncation error of the Taylor expansion approximations are of O(N2). Hence, the
method is referred to as a first order approximation of the displacement and velocities.

Symplectic Euler

The Symplectic Euler is a modification of the previous method which uses a backward
difference approximation for the derivative of the position:

f ′(t) =
1

Δt
(f(t)− f(t−Δt)) (2.48)

The algorithm is as follows:

u̇n+1 = u̇n +Δt ün (2.49)

un+1 = un +Δt u̇n+1 (2.50)

This way a higher accuracy and order of convergence can be achieved as it is shown in
the numerical convergence analysis performed in the following section 2.6.3.

Taylor Scheme

The Taylor schemes are a family of integration methods which make use of the Taylor
expansion (2.43) to approximate the next values of the variable of interest. If the series
are truncated at the first derivative for the velocity and at the second derivative for the
position, the following integration rule is obtained:

u̇n+1 = u̇n +Δt ün (2.51)

un+1 = un +Δt u̇n +
1

2
Δt2 ün (2.52)

Which is a first order integrator for the velocity and a second order integrator for the
position.
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Velocity Verlet

This algorithm is sometimes simply called Central Differences [10, 86] and some other
times it is interpreted as the velocity form of the Verlet algorithm [108, 119]. It also
coincides with the special case of the Newmark-beta method [93] with β = 0 and γ = 1/2.
The derivation presented here is the same as it is described by Belytschko in [10]. The
central difference formula is written as:

f ′(t) =
1

Δt
(f(t+ 1/2Δt)− f(t− 1/2Δt)) (2.53)

Applying it to the velocity at an intermediate position n+ 1/2:

u̇n+1/2 =
1

Δt
(un+1 − un) (2.54)

and to the acceleration at the time step n:

ün =
1

Δt
(u̇n+1/2 − u̇n−1/2) (2.55)

Inserting equation 2.54 and its counterpart for the previous time step (vn−1/2) into
equation 2.55, the central difference formula for the second derivative of the displacement
is obtained:

ün =
1

Δt2
(un+1 − 2un + un−1) (2.56)

The algorithm follows from the rearrangement of equations 2.54 and 2.55

u̇n+1/2 = u̇n−1/2 +Δt ün (2.57)

un+1 = un +Δt u̇n+1/2 (2.58)

Since it may be necessary to have both velocity and position evaluated at every time
step of the discretization, a split in the calculation of u̇n+1/2 can be performed.

u̇n = u̇n−1/2 + 1/2Δt ün (2.59)

u̇n+1/2 = u̇n + 1/2Δt ün (2.60)
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The implementation of the method is summarized in the following table:

Table 2.1: Implementation of Velocity Verlet algorithm

Initialization of the scheme. n = 0, ü0 = F0/m

while t < tf

Update step: n = n+ 1, t = t+Δt

First velocity update: u̇n+1/2 = u̇n + 1/2 Δt ün

Position update: un+1 = un +Δt u̇n+1/2

Calculate forces Fn+1 = F
(
un+1, u̇n+1/2

)
Calculate acceleration: ün+1 = Fn+1/m

Second velocity update: u̇n+1 = u̇n+1/2 + 1/2 Δt ün+1

This is the selected scheme for the examples in this dissertation.

2.6.2 Integration of the rotation

The particular case of spherical particles simplifies the equations for the rotation of
rigid bodies yielding to equation 2.3. Some authors [61, 95, 133] adapt a simple central
difference scheme to integrate the equations:

ω̇n
i =

Tn
i

Ii
, (2.61)

ω
n+1/2
i = ω

n−1/2
i + ω̇n

i Δt (2.62)

The vector of incremental rotation Δθn+1 is then calculated as:

Δθn+1
i = ω

n+1/2
i Δt (2.63)

Knowledge of the incremental rotation suffices to update the tangential contact forces.
If necessary, it is also possible to track the rotational position of particles, as detailed
in section 2.7.1.
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2.6.3 Accuracy analysis

In this section the error of the different integration methods previously introduced is
addressed by means of accuracy and convergence analysis. Three cases representative of
translational motion occurring in a DEM simulation are analysed here: free parabolic
motion, normal contact between two spheres using a linear contact law and normal
contact between two spheres using a Hertzian contact law. The description of the test
examples is in figure 2.9. A similar analysis has been performed by Samiei [108] for the
comparison of some explicit schemes against implicit integration.

The case of rotational motion is analysed in section 2.7.3 where a higher order scheme
is implemented for the case of a generic rigid body which can be also applied to the
spheres. It is shown that the integration of the rotation equation requires higher order
schemes for similar levels of accuracy as the one-step methods.

(a) Set-up parabolic motion (b) Set-up normal contact

Figure 2.9: Examples for the accuracy and convergence analysis on time integration
schemes
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Parabolic motion analysis

An initial upwards velocity of 1.0m/s is set to a particle situated at the origin of co-
ordinates which moves freely only under the effect of gravity which is set to −10m/s2

during 0.2 seconds.

A numerical integration of the problem is performed with the presented methods and
compared against the analytical solution. The time step is chosen to be a tenth of the
total time so that the error of the methods can be easily observed.
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Figure 2.10: Vertical displacement of a sphere under gravity using 10 time steps

As expected, the velocity is perfectly integrated for any of the analysed schemes since the
acceleration is constant over time (figure 2.11). The position (figure 2.10) is integrated
perfectly by the Taylor Scheme and Velocity Verlet which are second order schemes in
displacement.
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Figure 2.11: Velocity of a sphere under gravity using 10 time steps
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Figure 2.12: Convergence in velocity and displacement for different integration schemes

Figure 2.12 shows that the Forward Euler and Symplectic Euler schemes have a linear
convergence when integrating the position. The convergence is omitted for other schemes
and for the velocity since the algorithmic error is null.
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Normal contact analysis with the LS+D model

Two spheres are set in space with tangential contact (no indentation) and without the
effect of the gravity. One of the spheres approaches the other one with an initial velocity
in the direction of the vector joining the spheres’ centres as depicted in figure 2.9(b).
The linear contact law introduced in section 2.5.1 is applied.

The expression for the maximum indentation (eq. 2.29) for the non-damped case (Ψ =

0) turns into:

δmax = v0

√
meq

kn
(2.64)

And the contact duration (eq. 2.26):

tc = π

√
meq

kn
(2.65)

The simulation is carried out for the different schemes with a time step corresponding
to a contact resolution2 (CR) of 10, i.e. the time step corresponds to a tenth of the
contact duration. The parameters of the simulation are summarized in the following
Table 2.2:

Table 2.2: Parameters for the impact of two spheres with using LS+D

Contact law Linear Contact Law (section 2.5.1)

Radius 0.01 m

Density 100 kg/m3

kn 520.83 kN/m

Restitution coeff. 1.0

V0 0.5 m/s

Contact time 4.17 · 10−3 s

CR 10

2The concept of contact resolution defined as CR = tc/Δt is discussed in section 2.6.4.
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Figure 2.13: Indentation during the collision of two spheres using LS+D with CR = 10
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Figure 2.14: Velocity during the collision of two spheres using LS+D with CR = 10

Both Symplectic Euler and Velocity Verlet accurately approximate the indentation (Fig.
2.13). Regarding the velocity, the Verlet scheme is the one with superior accuracy over
the other schemes (Fig. 2.14).
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Figure 2.15: Convergence in velocity and displacement for the FE and SE schemes

The numerical results for the maximum indentation as well as the exit velocity of the
contact have been taken as the measures to evaluate the error for different time steps.
Both F.E. and Taylor schemes showed linear convergence in displacement and velocity
(Fig. 2.15). On the other hand, S.E. and V.V. showed quadratic convergence for the
displacement and velocities.

Normal contact analysis with the HM+D model

Finally, the same test is carried out using a Hertzian contact law (section 2.5.2). The
derivation of the contact time duration and other properties of the Hertzian contact
are detailed in Appendix A. The simulation parameters are summarized in Table 2.3.
The different schemes are tested with a CR = 10 and the results for the indentation
evolution and its time derivative are plotted in Fig. 2.16 and Fig. 2.17 respectively.
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Table 2.3: Parameters for the impact of two spheres using HM+D

Contact law Hertzian Contact Law (section 2.5.2)

Radius 0.01 m

Density 100 kg/m3

Young’s modulus 1 · 105 kN/m2

Poisson’s ratio 0.2

Restitution coeff. 1.0

V0 0.5 m/s

Contact time 1.99 · 10−3 s

CR 10
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Figure 2.16: Indentation during the collision of two spheres using HM+D with CR = 10

The same conclusions of the linear case can be drawn for the Hertzian contact: the
Symplectic Euler and Velocity Verlet accurately approximate the indentation (Fig. 2.16)
while the other schemes present some error. Regarding the velocity, the better scheme
is clearly the Verlet scheme (Fig. 2.17).
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Figure 2.17: Velocity during the collision of two spheres using LS+D with CR = 10

In terms of convergence, the velocity presented even a higher order than quadratic for
the Verlet scheme. It shall be noticed however, that the error of this variable for the
selected time steps is too small to draw conclusions on the scheme convergence.
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Figure 2.18: Convergence in velocity and displacement for different integration schemes
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2.6.4 Stability analysis

There are many factors that can cause instabilities in a Discrete Element simulation.
The first basic requisite for the time step, in a DEM simulation, is to be stable in
terms of the integration scheme. Another significant source of instabilities is the lack of
accuracy in the determination of the formation of contacts. In this sense, quantities such
as the velocity of the particles and the search frequency play a great role in the overall
stability and are not sufficiently studied in the literature. While most of the authors
merely perform a scheme stability analysis [98] for the determination of the time step,
a large safety factor is applied which reduces the estimated value. This reinforces the
idea of using a time step based on the concept of contact resolution [59, 107] defined as
the number of steps used to resolve a contact event, CR = tc/Δt.

Stability of the integration scheme

Explicit integration schemes present a limitation in the time step in order to be numer-
ically stable Δt ≤ Δtcr. Belytschko [10] shows that the critical time step Δtcr for a
central difference method is determined by the highest natural frequency of the system
ωmax as:

Δtcr =
2

ωmax

(2.66)

Exact calculation of the highest frequency ωmax requires the solution of the eigenvalue
problem defined for the whole system of connected rigid particles. In an approximate
solution procedure, an eigenvalue problem can be defined separately for every rigid
particle using the linearized equations of motion. The maximum frequency is estimated
as the largest of the natural frequencies of the mass-spring systems defined for all the
particles with one translational and one rotational degree of freedom:

ωmax = max
i

ωi (2.67)

And the natural frequency for each mass-spring system (contact) is defined as:

ωi =

√
k

mi

(2.68)

being k the spring stiffness and mi the mass of particle i. Now, for the case with no
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damping, it is possible to rewrite the critical time step as:

Δtcr = min
i

2

√
mi

k
(2.69)

The effective time step is considered as a fraction of the critical time step:

Δt = βΔtcr (2.70)

The fraction β ∈ [0, 1] has been studied by different authors. O’Sullivan and Bray in
[98] recommend values close to β = 0.17 for 3D simulation, and β = 0.3 for the 2D case.

If damping exists, the critical time increment is modified with the fraction of the critical
damping ξ corresponding to the highest frequency ωmax in the following way [10]:

Δtcr =
2

ωmax

(√
1 + ξ2 − ξ

)
(2.71)

Further details are given in section 4.73 where the critical time step for a explicit finite
element procedure is discussed.

Example of the scheme stability

An example is presented here to show the performance of the different schemes for time
steps near the critical one and smaller. A sphere of radius R = 4mm and density
2.000 kg/m oscillates between two parallel plates which are separated 7mm using a lin-
ear contact law with stiffness kn = 1N/m. The sphere presents an initial indentation
with the top plate of 1mm (fig. 2.19(a)). The example tries to simulate the instability
effects that can occur locally in a system with dense particle packings.

The linear mass-spring system has a theoretical frequency3 of ω =
√

2kn/m = 61.08rad/s

which yields to a critical time step Δtcr = 0.03275 s. The results for the four schemes
are presented (fig. 2.19) using time steps: Δt = 0.03275 s, Δt = 0.00300 s and
Δt = 0.00010 s.

3The 2 multiplying the stiffness comes from the fact that this is not a single mass-spring system,
instead two plates are contributing to the stiffness of the system.
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The results show how the Velocity Verlet is the only scheme which has an acceptable
performance in the limit of the critical time step (fig. 2.19(b)) as it is a second order
scheme. It was found that for a slightly larger time step the Velocity Verlet scheme
becomes also unstable as predicted by the criterion in eq. 2.69. Symplectic Euler,
which showed properties similar to a second order scheme in terms of accuracy, does
not unstabilize but presents a wrong prediction of the amplitude. As it can be seen in
figure 2.19(c) the first order schemes are still unstable even for a time step which is ten
times smaller than the critical one, being Forward Euler the most unstable one. Finally,
in figure 2.19(d) it is shown that all methods converge to the analytical solution as the
time step diminishes.

(a) Setup of the example
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(b) Position evolution for Δt = 0.03275

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time

−3

−2

−1

0

1

2

3

N
or
m
al
iz
ed

po
si
ti
on

Δt = 0.003s

F.E.
T.S.
S.E.
V.V.
Analytical

(c) Position evolution for Δt = 0.00300
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(d) Position evolution for Δt = 0.00010

Figure 2.19: Setup and results for the position of the sphere between the plates
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Stability due to lack of accuracy

The lack of accuracy can produce instabilities in a DEM simulation. The easiest way to
explain it is to imagine a particle travelling with a very large velocity towards another
particle or a wall; while the critical time step was shown to be independent of the ve-
locity (eq. 2.71), a large velocity will imply inaccuracy in the detection of the contact
and this translates into an indentation that can be unboundedly large and thus yielding
to an unrealistic increase in the energy. This can also be interpreted as an insufficient
resolution of the contact.

An example of this effect is found in the work by Ketterhagen et al. [59] where an analy-
sis of how the time step affects the mean stress tensor measurements in two-dimensional
granular shear flow simulations is performed. For a time step small enough the simu-
lation results for the stress tensor (or any other variable) should be independent of the
time step size. The studies performed using a linear contact model and several stiffness
values showed that for a CR = 15 the error in the stress measurement was below 2.5%

while higher time steps yielded a sudden increase in the error up to values above 10%.
These inaccuracies may introduce instabilities as it was shown by their results which are
referenced here in Fig. 2.20.

Figure 2.20: Stress measurement error in shear flow simulations. Taken from: Fig. 4 in
Ketterhagen et al. [59]

A commonly accepted approach as an alternative to the critical time step criterion
(section 2.6.4) is to select the time step of the simulation in function of the character-
istic duration of the contacts, i.e, by means of the contact resolution. No agreement is
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found when addressing a correct value for the CR, several authors recommend values
around CR = 50 which is quite conservative (See [17, 118, 122, 133]), Keterhagen et al.
recommends a contact resolution of CR = 33 while others like Dury [31] use larger time
steps: CR = 15. O’Sullivan [98] determines values of CR in the range [6 − 10] using a
central differences scheme with regular mono-disperse (same radius) meshes.

Summarizing, there is not a unique solution for the problem of selecting a suitable time
step. It depends on many factors such as the mesh, the integration scheme, the type of
simulation, the material parameters, the contact law, etc. Our suggestion is to estimate
a characteristic contact time of the problem and then select a time step based on the
CR criterion in the range [10− 50] depending on the conditions of the problem and the
accuracy desired. This will be in general much lower than the critical time step.

2.6.5 Computational cost

From the accuracy and stability analysis it is clear that Velocity Verlet and Symplectic
Euler are much superior than the Forward Euler and Taylor Scheme, being Velocity
Verlet the best one among these four one-step schemes. The final aspect to take into
consideration is the computational cost of the method. Simulations in real applications
involve millions of particles and can also comprehend millions of time evaluations.
The example described in section 6.2.2 is used here to calculate 1.000 time steps. It
includes approximately 30.000 spheres contacting among them and also with around
2.500 rigid finite elements. The test has been run in a personal computer with an Intel
Core i7 processor of 4 Gb RAM and 2.93 GHz.

Table 2.4: Calculation times in serial for the different integration schemes.

Scheme F. Euler Taylor S. Euler V. Verlet

Time (s) 169.61 170.04 169.64 174.28

The results showed similar computational times for the four schemes. Velocity Verlet
performed 2.7% slowlier which is insignificant considering the advantages found in terms
of accuracy and stability in the integration of velocities. Obviously, it will vary in every
computer but in general lines we determine that it is worth to employ a Velocity Verlet
scheme.
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2.7 Particle shape

In granular matter, the effects of the particle geometry are crucial in the behaviour of
the particles as a bulk or as individuals [73]. Often, the phenomenological approach is
considered and the granular media are modelled with spheres as it is the cheapest and
most efficient option for simulating a large amount of particles [95]. Alternatively, if we
want a method which is purely based on contact and other interaction forces, the real
geometry of the particles have to be well represented.

Among the most common methods there is the use superquadrics, which permits a
wide range of symmetric convex shapes [136], the Granular Element Method [3], which
uses NURBS to represent the particles and, finally, the use of clusters or agglomeration
of spheres [39]. The last one is chosen in this work since it provides great balance
between shape representation accuracy4 and efficiency in terms of computational cost.
Furthermore, it is the most versatile method in terms of particle shape and can naturally
include angularities. The contact forces and torques are evaluated as usual on every
sphere through eq. 2.4 and eq. 2.5. The contribution from every sphere is then gathered
and translated to the centre of gravity of the rigid body altogether with the additional
torque yielding from the application of the this force from the centre of every particle i

to the centre of the cluster xcm through the distance vector rpi = Ci − xcm.

F =

np∑
i=1

Fi (2.72a)

T =

np∑
i=1

Ti +

np∑
i=1

rp
i × Fi (2.72b)

4The use of sphere cluster can introduce artificial friction due to the irregularities in the surface
meshed by spheres. This problem is discussed in [48].
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Figure 2.21: Discretization of a rigid body using a cluster approach with spheres on the
surface or overlapping in the interior

Once the total force F and torque T of the rigid body is obtained, the classical Newton’s
second law for the translation and the Euler rotation equations have to be solved in
order to obtain the full motion of the rigid body (section 2.7.2). These equations can be
integrated in an explicit way, preferably with a second or higher order scheme (section
2.7.3).

2.7.1 Representation of the rotation

There are three ways which are very popular to represent rotations in the DEM: the use
of Euler Angles, the use of rotation matrices and the use of quaternions. A review of
the advantages and drawbacks of the methods can be found in [147].

The use of quaternions represents a clear advantage. It avoids the singularity problems
that Euler angles present, it is more compact and it has less memory requirements than
storing rotation matrices. Furthermore, the rotation operations are done in a more effi-
cient way than using rotation matrices.

A rotation matrix R is a 3× 3 orthogonal matrix which transforms a vector or a tensor
from one coordinate system to another one as follows:

v′ = Rv (2.73a)

A′ = RART (2.73b)
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Given a rotation of θ degrees over a unitary vector u, the rotation matrix is constructed
as follows:

R =

⎡
⎢⎢⎢⎣

cos θ + u2
x (1− cos θ) uxuy (1− cos θ)− uz sin θ uxuz (1− cos θ) + uy sin θ

uyux (1− cos θ) + uz sin θ cos θ + u2
y (1− cos θ) uyuz (1− cos θ)− ux sin θ

uzux (1− cos θ)− uy sin θ uzuy (1− cos θ) + ux sin θ cos θ + u2
z (1− cos θ)

⎤
⎥⎥⎥⎦

(2.74)
A quaternion can summarize the same information just using 4 scalars. It is defined in
the complex number system as:

q = q0 + q1i+ q2j + q3k (2.75)

or in a compact form:

q = [q0, q] (2.76)

Defining its conjugate as q∗ = [q0,−q], the norm of a quaternion can be expressed:

‖q‖ =
√
qq∗ (2.77)

and its inverse:

q−1 =
q∗

‖q‖ (2.78)

Now, given a rotation of θ degrees over a unitary vector u, the resulting unit quaternion
reads:

q = cos(θ/2) + sin(θ/2)u (2.79)

And the conversion from quaternions to a rotation matrix is the following:

R =

⎡
⎢⎢⎢⎣
1− 2(q22 + q23) 2q1q2 − 2q0q3 2q0q2 + 2q1q3

2q1q2 + 2q0q3 1− 2(q21 + q23) 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q0q1 + 2q2q3 1− 2(q21 + q22)

⎤
⎥⎥⎥⎦ (2.80)
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By using unit quaternions the intermediate transformation to a rotation matrix can be
skipped and the rotation can be directly applied to vectors and tensors. The specifi-
cation of unit quaternions is important in order to preserve lengths during rotational
transformations. The rotations are applied in the following way:

v′ = qvq−1 (2.81a)

A′ =
(
q
(
qAq−1

)T
q−1
)T

(2.81b)

To do so, the multiplication operation needs to be employed. Given two quaternions p

and q the multiplication yields a new quaternion t:

t = pq = [p0q0 − pq, p0q + q0p+ p× q] (2.82)

The vector involved in a quaternion multiplication (eq. 2.81a) is treated as a quaternion
v = [0, v] with a null scalar part. The tensor multiplication (eq. 2.81b) can be simply
done treating the tensor as an assembly of vectors that are being multiplied subsequently.
Note that the multiplication of quaternions is not commutative since it involves a cross
product. A extended review on quaternion algebra can be found in [2].

2.7.2 Rigid body dynamics

In a rigid body the distance between two material points is constant over time. Any
spatial movement undergone by a rigid body can be described with the displacement of
the centre of mass plus a rotation over some axis passing through the centre of gravity.

Figure 2.22: A generic rigid body
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For sake of convenience the spatial description of the body will be used identifying the
position of every material point P in time t with its spatial position x(t) referred to
global inertial reference system X,Y,Z. In its turn, the superscript ′ as in x′(t) denotes
a quantity expressed with respect to the body fixed frame x′,y′, z′. The temporal de-
pendence will be dropped in the following developments for clarity.

The definition of the centre of mass of a body enclosed by the domain Ω supposing
constant ρ density is:

xcm :=
1

m

∫
Ω

ρx dΩ (2.83)

Defining r := x− xcm. The velocity and acceleration can be obtained:

v(x) = ẋcm + ω × r (2.84a)

a(x) = ẍcm + ω̇ × r + ω × (ω × r) (2.84b)

The linear and angular momentum are defined as:

L(t) : =

∫
Ω

ρv dΩ (2.85a)

H(t) : =

∫
Ω

r × ρv dΩ (2.85b)

and the balance expressions for linear and angular momentum read:

L̇(t) = F(t) (2.86a)

Ḣ(t) = T(t) (2.86b)

Now, the expression for the translational motion is obtained combining equation 2.85a
and 2.84b onto the equation of balance of linear momentum 2.86a yielding the classical
Newton’s second law of motion:

F = L̇ = m ẍcm, (2.87)
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Likewise, the expression for the rotational motion is achieved plugging equation 2.85a
into equation 2.86a and evaluating the temporal derivative. The expression of the Euler
equations is found with the use of eq. 2.84b and eq. 2.84a onto the balance of linear
momentum (eq. 2.86a).

T = Ḣ = I · ω̇ + ω × I · ω (2.88)

Where I is the inertia tensor which is defined as:

I =

∫
Ω

ρ

(
(r · r)�− r ⊗ r

)
dΩ (2.89)

Note that the inertia tensor depends on the reference axis. Only in a body fixed
frame the tensor has constant components. If we set this frame 2.88 in the so-called
principal axis of inertia the tensor diagonalizes and the Euler equations can be expressed
component-wise as:

T ′
x = I ′x ω̇

′
x + (I ′z − I ′y)ω

′
zω

′
y

T ′
y = I ′y ω̇

′
y + (I ′x − I ′z)ω

′
xω

′
z

T ′
z = I ′z ω̇

′
z + (I ′y − I ′x)ω

′
yω

′
x

(2.90)

2.7.3 Time integration of rotational motion in rigid bodies

The integration of the rotation needs different schemes than the ones presented for the
translational motion in section 2.6.1 due to the higher complexity of the equations.
The strategy described here is an adaptation of the scheme presented by Munjiza et
al. [88] and Wellman [136]. The modification consists in the use of quaternions instead
of rotational matrices in the integration scheme which makes the calculations more
efficient in terms of computational cost and memory storage. The point of departure is
the balance of angular momentum in the following form:

T =
dH

dt
(2.91)

Munjiza et al. [88] introduced the idea that the change in angular momentum can be
approximated by increments due to the change in the external torques at every time
step. Actually, this assumption adapts perfectly to the temporal discretization used in
DEM where the forces and torques are evaluated in discrete time steps.
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Hn+1 = Hn +ΔtTn (2.92)

This yields a constant angular momentum throughout a time step. The angular veloc-
ities can be approximated from the definition of the angular momentum expressed in
the following way:

H = I · ω (2.93)

The key here is not to derive a constant angular velocity from the relation ω = I−1 ·H

but approximate it using a higher order scheme such as a fourth-order Runge-Kutta.

Normally, the torques T and angular momentum H are expressed in global coordinates
while the inertia tensor I ′ is naturally stored in the local body-fixed frame where it is
diagonal with constant coefficients. Applying the quaternion tensor rotation described
in equation 2.81b, the local inertia tensor I ′ can be expressed in global coordinates, I.
Now, the angular velocity can be obtained from equation 2.93 as:

ω =

((
q
(
q I′ q−1

)T
q−1
)T)−1

·H (2.94)

where q is the quaternion defining the transformation between local and global coordi-
nates5. Instead of calculating it directly, a four order Runge-Kutta scheme is applied
for the determination of an average angular velocity ω̄ during the time step:

ω1 := ωn (2.95a)

ωk :=

((
qk
(
qk I

′ q−1
k

)T
q−1
k

)T)−1

·Hn+1 k ∈ [2, 4] (2.95b)

ω̄ := 1/6 (ω1 + 2ω2 + 2ω3 + ω4) (2.95c)

where the values of the transformation quaternions qk are:

5It shall be noted that in the case of spherical particle we can skip this transformation since the
inertia is diagonal and constant in every reference system.
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q2 := q(ω1,Δt/2)qn (2.96a)

q3 := q(ω2,Δt/2)qn (2.96b)

q4 := q(ω3,Δt)qn (2.96c)

Once the average angular velocity during the time step ω̄ is obtained, the final update
predicts the velocity at the new step as:

qn+1 = q(ω̄,Δt)qn (2.97a)

ωn+1 =

((
qn+1

(
qn+1 I′ (qn+1)

−1
)T

(qn+1)
−1
)T
)−1

·Hn+1 (2.97b)

The quaternions expressed in the form q(a, b) (eq. 2.96a, 2.96b, 2.96c and 2.97a )
represent incremental rotations that are derived from the application of constant angular
velocities a during a fraction of time b. First, the corresponding rotation angles are
calculated:

Δθ(a, b) = b · a (2.98)

The unitary vector defining the rotation is uθ = Δθ (‖Δθ‖)−1 and its magnitude ‖Δθ‖.
With these two quantities the mapping Δθ(a, b) → q(a, b) can be achieved applying
equation 2.79.
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Direct explicit integration

Some codes perform a direct forward explicit integration of the equations of motion
which is presented here. Eq. 2.99 is expressed in a diagonalized local frame where the ′

superscript has been dropped for clarity:

ωn+1
x = ωn

x +
Δt

Ix

(
T n
x − (Iz − Iy)ω

n
z ω

n
y

)
(2.99a)

ωn+1
y = ωn

y +
Δt

Iy

(
T n
y − (Ix − Iz)ω

n
x ω

n
z

)
(2.99b)

ωn+1
z = ωn

z +
Δt

Iz

(
T n
z − (Iy − Ix)ω

n
y ω

n
x

)
(2.99c)

Rotation integration benchmark

In the works of Munjiza et al. [88] and Lillie [70] an example which can be analytically
solved is run with the presented scheme using rotation matrices instead of quaternions.
They showed that the scheme rapidly yields accurate results. Here the same example is
reproduced to check the good implementation of the RK − 4 scheme using quaternions
and also to show its superiority against a direct explicit integration.

A cylinder of 1.5m height and 0.5m radius with a density of 1 kg/m3 is set to freely
rotate in the space with an initial angular velocity of ω0 = [0, 1, 100] rad/s during 0.5

seconds. Since the initial axis of rotation does not coincide with any of the principal
directions e′

1, e′
2, e′

3, the resulting rotational motion presents the so called torque free
precession which is characterized by a varying rotational velocity ω and inertia tensor
I (in global coordinates).

As figures 2.24 and 2.25 show, the RK − 4 scheme is much more accurate than the
direct integration. Even using a time step ten times smaller for the direct integration
than for the RK − 4, the last scheme performs better. Both methods proved to have
convergence to the analytical solution when smaller time steps were used.
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Figure 2.23: Cylinder set-up
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Figure 2.24: Integration results for local ωx

0.0 0.1 0.2 0.3 0.4 0.5

Time (s)

−1.0

−0.5

0.0

0.5

1.0

ω
y
(r

a
d
/
s
)

Local angular velocity ωy integration

Analytical
RK-4 Δt = 1e−2

RK-4 Δt = 1e−3

Direct Δt = 1e−3

Figure 2.25: Integration results for local ωy
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We introduced the implementation of the RK − 4 with quaternions in order to have
a scheme that is much more efficient in computational cost compared to the original
one using rotation matrices and it handles the storage of the rotations with less than
half of the memory. Therefore, and taking into account the poor accuracy of the direct
approximation, we highly recommend the use of the RK − 4 method for the integration
of the rotations both for spherical and non-spherical particles.

2.8 Mesh generation

Several industrial processes in which the particle flow is simulated do not require an
initial mesh but an inlet and possibly an outlet. However, in a general case, an initial
configuration of particles is required and a thus a generation tool has to be employed.
Normally, a heterogeneous mesh is desired with a specific granulometry or size distribu-
tion. To that end several techniques exist which are based on different principles.

A first family of methods, known as Lily-pound methods [34, 41, 71] insert particles
in random locations checking if intersections occur, if so, a new location is determined.
On the other hand, the advancing front techniques [5, 7, 36] collocate the particles layer
by layer starting from the boundaries or the interior of the domain presenting a better
control on the desired size distribution. Different modifications exist which attempt to
improve the packing of these techniques like in [72].

In the framework of the thesis the GiD sphere mesher developed by Labra [63] has been
used for the generation of the sphere meshes. Its principle is based on a first collocation
of particles with a later rearrangement technique [8, 74] which corrects the inclusions
generated being able to achieve dense packings. The reduction of the porosity is solved
with the minimization of a distance function with every particle and its neighbours.

Some other meshing techniques rely on a DEM pre-simulation to fill the domain with
an inlet or pushing boundaries in a expanded domain where the particles are initially
set. These are the techniques used for the generation of meshes based on clusters of
spheres in the framework of this thesis.
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2.9 Basic DEM flowchart

Figure 2.26: Basic DEM flowchart





Chapter 3
The Double Hierarchy (H2) Method
for DE-FE contact detection

This chapter presents a detailed description of the contact detection between discrete
elements and finite elements. First, the state of the art of the existing methods for
modelling the contact with boundaries is reviewed as well as the specific DE-FE col-
lision detection methods. Later, the Double Hierarchy Method [110], a novel method
developed for the interaction with rigid structures, is thoroughly described including
implementation details together with validation examples.

As it will be shown, the literature lacks of a flexible method that computes efficiently
the contact between particles and FE, allowing for multi-contact problems and pro-
viding continuity of forces in non-smooth contact regions. The objective of this new
method is to provide a robust, versatile and efficient procedure which can tackle the
above-mentioned problems and be implemented in any DEM code allowing parallel
computation.

The method presented here adapts perfectly to the case of spherical particles (including
clusters of spheres) contacting triangles or quadrilaterals belonging to the rigid bound-
aries included in a DEM simulation. The discussion on how to upgrade this method to
the case of deformable structures will be presented in chapter 4.
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3.1 State of the art

Several solutions have been reported for the inclusion of boundaries to the discrete
element method. Among the simplest ones is the glued-sphere approach [60], which
approximates any complex geometry (i.e. a rigid body or boundary surface) by a col-
lection of spherical particles so it retains the simplicity of particle-to-particle contact
interaction. This approach, however, is geometrically inaccurate and computationally
intensive due to the introduction of an excessive number of particles. A second simple
approach (used in some numerical codes, e.g., ABAQUS) is to define the boundaries as
analytical surfaces. This approach is computationally inexpensive, but it can only be
applied in certain specific scenarios, where the use of infinite surfaces does not disturb
the calculation. A more complex approach which combines accuracy and versatility is
to resolve the contact of particles (spheres typically) with a finite element boundary
mesh. These methods take into account the possibility of contact with the primitives of
the FE mesh surface, i.e., facet, edge or vertex contact. The term FE will be used in
this dissertation when referring to the geometry elements (triangles, quadrilaterals, etc.)
which are used to discretize the boundaries even if they are not used for the calculation
of a deformable solid.

Horner et al. [49] and Kremmer and Favier [61] developed the first hierarchical contact
resolution algorithms for contact problems between spherical particles and triangular el-
ements, while Zang et al. [145] proposed similar approaches accounting for quadrilateral
facets. Dang and Meguid [26] upgraded the method introducing a numerical correction
to improve smoothness and stability. Su et al. [115] developed a complex algorithm
involving polygonal facets under the name of RIGID which includes an elimination pro-
cedure to resolve the contact in different non-smooth contact situations. This approach,
however, does not consider contact with entities of different surfaces at the same time
(multiple contacts) leading to an inaccurate contact interaction. The upgraded RIGID-
II method presented later by Su et al. [116] and also the method proposed by Hu et al.
[51] account for the multiple contact situations, but they have a complex elimination
procedure with many different contact scenarios to distinguish, which is difficult to code
in practice. Chen et al. [20] presented a simple and accurate algorithm which cov-
ers many situations. Their elimination procedure, however, requires a special database
which strongly limits the parallel computation.
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In the framework of this thesis, the Double Hierarchy Method (H2) [110], has been de-
veloped. It consists in a simple contact algorithm based on the FE boundary approach.
It is specially designed to resolve efficiently the intersection of spheres with triangles
and planar quadrilaterals but it can also work fine with any other higher order planar
convex polyhedra. A two layer hierarchy is applied upgrading the classical hierarchy
method presented by Horner [49]; namely hierarchy on contact type followed by hier-
archy on distance. The first one, classifies the type of contact (facet, edge or vertex)
for every contacting neighbour in a hierarchical way, while the distance-based hierarchy
determines which of the contacts found are valid or relevant and which ones have to be
removed.

Industrial applications may involve a large number of particles and also a fine definition
of the boundaries which, using boundary FE, would turn into large number of conditions
to check. The selected algorithm works efficiently in parallel computations as will be
shown in chapter 6. This is a clear advantage over the above-mentioned publications
which algorithms are mostly serial. Exceptions are Nakashima [91] whose method is
presumably parallelizable and Zang [145] and Su [116] which remark the importance of
the future parallelization of their algorithms.

Summarizing, the contact search framework presented is designed to satisfy the follow-
ing requirements:

• Include poly-disperse elements for both: FEs and DEs.

• Allow different FE geometries and primitives (triangle, quadrilateral, polygon).

• Ensure contact continuity in non-smooth regions (edges and vertices).

• Resolve multiple contacts and contact with different entities simultaneously.

• Need low memory storage.

• Be simple, fast and accurate.

• Be fully parallelizable.
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Table 3.1: Strengths and drawbacks of the contact detection algorithms evaluated

Glued Anal. Hierarchy RIGID RIGID-II Hu Chen H2

[60] [26, 49,
61, 145]

[115] [116] [51] [20] [110]

Wide size rate DEs/FEs - - × � � � × �
Contact elem. typologies × - � � � × × �
Boundary shape variety � × � � � � � �
Multi-contact � - � × � � � �
Simple � � � × × × � �
Efficient × � × � × × � �
Accurate × × � × � � × �
Low storage � � × × × × � �
Upgradable to CSM × × � � � � � �
Large indentation × � × × �∗ �∗ × �∗
Contact continuity × - �∗ × �∗ �∗ �∗ �∗

Symbol (�) implies that the method satisfies the property while (×) indicates that the method
does not satisfy the property. Symbol (-) denotes that the property does not apply to that
method and (�∗) means that, the method satisfies the property upon some limitations.

Table 3.1 summarizes the strengths and drawbacks of the reviewed contact detection
methods. Methods which have a elimination procedure to remove the invalid contacts
(RIGID-II [116], Hu et al. [51], Chen et al. [20] and H2) are the most accurate. They
treat the cases with large indentations (relative to the FE size) and provide a solution to
the contact continuity in non-smooth boundary regions. These methods have, however,
some limitations due to the fact that the real deformed geometry of the sphere is not
represented in the DEM. Due to this fact, error in the contact detection in concave
transitions is common for all these methods (including the H2). This is analysed in
section 3.5.
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3.2 DE-FE contact detection algorithm

The strategy of dividing the search into global and local stages also applies to the DE-
FE collision detection. In the same way, the methods described in section 2.2 regarding
the global search can be also used here. The cell-based algorithm presented in [140]
has been selected for the global search due to its simplicity and the possibility to be
parallelized.

As it has been appointed in section 2.2, the most expensive part of the collision detection
lies on the local resolution which can reach values over 75 percent of the simulation
when non-spherical elements are involved [49]. To that end, a specialized algorithm
has been developed for the case of collision between spheres (particles) and triangles or
quadrilaterals (boundary elements) which is particularly efficient. Moreover, a further
split of the Local Contact Resolution is performed: a) A Fast Intersection Test, b) Full
characterization of valid contacts. Figure 3.3 shows the different stages of the search.

3.2.1 Global Search algorithm

The main purpose of the Global Search is to determine through a fast rough search which
are the potential neighbours for every element in the domain. A cell-based algorithm
[140] is chosen here which has been parallelized in OMP and adapted for the DE-FE
search. The FE domain is selected to build the search bins taking advantage of the
fact that usually the spatial distribution of the FEs is more regular and in some cases
fixed. As an additional feature, the Search Bins is built dynamically considering only
the elements belonging to the intersection of the bounding boxes of the DEs and FEs
domains, FE ∈ ΩI and DE ∈ ΩI . Fig. 3.1(a) shows how the intersection evolves as
long as the simulation goes on. On the other hand, only the DEs inside the intersec-
tion domain (ΩI) will look for their neighbours. This reduces significantly the contact
pairs to be checked afterwards and, therefore, the global search performance is increased.

In the global search, every FE and DE has an associated Bounding Box (FEBBX , DEBBX)
that is used to tag the position of the elements on the Search Bins and rapidly check
for potential neighbours. This is done using a hash table structure as depicted in fig.
3.1(d) which relates each cell to the bounding box FEBBX that fall into it. Rectangular
hexahedral bounding boxes encompassing both types of elements are chosen here.
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The steps needed to perform the neighbouring search at the Global Search level are:
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a) Set the bounding box of the inter-
section of domains ΩI (fig. 3.1(a)).

b) Set the bounding box for every
FE ∈ ΩI (fig. 3.1(b)).

c) Generate the Search Bins based on
the size and position of the bound-
ing boxes FEBBX of the FE ∈ ΩI

(fig. 3.1(c)).

d) Place every FE in the Search Bins
(based on their associated bounding
box FEBBX coordinates) and build
the hash table (fig. 3.1(d)).

e) Set the bounding box for every
DE ∈ ΩI (fig. 3.1(e)).

f) For every DE particle ∈ ΩI obtain
the FE potential neighbours in the
Search Bins. Check the intersection
of the DEBBX with the FEBBX of
the FEs lying in the surrounding
cells (fig. 3.1(f)).

g) Apply the Local Resolution Method
to the pairs with intersecting bound-
ing boxes (fig. 3.1(g)).

(a) Evolution of ΩI

(b) FEBBX ∈ ΩI

(c) Bins over FEs
∈ ΩI

(d) Hash table

(e) DEBBX ∈ ΩI

(f) Intersection
cells

(g) Local Contact
Resolution

Figure 3.1: Global search stages
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3.2.2 Local Contact Resolution

Normally a full characterization takes place after the global search and determines com-
pletely the contact status of each potential contact pair. In this thesis a split is suggested:

• Fast Intersection Test: First, the actual contacting pairs are determined. This
has to be fast because there are many FE potential neighbours in the adjacent cells
to be checked. Therefore, all detailed contact computations such as determining
the type of contact, the contact point, normal direction, etc. are skipped. On the
other hand, a good accuracy in the determination of the contacting neighbours
is needed. It should be avoided to fill the contact pool with FE which do not
have contact and have to be eliminated or treated subsequently. This procedure
is described in detail in section 3.3.

• Full contact characterization: A more expensive check takes place which de-
termines the type of contact of every neighbour, which are the relevant contacts
and which ones have to be removed in order to avoid instabilities or redundant
contact evaluations in non-smooth regions and contact transitions. All the de-
tailed contact characteristics are fully determined at this stage for each one of the
valid neighbouring entities.

The split gives the code higher modularity, i.e. any other contact characterization
can be applied for the contacting entities. Moreover, in the in-house code Kratos, the
split yields also higher efficiency (see table 6.2 in chapter 6). This is due to the fact
that the full characterization is a much more expensive procedure than the simple Fast
Intersection Test, and at the same time, the first group of FE potential neighbours is
very large in comparison to the group of FE with contact.
In order to demonstrate this, an example of a horizontal mixer with approximately
30 k DEs and 2.5 k FEs has been run for 0.5 second, i.e. 1.5 turns of the helical blades
(full description in section 6.2.2). The cumulative counts of the following quantities is
computed:

• FE Potential neighbours: The number of times the Fast Intersection Test (section
3.3) is called (number of FE potential neighbours to be checked) averaged over the
number of particles.

• FE with contact : The average number of FE per particle that yield a positive
result (have intersection with sphere) in the Fast Intersection Test.
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• Entity with valid contact : The average number of relevant entities per particle
determined by the H2 Method.
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Figure 3.2: Counts of FE checks in different stages

Fig. 3.2 presents the results which show that the number of FE Potential Neighbours to
be treated is large compared to the FE with actual contact, a ratio of 30 : 1. Addition-
ally, as it will be shown in chapter 6, the improvement in performance showed in Table
6.2 it can be concluded that it is a good choice to perform the split which additionally
brings modularity to the code.

Figure 3.3 summarizes the stages in which the neighbour finding is divided.

Figure 3.3: Neighbour finding scheme
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3.3 Fast Intersection Test

An efficient algorithm designed to determine the intersection of spheres contacting tri-
angles or planar quadrilaterals is described here. Some of the procedures existing in
the computer graphics bibliography [33, 57] have been adapted to the case where the
facet contact (inside of the FE) occurs in a substantial higher frequency compared to
edge and vertex geometrical contact types. See [51] where the type of contact frequency
(facet, edge, vertex) is determined for different number of particles and relative sizes.
The test works for any planar convex polygons of N sides. For every DE ∈ ΩI we loop
over the FE potential neighbours provided by Global Neighbour Searching algorithm.
Every FE with valid contact is stored in an array for every DE.

3.3.1 Intersection test with the plane containing the FE

The first check is to determine whether the particle intersects the πm plane formed by
the m− th planar finite element e©m. This is represented in fig. 3.4.

Figure 3.4: Intersection of a DE particle with a plane formed by a plane FE

The outward-pointing normal of the plane can be calculated with the cross product
T of any pair of edges taken counter-clockwise. This can be written in the following
form, using the permutation tensor εijk on two edges formed, for example, by the three
consecutive vertices v1, v2, v3:

Ti = εijk(v
2
j − v1j ) · (v3k − v2k) (3.1)

which has to be normalized to unit length to obtain the normal to the plane n:
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n =
T

‖T ‖ (3.2)

In the case of a zero-thickness wall which can have contact at both sides of the FE,
the sense of the normal will be set such that points outwards to each particle centre.
Once the normal is defined, the distance of the DE centre C to the plane πm can be
determined taking any known point of the plane, namely a vertex va, as

dπ =
3∑

i=1

(ni · Ci − ni · vai ) (3.3)

The distance dπ should be compared to the radius R. If and only if |dπ| ≤ R, the
contact between the sphere and the FE is possible. In this case, we proceed with the
next checks. Otherwise, the contact with the current FE is discarded and we will jump
to check the next potential FE neighbour.

3.3.2 Inside-Outside test

The purpose of this test is to determine whether the contact is inside the FE (facet
contact) or outside (edge, vertex or no contact). It applies to the cases which |dπ| ≤ R.
A modification of the Inside-Outside status check [135] is used. The projection Cπm of
the centre C of a DE onto the plane πm formed by an element e©m with normal n can
be calculated as

Cπm = C− dπ · n (3.4)

The next step is to evaluate whether the projection Cπm lies inside or outside the FE
e©m with respect to every edge ea formed with the vertices va and va+1 (vN = v0) (See
fig. 3.5). For every edge ea we compute the cross product sign sa as

ea = va+1 − va (3.5)

sa = (ea × (Cπm − va)) · n (3.6)

If the product is positive, the projection point Cπm turns to be inside the triangle
with respect to that edge. The loop proceeds with the next edges. If the same result
is found for every edge, contact occurs with the facet of the FE (Inside) and so the
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contact is assured. Otherwise, if for any edge an Outside status is found, the loop
aborts automatically and no contact with facet can be found. The current value of the
edge index a is stored in an auxiliary variable indexe which will be used in the next step
where contact with vertices or edges is checked.

Figure 3.5: Inside-Outside check of the projection point edge by edge

3.3.3 Intersection test with an edge

This test is needed for the cases where |dπ| ≤ R but the Inside-Outside test failed. Here
we use the idea that the edge contact can not happen to be on the edges where the
Inside-Outside check yield a Inside status. Therefore, it is recommendable to test the
edges ea with a ∈ [indexe, N ] starting from the vertex which failed in the previous test
and skipping the previous ones (Note that the edge check is the most expensive one).
This approach has also been used by Chen et al. [20].

First, the shortest distance de between the edge ea and the particle centre C should
be calculated and compared to the radius R. The distance is calculated finding out the
contact point Pc, as

de = ‖Pc−C‖ (3.7)

Pc = va + p
ea

‖ea‖ (3.8)

ea = va+1 − va (3.9)

where p is the distance resulting from the projection of the vector connecting the centre
C and the vertex va onto the edge ea:
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p = (C − va) · ea (3.10)

Figure 3.6: Intersection of a DE particle with an edge

If de > R the contact with this edge is not possible and the check starts again with the
next edge ea+1. Otherwise, if de ≤ R we determine where the Pc lies, along the edge,
with the help of η, defined as:

η =
p

‖ea‖ (3.11)

The case of 0 ≤ η ≤ 1 implies edge contact. Therefore contact is found and the Fast
Intersection Test finishes yielding a positive result. The FE neighbour is saved to the
current DE and the algorithm proceeds to check the next FE potential neighbour.
Otherwise, if this test failed for the current edge ea, the connecting vertices (va and
va+1) have to be evaluated. A value of η < 0 indicates that the check has to be done
with va; on the other hand, for η > 1 the vertex to be tested is va+1.

3.3.4 Intersection test with a vertex

For the vertex va under consideration the squared distance to the DE centre C is
calculated:

dva
2 =

i<3∑
i=0

(Ci − va
i )

2 (3.12)

If dva2 ≤ R2, then the Fast Intersection Test yields a positive result and the test finishes.
Otherwise, the test moves on with the next edge ea+1 and its subsequent vertices.
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We recall that the purpose of this Fast Intersection Test is merely to determine whether
there is intersection or not between the DE sphere and the FE planar convex polygon.
An intersection found with a vertex or edge does not ensure that this is the actual contact
point. In this case, however, we omit at this stage further checks with subsequent edges
or vertices where the contact point can happen to be closer.

3.3.5 Fast Intersection Test algorithm

Table 3.2: Fast Intersection Test scheme

Parallel loop over all DE, check FE potential neighbours.

(1) Intersection with plane containing the FE e©m

Calculate normal outwards n = T
‖T ‖ , Ti = εijk(v

2
j−v1j )·(v3k−v2k).

Calculate distance to plane dπ =
3∑

i=1

(ni · Ci − ni · vai ).

if( |dπ| > R ): ⇒ Go to (4) (False).

else: ⇒ Calculate Cπm = C− d · n and Go to (2).

(2) Inside-Outside test

Initialize indexe = 0 and Inside-Outside flag = In.

loop over every edge ea = va+1 − va with a ∈ [0, N ].

calculate sa = (ea × (Cπm − va)) · n.

if(sa < 0): ⇒ Inside-Outside = Out.

Break loop. Save indexe = a. Go to (3).

else(sa ≥ 0): ⇒ Continue with next edge.

if(Inside-Outside flag == In): ⇒ Go to (4) (True).

else: ⇒ Go to (3).
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(3) Intersection with Edge and Vertex

loop over every edge ea with a ∈ [indexe, N ].

Calculate projection: p = (C − va) · ea.

Calculate the contact point: Pc = va + p ea

‖ea‖ .

Calculate distance to edge de = ‖Pc−C‖.
if(de > R): ⇒ Continue with next edge.

else: Calculate η = p
‖ea‖ .

if(0 ≤ η ≤ 1 ): ⇒ Go to (4) (True).

if(η < 0): ⇒ d2va =
i<3∑
i=0

(Ci − va
i )

2.

if(d2va ≤ R2): ⇒ Go to (4) (True).

else: ⇒ check next edge.

if(η > 1): ⇒ d2va+1 =
i<3∑
i=0

(
Ci − va+1

i

)2.
if(d2va+1 ≤ R2): ⇒ Go to (4) (True).

else: ⇒ check next edge.

Go to (4) (False).

(4) Contact Found (True/False)

True: ⇒ Store e©m as FE with contact and Continue.

False: ⇒ Stop! No contact.

The presented algorithm applies to any planar convex polygons of N sides.
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3.4 The Double Hierarchy Method

The application of constitutive contact laws such as the Hertz-Mindlin (section 2.5.2)
requires that the contact surfaces are smooth and present a unique normal at each
point. In the DE-FE contact, usually, the original geometry presents regions where
this requirement is not fulfilled. Moreover, even the smooth surfaces loose this feature
when they are discretized by means of FEs. In these situations a special treatment of
the non-smooth regions should be applied under the requirement of some conditions to
ensure reasonable results. The following conditions were also analysed in the work by
Wellmann [136]:

• The contact constitutive model will be applied normally when the contact is on
the facet and will vanish when there is no interpenetration between the elements.

• There should be no discontinuities in the contact force when a contact point evolves
from facet to edge and the other way round in order to avoid non-physical results
and numerical instabilities.

• The energy should be conserved in an elastic frictionless impact.

The use of the present contact determination algorithm helps the selected contact model
ensuring these objectives as it will be shown through the validation examples in section
3.6.

This procedure is applied to the list of FE with contact that the Fast Intersection Test
has generated for every particle. In the case of no previous fast check this operation
could be directly applied as a Local Contact Resolution with the disadvantage that
many potential FE have to be tested. It is developed in two different stages:

• Contact Type Hierarchy (section 3.4.1): where for every FE with contact the
entity with higher priority is determined.

• Distance Hierarchy (section 3.4.2): the elimination procedure takes place deter-
mining which contact points have distance priority over others which are redundant
or false and have to be eliminated.
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3.4.1 Contact Type Hierarchy

The basis of this procedure is that each primitive has hierarchy over its sub-entities, i.e.,
a facet of a N -sides polygon has hierarchy over the N edges that compose it. In turn
each of the edges ea has hierarchy over its two vertices va,va+1. Figure 3.7 outlines
the Contact Hierarchy for a triangle. The algorithm is organized as a sequence of three
entity-checking levels. If a particle is in contact with the facet of a FE the contact search
over its edges and vertices, which are in a lower hierarchy level, is discarded (see fig.
3.8). Otherwise, if contact with the FE facet does not exist, the contact check should
continue over the sub-entities. Similarly, at the edges level, any contact with an edge
cancels out further contact checks for those two vertices belonging to that edge. It does
not cancel out, however, the contact check with the other edges because they are at the
same hierarchy level. Table 3.3 in section 3.4.1 displays the pseudocode of the contact
Type detection.

Figure 3.7: Contact Type Hierarchy for
a triangle

Figure 3.8: Contact with facet. Edges
and vertices are discarded from contact
check

Every time a new contact entity is determined by the Contact Type Hierarchy, the Dis-
tance Hierarchy (section 3.4.2) takes place immediately after. The Distance Hierarchy
will determine if the new contacting entity found is redundant or non-valid, if it cancels
out the previously found ones or if it is a new valid contacting entity to be considered
for the DE.
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For any valid contact entity the geometrical contact characteristics that will be stored
are:

• The contact Point Pc.

• The FE nodal weights.

• The contact type: Facet, Edge or Vertex.

Note that some of the geometrical characteristics such as the distance, the normal vector
or the contact local axis can be recalculated later when the contact constitutive law is
applied and, thus, it is optional to store them here at this stage.

Facet level

The check proceeds in the same way as explained in section 3.3, checking for the intersec-
tion of the DE with the plane formed by the FE (section 3.3.1). If the Fast Intersection
Test has been performed previously |dπ| ≤ R is necessarily true since contact has been
found for this FE. Otherwise, if no previous Fast Intersection Test has been carried out,
this condition applies now to discard FE without contact.

Next, the Inside-Outside test (section 3.3.2) has to be performed. This test will tell
us whether the projection Cπm (equation 3.4) lies on the facet (inside the FE) or it is
outside, contacting with the edges or vertices. Fig. 3.9 shows two examples where the
projection Cπm is inside and outside the FE facet.

(a) Cπm inside the facet (b) Cπm outside the facet

Figure 3.9: Example of projection Cπm inside and outside the FE facet
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The values of the cross product sign sa obtained from equation 3.6 for every edge ea

are used to obtain the weights of the shape function at the contact point. The areas
needed for the calculation are simply one half of the cross product sign: Δa = sa/2.
The weights of the nodal shape functions on the contact point are then calculated. For
a triangle:

N1 =
Δ2

Δ̂T

, N2 =
Δ3

Δ̂T

, N3 =
Δ1

Δ̂T

where Δ̂T = Δ1 +Δ2 +Δ3 (3.13)

For 4-nodded convex quadrilaterals (fig. 3.10 the following expression can be applied
as introduced in Zhong [148]):

Figure 3.10: Triangular areas for the calculation of shape function values in a planar
convex quadrilateral

N1 =
Δ2Δ3

Δ̂Q

, N2 =
Δ3Δ4

Δ̂Q

, N3 =
Δ4Δ1

Δ̂Q

, N4 =
Δ1Δ2

Δ̂Q

where Δ̂Q = (Δ1 +Δ3)(Δ2 +Δ4)

(3.14)

Note that if any of the cross product signs sa evaluated with respect to the edge ea

yields a negative value the check stops since the projection of the centre Cπm lies outside.
The current edge index indexe is stored and it will be the first to be checked as it has
been appointed in section 3.3.3.

If the projection Cπm (equation 3.4) lies inside the facet, it becomes the contact point
Pc. Due to the highest hierarchy level of the facet, the Contact Type Hierarchy finishes
here for this FE. The Distance Hierarchy is now called and all the necessary contact
characteristics are saved.
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Edge level

Here the edge check (section 3.3.3) has to be applied for every edge ea with a ∈
[indexe, N ] in a N -sided FE starting with the first edge that yielded an outside sta-
tus at the Facet level.

When contact with the edge ea is found the check at the lower level for the vertices
associated to it, va and va+1, is discarded (fig. 3.11). The contact check with the fol-
lowing edges can not be discarded, however, since they are at the same hierarchy level
in terms of Contact Type. The Distance Hierarchy will determine the validity of the
new contact and eliminate or substitute previous ones. This is a key difference with the
Fast Intersection Test where the check automatically stops once a contact entity is found.

Figure 3.11: Contact with edge. Ver-
tices belonging to that edge are dis-
carded

Figure 3.12: Weights for an edge con-
tact in a triangle

The nodal weights can be obtained from the η parameter (equation 3.11) at the edge
ea. Fig. 3.12 shows graphically how η is determined,

Na = 1− η, Na+1 = η (NN = N0) (3.15)
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Equation 3.15 gives the values at the nodes connected to the edge ea. The rest of
nodes have a null value for its shape functions. If the edge contact check failed but the
distance de (equation 3.7) is lower than the radius (de ≤ R) the closest vertex (based on
the calculation of η) will be checked. The check will proceed in any case (found edge,
found vertex or none) with the next edges.

Vertex level

The vertex check is described in section 3.3.4. Fig. 3.13 illustrates why the edge ea has
hierarchy over its two vertices va,va+1 but not over the non-contiguous one va+2. The
shape function weights are 1 for the found vertex and 0 for the rest.

Figure 3.13: Contact with edge and vertex. When contact exists with edge e1 it can
also exist with vertex v3

As usual the Distance Hierarchy is called after the contact is detected and, if the contact
is valid, its characteristics are stored.
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Contact Type Hierarchy scheme

The scheme of Table 3.3 assumes that the Fast Intersection Test has taken place already.
For every DE the first loop is over the found neighbours. The check can be performed
in parallel for every particle in the model.

Table 3.3: Contact Type Hierarchy algorithm

loop over every FE with contact neighbour e©m.

(1) Facet level

Project the centre onto the plane Cπm (equation 3.4).

Perform the Inside-Outside test (section 3.3.2)

if Contact: ⇒
Go to Distance Hierarchy (Table 3.4) and Stop!

else: ⇒ Go to (2) with index indexe.

(2) Edge level

loop over every edge ea with a ∈ [indexe, N ].

Perform the Edge Check (section 3.3.3).

if Contact ⇒ Go to Distance Hierarchy (Table 3.4).

else if (de ≤ R and η < 0) ⇒ Go to (3) with va.

else if (de ≤ R and η > 1) ⇒ Go to (3) with va+1.

Continue with the next edge.

(3) Vertex level

Perform Vertex check (section 3.3.4).

if Contact ⇒ Go to Distance Hierarchy (Table 3.4).

Go To Edge level and check next edge.
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3.4.2 Distance Hierarchy

A spherical particle can be, in general, in contact with many different FE entities. Some-
times these contacts are result of the penetrations introduced by the penalty method
and some contacts give redundant or invalid information and, therefore, should be elim-
inated. This is the scenario shown in fig. 3.14 where contact with elements e©2, e©3 and
e©4 is detected. In a collision of the sphere normal to the plane, the force applied by the
plane surface to the sphere must have also a normal direction and a magnitude only given
by the penetrations and independent of the position x and y on the plane. Therefore the
contact force coming from the edges of elements e©2 and e©4 should not be taken into ac-
count. This is solved by the distance-based hierarchy which is an elimination procedure
that takes place every time a new contact entity is found at the Contact Type Hierarchy.

The procedure basically compares the contact vectors against their projections one
another. The new contact vector Vci = C−Pci is projected onto the previously found
contact vector Vcj = C− Pcj and vice versa. The following expressions are obtained:

Pri,j = Vci ·
Vcj
‖Vcj‖

, P rj,i = Vcj ·
Vci
‖Vci‖

(3.16)

Figure 3.14: Contact between a DE and a FE mesh whose elements are smaller than
the indentation
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The contact check is performed using the algorithm presented in Table 3.4:

Table 3.4: Distance Hierarchy check

Given a new found contact i by the Contact Type Hierarchy:

(1) loop over every existing contact (j = 1, ..., n)

Project Vci on Vcj: ⇒ Pri,j = Vci · Vcj
‖Vcj‖

Project Vcj on Vci: ⇒ Prj,i = Vcj · Vci
‖Vci‖

if ( Pri,j ≥ ‖Vcj‖ ): ⇒ i is an invalid contact.

Go to (2) (False) and break loop.

else if ( Prj,i ≥ ‖Vci‖ ): ⇒ j is an invalid contact.

Discard j ! Continue loop.

Go to (2) (True).

(2) Valid contact (True/False)

if ( True ): ⇒ i is valid contact! Save contact details.

else ( False ): ⇒ i is an invalid contact! Discard i!.

Figures 3.15 and 3.16 show an example of how the elimination procedure is performed
for two different possible cases. On the left side all the found contact vectors are repre-
sented. A graphical interpretation of the projections is also given for the first example.
On the right side only the final relevant contact vectors, that the Distance Hierarchy
yields, are shown.

In the first situation (fig. 3.15), no contact with edges of elements e©2 and e©4 is taken
into account, since their projections, Pr2,3 and Pr4,3, over the facet contact vector of
element e©3 have the same module as the contact vector Vc3 itself.
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(a) Found contact points and vectors (b) Relevant contact vectors

Figure 3.15: Elimination procedure in situation 1

(a) Found contact points and vectors (b) Relevant contact vectors

Figure 3.16: Elimination procedure in situation 2

In the second situation (fig. 3.16), the sphere has contact with the facet of element
e©4, the edge of element e©3 and the shared edge of elements e©1 and e©2 which will
be appearing as two different contact vectors Vc1 and Vc2 given by the Contact Type
Hierarchy stage. These vectors do not appear directly in the figures but they are calcu-
lated by C−Pc1 and C−Pc2 respectively. First, note that either contact with Vc1

or Vc2 will be arbitrarily discarded by the elimination procedure since they are mathe-
matically the same vector. Let us assume the Vc1 is kept and Vc2 discarded. On the
other hand, the projection Pr3,4 of the contact vector Vc3 over the contact vector Vc4

discards contact with element e©3. Finally, contacts with element e©4 and e©1 do not
discard each other since their projections one another have a value of Pr1,4 = 0 and
Pr4,1 = 0 (they form a 90 degrees angle) and therefore are smaller than the length of
the contact vectors. Hence both contacts are taken into account, as it is expected.
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The main advantage of this method lies in its wide generality. It works fine for most of
the traditional conflictive situations where multi-contacts and FE transitions are present.
It is consistent and so the order in which the neighbours have been found and stored
does not affect the final result. The tests carried out in the validation (section 3.6) show
that the force vector always has the appropriate direction.

3.4.3 Note on types of FE geometries

Taking advantage of the generality of the method, the full algorithm can be applied
directly to any N -sided planar convex polygonal FE. The weights can be calculated
with the barycentric coordinates [79, 117] as:

Ni =
cot(αi) + cot(βi)

‖Pc− vi‖2
(3.17)

The definition of αi and βi is shown in fig. 3.17.

Figure 3.17: Angles formed with the vector vi−Pc and each of the two edges connected
to node i in a polygon

Contact surfaces with non-planar quadrilaterals or other curved elements are not on
the scope of this paper. Generally it involves a minimization problem [141]. However,
Chen [20] proposes an averaging of the normal and a relaxed contact criterion.
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3.4.4 Note on types of DE geometries

As discussed in section 2.7, industrial applications demand the use of more accurate
strategies to model the particles rather than using spheres. The most popular methods
are the superquadrics [136], level set functions [3], or cluster of spheres [39]. The choice of
modelling generic particles with the sphere clustering technique provides a solution with
a good ratio between accuracy and computational cost. This approach adapts perfectly
to the presented algorithm and, therefore, yields a fast contact detection which is fully
parallelizable.

3.5 Method limitations

One of the major limitations or source of errors of the method is the inherent lack of
accuracy that a FE mesh discretization introduces to a model. This has an effect in the
error detection and therefore globally affects on the overall apparent friction. Details of
this can be found in [18]; in this section only the local effects in terms of normal and
tangential forces are analysed.

3.5.1 Normal force in concave transitions

A limitation of this method which is common to the revised penalty-based contact al-
gorithms occurs when a DE contacts with a slightly non-convex surface. Here the error
introduced by the method is analysed and quantified for normal forces in the case of
spherical DE in concave transitions.

The penalty method introduces an indentation which accounts for the local elastic
deformation of the discrete element during a contact event and allows the imposition
of the contact condition in a weak form. The use of rigid geometries with non-physical
indentation introduces error in the contact detection. Constitutive laws such as Hertz-
Mindlin present a limitation in terms of small deformation in order to work fine. This
rule does not apply, however, to non-smooth regions where the basic assumptions are
not met and contact detection errors arise.
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(a) Error region (b) Contact with 2 planes

Figure 3.18: Error emerging in concave transitions

A sphere moves horizontally in a plane πa until it reaches a transition with other plane
πb which forms an acute angle α with the plane πa (fig. 3.18(a)). In this situation a
region can be defined between the current contact plane πa and the plane πn formed by
the common edge and the normal of the second plane nb. Whenever the sphere centre is
in that region a discontinuity in forces will occur. The contact with plane πb is detected
only when the centre C has a normal projection onto the plane πb forming a tangential
contact. Fig. 3.18(b) shows that when the new contact is detected, some indentation t

is existing already and, therefore, the new contact force value introduces a discontinuity.
From the geometrical relations, the error ξ can be quantified as a ratio of the absolute
value of the new force ‖F nb

‖ over the absolute value of the current force ‖F na‖. This
value can be expressed in function of the change of angle α and indentation ratio t/δ

relative to the sphere radius R:

ξ =
‖F nb

‖
‖F na‖

=

{
t/δ for linear case
(t/δ)3/2 for Hertzian case

(3.18)

Using the geometrical relationships and setting γ = δ/R as the relative indentation
measure, the following expression is obtained:

t =
R(γ − 1 + cosα)

cosα
(3.19)

Finally the following expression is found:

ξ =

⎧⎨
⎩

γ−1+cosα
γ cosα

for linear case(
γ−1+cosα

γ cosα

)3/2
for Hertzian case

(3.20)
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The solution is plotted for the two cases (linear and Hertzian) for different change of
angle α and different γ indentation ratio.
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Figure 3.19: Values of ξ measure error in function of change of angle α and indentation
ratio γ

Fig. 3.19 shows that for an indentation of 1% of the radius (γ = 0.01) and a small
change in the angle of about 10 degrees no error is produced. For an indentation of 3.3%
however, the error measure reaches a value of ξ = 0.41 for the Hertzian case (ξ = 0.55

for the linear case) which turns into a sudden force of magnitude ‖F nb
‖ = 0.41 ‖F na‖

in the direction of nb. The error tends to 0 as the angle change tends to 90 degrees and
does not occur for obtuse angles. On the other hand, the lower the change of angle α

is, the greater the error is. It is bounded to 100% of error ξ = 1.0 for the extreme case
of coplanar transition. Luckily this very frequent case is considered by the Distance
Hierarchy (section 3.4.2) where a tolerance is used to detect the coplanar cases. Note
that the error depends only on geometrical conditions and the indentation ratio relative
to the sphere and not to the boundary FE mesh quality, the dependence of which has
been solved using the Double Hierarchy Method.



90 The Double Hierarchy (H2) Method for DE-FE contact detection

3.5.2 Tangential force across elements

As introduced in section 2.5, the tangential force is applied by means of an incremen-
tal scheme which requires to keep track of the forces that the particle has with each
neighbour. In the DE/DE contact it is enough to transfer these forces from the old
to the new neighbours according to the particles’ identifier and properly rotating them
from the old axes to the new local contact axes. The problem arises when a particle
moves across two FE boundary elements. The historical tangential force would reset to
zero since the new element in contact has a new identifier and can be considered a new
contact. This happens even if the contact detection is performed every time step.

Most of the common applications won’t yield large errors in this sense since the tangen-
tial forces is normally not developing up to high values. Particle rotation and damping
makes the tangential force contribution small in comparison to the normal forces. The
cases with larger error are the ones regarding sliding events without rolling where the
tangential force is kept at its maximum (generally the Coulomb friction value). In this
situation the error can be measured in terms of the missing work in a force-displacement
diagram as the one showed in fig. 3.21 which corresponds to a linear contact law [24, 113]
for normal and tangential directions.

Figure 3.20: Schematic force displacement diagram with the discontinuity introduced
by an element transition during a sliding event using a linear contact law

In average, a particle with linear stiffness values kn and kt sliding across a transition
of finite elements of characteristic length L with a relative indentation δ will have the
following error in the work done by the tangential force:
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Et =
‖ErrorArea‖
‖TotalArea‖ =

1/2(μδkn)
2/kt

μδknL− 1/2(μδkn)2/kt
=

μδkn/kt
2L− μδkn/kt

≈ μ

2

kn
kt

δ

L
(3.21)

As an example, using the linear model with a ratio κ = kt/kn of 2/7 (suggested in Shäfer
[113]), with a particle-structure friction coefficient μ = 0.3 the error in the integral
of the tangential forces over the displacement has a value of Et = 0.525 δ/L. For a
large indentation of 10% of the characteristic size L of the FE, the error is only of
approximately 5%.
This error gets greater however, for the cases where the search frequency is low since
the forces may remain at zero until the new search is performed. The correct track of
the contact forces and the detection of new contacts are solved using a special imple-
mentation which is described below.

Continuity of tangential forces in non-smooth transitions

The proposed solution consists in achieving the following: in a neighbouring search event,
for every new neighbour N t+Δt

i with a contact point Pct+Δt
i at time t+Δt find the closest

contact point at the previous time step Pctj associated to the old neighbour N t
j such

that the distance distPc =
∥∥Pct+Δt

i − Pctj
∥∥ for every old neighbour N t

j is minimum.
Additionally, this distance needs to be below a certain bound to avoid associations of
new neighbours coming from non adjacent regions. This can be calculated as follows:

dist <= max
j

: ‖Δsj‖ (3.22)

where Δsj is the relative tangential displacement at the contact point between the par-
ticle i and finite element j.

This procedure requires the detection of the new FEs in the moment where the transition
takes place. It can obviously be achieved if the contact detection is performed every
step but this is not an efficient solution. Alternatively, an extended search can be used
at several time steps together with a local renewal of neighbours every time step which
becomes a much more efficient solution. This is detailed as part of the implementation
of the distributed method in Appendix B.
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Example: Particle with imposed trajectory sliding over a surface

A sphere without rotation is given an imposed trajectory to analyse how is the evolution
of the tangential force when sliding along an irregular surface with concave and convex
geometrical parts and inter-element transitions (fig. 3.21). The paths correspond to an
equidistant offset of 0.1m to the underling geometry.

Figure 3.21: Point of contact moving across two boundary FE

The simulation was run using a linear contact model (section 2.5.1) with an exaggerated
particle-wall friction of μ = 5 (78, 69◦) and an extremely large indentation of nearly
30% in order to make the error in the determination of the tangential force visible. The
tangential force is expected to rapidly increase until the sliding occurs, keeping the force
steady at value determined by the regularized Coloumb’s friction model. The rest of
parameters are described in Table 3.5.

Table 3.5: Simulation parameters

Material properties Calculation parameters

Radius (m) 0.14 Contact Law Linear
Friction coeff. DE-FE 5 Time step (s) 5 · 10−5

Young’s modulus (Pa) 103 Neighbour search freq. 1

Poisson’s ratio 0.2 Simulation time (s) 5.5

Indentation Ratio 28.6%
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Figure 3.22: Shear force of an imposed movement with inter-element and non-smooth
transitions with the basic implementation

Figure 3.22 shows how every time the particle crosses over a non-smooth transition, the
force resets to zero when a contact algorithm is applied without special treatment of
the tangential forces. This case was run with a search frequency of 1, i.e. performing a
search every time step.

Figure 3.23: Shear force of an imposed movement with inter-element and non-smooth
transitions using the special implementation
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Figure 3.23 shows how the special implementation described above provides continuity
in the geometrically non-smooth regions as well as across element transitions. The use
of the previously explained strategy allows the detection of new incoming contacts even
if the global search is performed in a large time spacing; in this case it was performed
every 100 time steps. The irregularity present in the plot corresponds to the concave
transition where the particle has briefly two contacts: a new one which starts to develop
and the old one which is about to finish. The numerical results present the expected
behaviour.

3.6 Validation benchmarks

In this section, several examples are carried out to test the performance of the Double
Hierarchy method in different aspects. The following tests correspond to academical
examples defined in critical situations to validate the contact calculation procedure. All
benchmarks have been carried out using a Hertzian contact law (section 2.5.2).

3.6.1 Facet, edge and vertex contact

These first three benchmarks are represented by a sphere, which has low stiffness in
order to achieve large indentation, contacting three different boundaries meshed with
triangles. In every case the sphere falls from the same height (1m) vertically and per-
pendicular to the contact entity which is respectively a facet, an edge or a vertex. Since
there is no damping applied, the energy should be conserved and the ball must return
to the initial position after the rebound. The sphere is expected to follow a vertical
trajectory with identical results for the three cases. Fig. 3.24 shows the benchmarks
display and table 3.24 the simulation parameters.

Figure 3.24: Benchmark layout
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Table 3.6: Simulation parameters

Material properties Calculation parameters

Radius (m) 0.3 Initial vel. (DE) (m/s) [0.0, 0.0, 0.0]

Density (kg/m3) 100 Gravity (m/s2) [0.0,−9.81, 0.0]

Friction coeff. DE-FE 0.3 Time step (s) 1 · 10−5

Young’s modulus (Pa) 1 ·105 Neighbour search freq. 5

Poisson’s ratio 0.2



96 The Double Hierarchy (H2) Method for DE-FE contact detection

0.0 0.5 1.0 1.5 2.0

Time (s)

−500

0

500

1000

1500

2000

2500
Fo

rc
e

(N
)

X Force
Y Force
Z Force

(a) Force exerted by the FEs to the DE

0.0 0.5 1.0 1.5 2.0

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Po
si

ti
on

(m
)

X Position
Y Position
Z Position

(b) Position of the centre of the DE

Figure 3.25: Benchmark results for the facet edge and vertex contact

Graph in fig. 3.25(a) shows that, although the indentation is greater than the 30% of
the DE radius leading to multiple contacts with all kind of entities, the force is applied
only in the vertical direction (Y direction). From this, it can be concluded that the
contact elimination procedure performs correctly. The results are exactly the same in
the three different scenarios (facet, edge and vertex contact). It verifies also that there
is no energy gain or dissipation since the rebound maximum height is the same always
as it can be observed in fig. 3.25(b). This is a good test to see that the method works
properly for normal contacts of all three types: with facet, with edge and with vertex
independently of the mesh and the indentation achieved (always lower than the radius).
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3.6.2 Continuity of contact

It is essential to ensure continuity of the contact force in the non-smooth contact regions
and FE element transitions. In the following example the continuity of the normal force
is presented. A DE is set to move along the boundary and its contact transfers from
the surface of a triangular element (facet contact) to one of its edges or vertices. A
frictionless and rotation free sphere has a trajectory path enforced (as shown in fig.
3.26) so that the indentation is always constant (0.01 m either in contact with the facets
f 1 and f 2 or with the edge e). The simulation parameters are the ones presented in
the table 3.6.

Figure 3.26: Simulation scheme

If continuity is met, the force module must always be the same. The direction of the
contact force should evolve from vertical (normal to f 1) to horizontal (normal to f 2)
with a smooth transition. This is achieved due to the fact that the algorithm gives
higher hierarchy to the edge and the vector is calculated joining the contact point and
the centre of the sphere.

(a) Contact f1 (b) Contact e (c) Contact e (d) Contact f2

Figure 3.27: Force applied by the surface and the edge to the sphere at different instants
of the simulation
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The results show that no discontinuities arise when the contact evolves from facet
contact to edge contact and vice versa, being the contact force constant along all the
simulation and equal to 76.063 N, as expected. In a in a concave transition however, as
reported in section 3.5, the continuity of normal forces across different elements is not
fully assured. Even though the error is very small for practical situations, it is important
to quantify and be aware of.

3.6.3 Multiple contact

The goal of this test is to check that the method determines correctly the case of a
sphere contacting more than one element. The set up of the example consists of three
spheres falling onto a plane with three different shape holes, as shown in fig. 3.28(a).
Simulation parameters are presented in table 3.7. In this example damping is applied.

Figure 3.28: Multiple contact test geometry
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Table 3.7: Simulation parameters

Material properties Calculation parameters

Radius (m) 0.3 Initial vel. (DE) (m/s) [0.0, 0.0, 0.0]

Density (kg/m3) 100 Gravity (m/s2) [0.0,−9.81, 0.0]

Friction coeff. DE-FE 0.3 Time step (s) 1 · 10−5

Young’s modulus (Pa) 1 ·106 Neighbour search freq. 1

Poisson’s ratio 0.2

Restitution coeff. 0.4

Graph in fig. 3.29 shows the velocity modulus of each of the DEs involved in the
simulation. It can be seen that the spheres velocity after 2.5 seconds of simulation
is close to 0, as expected and a final equilibrium position is reached for every sphere
involving simultaneous contacts with vertices and edges.
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Figure 3.29: Velocity of the DEs
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3.6.4 Mesh independence

As appointed in the introduction of section 3.5 dedicated to the method limitations,
the use of classic finite elements to discretize a geometry introduces inaccuracy in the
definition of the surfaces. The objective of this test is to check that the error in the
discretization comes only from that aspect and does not depend on the amount, size
and shape of the finite elements that are used to mesh the surfaces.

A ball slides with friction on a horizontal plate with a given initial horizontal velocity.
The position of the sphere is set initially in vertical equilibrium upon the plate. The
sphere should start sliding while its angular velocity will progressively increase up to
a constant value at which the sliding event finishes and only rolling occurs thereafter.
This is schematically depicted in fig. 3.30(a).

(a) Problem definition (b) Simulation set up

Figure 3.30: Benchmark of a sliding sphere on a plane with friction

The analytical solution can be calculated to validate the simulation using equilibrium
equations with kinematic compatibility conditions and the basic Coulomb friction law.
The moment of inertia of a sphere is Iθ = 2/5mR2. The following is obtained for the
combined sliding and rotation phase:

v(t) = v0 − μgt (3.23)

x(t) = v0t− 1/2μgt2 (3.24)
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ω(t) =
Rμmg

Iθ
t =

5μg

2R
t (3.25)

Equation 3.25 comes from integrating the angular acceleration ω̇ for the case zero
initial angular velocity. The constant rolling event occurs when the tangential velocity
v matches the angular velocity ω times the radius R:

v = Rω (3.26)

tc =
2v0
7μg

(3.27)

For time t > tc the equations of motion are:

v(t) =
5

7
v0 (3.28)

x(t) =
12v20
49μg

+
5

7
v0(t− t0) (3.29)

ω(t) =
5v0
7R

(3.30)

The set up of the simulation is shown in Figure 3.30(b). Two cases are compared, one
involves sliding on a plane discretized by a single quadrilateral element while in the other
case the plane is discretized by 80 triangular elements. The parameters of the simulation
are the same as in the previous example, detailed in Table 3.7. The spheres are given
a initial velocity of 5m/s in the x direction. The simulation has been run for one sec-
ond. The simulation results are plotted together with the analytical solution in fig. 3.31.

Only one numerical solution was included in the plot of fig. 3.31 since the difference
between meshes turned to be negligible. In table 3.8 the values of the displacement (x),
velocity (v) and angular velocity (ω) at the end of the simulation (t = 1) are presented.
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Figure 3.31: Numerical results of the displacement and velocity in X with the angular
velocity in Z compared against the theoretical solution

Table 3.8: Results at the end of the simulation

Quadrilateral Triangle Analytical

x(m) 3.9021 3.9022 3.9182

Error(%) 0.4102 0.4071 -

v(m/s) 3.5410 3.5410 3.5714

Error. (%) 0.8528 0.8528 -

ω(rad/s) −11.9788 −11.9788 −11.9048

Error. (%) 0.0062 0.0062 -

This example shows how the results on the DE practically independent on the boundary
mesh selected. On the other side, for the simulation performed, the numerical results
agreed perfectly with the theoretical solution. This case does not show any notice-
able discontinuity in the normal and tangential contact forces in the transition between
boundary FEs even without using the special implementation described in section 3.5.2.
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3.6.5 Brachistochrone

A good benchmark to check how well does the contact algorithm perform is the simu-
lation of a sphere sliding without friction in a curve which solution can be determined
analytically. A case of special interest is the cycloid which is has the following properties:

• Brachistochrone: It is the fastest path that goes from point A to B sliding under
the action of constant gravity.

• Tautochrone: The time taken by an object sliding without friction under con-
stant gravity to its lowest point is independent to the starting point.

Following a example is shown where two sphere slides on a cycloid curve with two lanes.
The curve goes from the point A = [0, 0]m to point B = [0.2,−0.1]m. One of the par-
ticles is set at the top of the curve while the second one starts from a lower position as
displayed in figure 3.32. The simulation parameters are summarized in the table 3.9.

(a) Example set-up (b) 3D view of the mesh

Figure 3.32: Brachistochrone example set-up

The cycloid has the following parametric equations:

x(s) = r(s− sin s) (3.31a)

y(s) = r(1− cos s) (3.31b)
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And the travel time is:

t(s) =
1√
2g

∫ sf

s0

√(
∂x(t)
∂t

)2
+
(

∂y(t)
∂t

)2
√

y(t)
dt =

√
r

g
s (3.32)

Table 3.9: Simulation parameters

Material properties Calculation parameters

Radius (m) 0.01 Initial vel. (DE) (m/s) [0.0, 0.0, 0.0]

Density (kg/m3) 2500 Gravity (m/s2) [0.0,−9.81, 0.0]

Friction coeff. DE-FE 0.0 Time step (s) 1 · 10−5

Young’s modulus (Pa) 1 ·107 Neighbour search freq. 1

Poisson’s ratio 0.2

Restitution coeff∗. 0.0

∗ Damping was applied to the normal contact to avoid oscillations of the contact point.

For the present example the parametric values yield: s0 = 0, sf = 3.5084 and r =

0.05172. The numerical solution compares well against the expected results as shown
in the following table 3.10. The small error found may come, among other cause, from
the discretization of the cycloid curve into finite elements and also due to measurement
and set-up of the problem.

Table 3.10: Results

Time to bottom Time to end

Higher particle 0.2198 s Higher particle 0.2516 s
Lower particle 0.2183 s Analytical result 0.2547 s
Error 0.68% Error 1.22%



Chapter 4
Combined DE-FE Method for
particle-structure interaction

The interaction of granular materials and structures is present in many industrial ap-
plications. Some examples in which the interaction takes place have been listed in the
introduction: silo flow [59, 150], screw-conveyors [99, 100], vibrated beds [4, 21], ball
mill processes [56, 84], etc. On the one hand, the DEM has proved to be an efficient
method to capture the discontinuous nature of the granular media involved in all those
processes. On the other hand, the employment of the FEM to simulate the structures
involved in those industrial applications can provide better understanding of the prob-
lem and, therefore, could play an important role in the process of design optimization.
Examples of application fields in which the combined DE-FE coupling has been already
successfully employed include: rock cutting [95], soil-tyre interaction problems [49, 91],
soil-structure [26, 136], shot peening processes [43, 90], impacts with flexible barriers
[67], etc.

This chapter introduces a coupling procedure which allows the simulation of problems
involving deformable structures interacting with particles through mechanical contact.
Differently from the problem of particles contacting rigid boundaries, the contact with
deformable structures calculated with FE, requires the application of more advanced
contact models as it will be appointed along the chapter.
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4.1 Coupling procedure

The computation of the coupled DE-FE problem is divided in the two domains. The
DEs see the surface elements of the FE domain as moving boundaries. In this sense the
position of those boundaries at each time step suffices to calculate the DE method in
the same way as it has been detailed in chapters 2 and 3. On the other hand, the FE
problem needs the introduction of the contact forces as nodal forces in order to solve
the classical problem of solid mechanics described in section 4.2. The procedure of how
to transfer DE contact forces onto FE nodal forces will be described in section 4.3.1.
The basic steps of the combined or coupled DE-FE procedure for the particle-structure
problem adapts very well to that of the discrete elements (figure 2.1) with the following
details:

1. Contact Detection: Includes the DE/DE detection as well as the DE-FE contact
detection detailed in chapter 3.

2. Evaluation of Forces: On the DE side, the forces to consider are the same, plus
the contact forces coming from the DE-FE interaction. On the FE side, the DE-
FE contact forces contribute to the external forces involved in the solid mechanics
problem to be solved (section 4.2).

3. Integration of Motion: Each problem, DEM and FEM, is solved in parallel
normally using the same time integration scheme and time step. This is discussed
in section 4.4.

4.2 Nonlinear FEM for Solid Mechanics

The purpose of this section is to briefly introduce the basic concepts concerning the
theory of the finite element solution to the solid mechanics problems that will be used
along the chapter. The formulation used is the one presented in the book Nonlinear
Finite Elements for Continua and Structures from T. Belytschko [10]. Further references
on this topic are [9, 19, 22, 129, 142, 151].
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4.2.1 Kinematics

A continuum medium is assumed to be formed by an infinite amount of particles (ma-
terial points) which have different position in the physical space during its movement
along time. Consider a body at the initial time t = 0, the initial configuration Ω0 is
then, the set of positions that the material points occupy in the space. Similarly, the
spatial or deformed configuration Ωt is defined by the positions of the body at a specific
time t > 0 (fig. 4.1).

Figure 4.1: Initial and deformed configurations of a body

The vector defining the position of a particle P in the reference configuration, X, is
defined in the orthonormal base e of an inertial frame as:

X = X1e1 +X2e2 +X3e3 (4.1)

while the position vector in the spatial configuration is expressed in the same base as:

x = x1e1 + x2e2 + x3e3 (4.2)

The motion of the body is described by the function φ(X, t) that maps each particle P

labelled by X to its current position x at time t:

x = φ(X, t) with X = φ(X, 0) (4.3)

The inverse map is also defined:

X = φ−1(x, t) (4.4)



108 Combined DE-FE Method for particle-structure interaction

The description of any quantity � of the particles in the continuum can be done either
in the Lagrangian (material) description, where the evolution over time of the quantity
�(X, t) is studied following a fixed material point X, or in the Eulerian (spatial) de-
scription, where �(x, t) describes the evolution over time of the quantity at a fixed point
of the space x. The dependence on X or x in the quantities will be dropped for brevity.

The displacement of a material point its given by the difference between the its current
position and its original position:

u := φ(X, t)− φ(X, 0) = x−X (4.5)

and the velocity and acceleration are the first and second material time derivatives1 of
the position.

v :=
∂φ(X, t)

∂t
=

∂u(X, t)

∂t
= u̇ (4.6a)

a :=
∂v(X, t)

∂t
=

∂2φ(X, t)

∂2t
=

∂2u(X, t)

∂2t
= ü (4.6b)

Measure of strain

The deformation gradient is defined as:

F :=
∂φ(X, t)

∂X
=

∂x

∂X
= x⊗∇0 (4.7)

being ∇ :=
[

∂
∂x1

, ∂
∂x2

, ∂
∂x3

]T
and ∇0 :=

[
∂

∂X1
, ∂
∂X2

, ∂
∂X3

]T
. Tensor F can be interpreted

as the operation that transforms a given infinitesimal segment line dX in the initial
configuration to its counterpart dx in the deformed configuration:

dx = F · dX (4.8)

The determinant of F is called the Jacobian of the transformation and is denoted by
J .

J = det(F ) (4.9)

1Material time derivative centred in a material point X reads: d�(X,t)
dt = ∂�(X,t)

∂t whereas, when
centred on a spatial point x, it reads: d�(x,t)

dt = ∂�(x,t)
∂t + v(x, t) · ∇�(x, t)
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Introducing the displacement gradient H := ∂u/∂X the following relation arises:

F = 1+H (4.10)

The theorem of polar decomposition states that for a given second order tensor F

with positive determinant detF > 0 exists an orthogonal tensor R and two symmetric
tensors U and V such that:

F = R ·U = V ·R (4.11)

Exploiting this property, the right Cauchy Green tensor can be defined as a measure
that is invariant of a rotation R:

C := F T · F = U ·RT ·R ·U = U 2 (4.12)

where the orthogonality of R has been applied (RT ·R = 1).

Let’s analyse now the case of rigid body motion (no stretch) which consists on a rotation
composed by a translation, i.e x = R ·X + xt. The deformation gradient F according
to equation 4.7 is F = R and therefore the right Cauchy Green (eq. 4.12) yields
C = RT · R = 1. Since a meaningful strain tensor should vanish under rigid body
motions, where no stretches and therefore no strains appear, the Green-Lagrange strain
tensor is introduced:

E :=
1

2
(F T · F − 1) =

1

2
(C − 1) (4.13)

Where the factor 1/2 is added for the compatibility with the small deformation theory.
The Green Lagrange tensor expressed in terms of the displacement gradient (eq. 4.10):

E :=
1

2
(H +HT +HT ·H) (4.14)

The small theory tensor is recovered by neglecting the second order terms in equation
4.14:

ε :=
1

2
(H +HT ) =

1

2
(u⊗∇0 +∇0 ⊗ u) (4.15)
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Measure of stress

The forces acting in a body can be summarized as: body forces b, forces per unit mass in
the body domain Ω; and surface tractions t, forces per unit area acting on the boundary
Γ (figure 4.2):

F(t) =

∫
Ω

ρ b(x, t) dΩ +

∫
Γ

t(x, t) dΓ (4.16)

Figure 4.2: Forces acting on a body

The Cauchy’s stress theorem relates the tractions t to a stress measure σ, denoted
Cauchy stress, projected in the unit normal n of the differential surface dΓ:

n · σ dΓ = t dΓ = dF (4.17)

The counterpart of equation 4.17 in the reference configuration Ω0 implicitly defines
the nominal stress P :

n0 · P dΓ0 = t0 dΓ0 = dF0 (4.18)

And the Second Piola-Kirchhoff stress S is defined:

n0 · S dΓ0 = F−1 · t0 dΓ0 (4.19)



Nonlinear FEM for Solid Mechanics 111

4.2.2 Conservation equations

The basic equations that have to be satisfied by every physical system in the continuum
mechanics theory are:

1. Conservation of mass

2. Conservation of linear momentum

3. Conservation of angular momentum

4. Conservation of energy

Conservation of mass

The mass m of a material domain Ω is an extensive property given by:

m =

∫
Ω

ρ(X, t) dΩ (4.20)

The principle of conservation of mass reads: "the mass contained in a continuum (and
in any material domain) is always the same".

This condition translates mathematically in:

dm

d t
=

d

d t

∫
Ω

ρ(X, t) dΩ = 0 (4.21)

The material time derivative of an integral is solved applying the Reynolds theorem:

d

d t

∫
Ω

f dΩ =

∫
Ω

(
d f

d t
+ f∇ · v

)
dΩ =

∫
Ω

(
∂f

∂ t
+∇ · (vf)

)
dΩ (4.22)

Equation 4.21 is then written as:

∫
Ω

(
d ρ(X, t)

d t
+ ρ(X, t)∇ · v

)
dΩ = 0 (4.23)

The localitzation principle in continuum mechanics allows converting an integral ex-
pression into a differential expression:

d ρ(X, t)

d t
+ ρ(X, t)∇ · v = 0 (4.24)
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Conservation of linear momentum

The linear momentum balance principle states: "the resultant of all the forces acting on
a material volume in a continuum medium is equal to the rate of change in its linear
momentum".

This can be expressed combining equation 2.85a with equation 4.16:

d

d t

∫
Ω

ρv dΩ =

∫
Ω

ρ b(x, t) dΩ +

∫
Γ

t(x, t) dΓ (4.25)

On the left hand side of the equation the Reynolds theorem is directly applied (eq.
4.22) together with the conservation of mass (eq. 4.24) yielding:

d

d t

∫
Ω

ρv dΩ =

∫
Ω

[
ρ
dv

d t
+ v

(
d ρ

d t
+ ρ∇ · v

)]
dΩ =

∫
Ω

ρ
dv

d t
dΩ (4.26)

The second term of the right hand side is converted into a volume integral in two steps:
First, the Cauchy relation (equation 4.17) is invoked and then, the Gauss divergence
theorem is applied:

∫
Γ

t(x, t) dΓ =

∫
Γ

n · σ dΓ =

∫
Ω

∇ · σ dΩ (4.27)

Substituting eq. 4.26 and eq. 4.27 into eq. 4.25:
∫
Ω

(
ρ
dv

dt
− ρb−∇ · σ

)
dΩ = 0 (4.28)

and finally, the differential form is:

ρ(ü− b)−∇ · σ = 0 (4.29)

Conservation of angular momentum

The angular momentum conservation implies that "the change in time of angular mo-
mentum with respect to a point is equal to the sum of all torques steaming from external
volume and surface forces with respect to that point".

The corresponding equation based on an arbitrary point O reads:
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TO =

∫
Ω

rO × ρv dΩ (4.30)

It can be proved [10] that the implications of this balance principle leads to the state-
ment that the stress tensor σ is symmetric:

σT = σ (4.31)

Conservation of energy

The principle of energy conservation reads: "the rate of change of total energy in a body
is equal to the work done by the body forces and surface tractions plus the heat energy
delivered to the body by the heat flux and other heat sources".

The energy balance has the following terms:

W int +W kin = W ext +W heat (4.32)

Where W int is the change of internal energy, W kin the rate of change of kinetic energy,
W ext is the power exerted by the body and surface forces and finally W heat is the power
supplied by the heat sources. In this thesis the problem is simplified and the thermal
effects are neglected yielding the following expression:

d

dt

∫
Ωt

ρwint dΩ +
d

dt

∫
Ωt

1

2
ρv · v dΩ =

∫
Ωt

v · ρb dΩ +

∫
Γt

v · t dΓ (4.33)

In the case of a pure mechanical problem the solution is achieved without the employ-
ment of this equation. The expression will be useful, however, as a measure of energy
in section 4.4.2.

4.2.3 Constitutive models

The constitutive models define the material behaviour through relations that typically
link the strains to the stresses. The models employed in the framework of this thesis
are large deformation linear elasticity, hyper-elastic models and J2 plasticity.
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Linear elasticity

The extension of linear elasticity to large deformation framework is by means of the so-
called Kirchoff material constitutive model. It applies to problems with large rotations
but small deformations.

The relationship between strain and stresses is linear through the fourth-order consti-
tutive elastic tensor C:

S = C : E (4.34)

where C(E, ν) depends only on the Young’s modulus E and the Poisson’s ratio ν which
are the elastic properties of the material. The strain energy per volume for the linear
elastic case is given by:

wint =
1

2
E : C : E (4.35)

Hyper-elasticity

Hyper-elastic materials are characterized by the existence of a strain energy function
that is a potential for the stress:

S = 2
∂w(C)

∂C
(4.36)

A consequence of the existence of a stored energy function is that the work done on a
hyper-elastic material is independent of the deformation path. The work done by the
internal forces is directly given by the potential of energy defining the model. In the
case of a Neo-Hookean material:

wint =
1

2
λ(ln J)2 − μ ln J +

1

2
μ(trC − 3) (4.37)

where λ and μ are the Lamé constants defined by:

λ =
Eν

(1 + ν)(1− 2ν)
, μ =

E

2(1 + ν)
(4.38)
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The stresses expressed in the Second Piola-Kirchhoff S and the Cauchy stress σ measure
respectively read:

S = λ ln J C−1 + μ (1−C−1) (4.39a)

σ = λ J−1 ln J 1+ μJ−1 (b− 1) where b = FF T (4.39b)

Further details in [10, 13, 22, 142].

J2 Plasticity

The theory of plasticity pursues to model materials which exhibit permanent strains
(plastic deformation) upon unloading. The model used in this work is the J2 hyper-
elastic plasticity model. The model introduces a split of the strains in its elastic and
plastic part in a multiplicative manner:

F = F e · F p (4.40)

The elastic part is modelled with an hyper-elastic model as previously introduced. The
plastic deformations accumulate when a certain threshold in stresses is overpassed which
is modelled by a yield surface:

f(S, q) = σc − σY (ε) = 0 (4.41)

In the above, σY is the yield stress which is a material parameter. On the other hand
σc is the measure of stress used check whether the material is inside the yield surface
(elastic regime) or outside (plastic regime). In the first case, no plastic deformation is
accumulated. In the latter case, a return mapping to the admissible region is needed.
The measure is defined based on the von misses criterion:

σc =

√
3

2
J2 =

√
3

2
σdev : σdev (4.42)

The measure of stress and also the internal variables controlling the evolution of the
yield surface and the possible modification of the elastic behaviour (hardening) are
driven by functions which depend on the deviatoric stresses: σdev := σ− 1

3
(tr(σ)1). For

further details on this model see [10, 75, 114].
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4.2.4 Finite Element discretization

The equations governing the problem of the motion of a continuous body occupying a
domain Ωt at time t under mechanical forces are:

ρ(ü− b)−∇ · σ = 0 ∀x ∈ Ωt (4.43a)

n · σ = t̂ ∀x ∈ Γtσ (4.43b)

u = û ∀x ∈ Γtu (4.43c)

u(t = 0) = u0, u̇(t = 0) = v0 ∀x ∈ Ω0 (4.43d)

Γtu is where the solution presents some prescribed values û known as Dirichlet bound-
ary conditions, whereas Γtσ is the part of the boundary where the so-called Neumann
boundary conditions, i.e. prescribed tractions t̂, are applied. u0 and v0 are the initial
states of the displacement and its first derivative. These equations together with the
constitutive model of the material (section 4.2.3) and the kinematic relations (section
4.2.1) constitute the statement of an initial boundary value problem. The analytical
solution of the problem for the unknown u(x, t) can not be obtained in general and
commonly an approximate numerical solution is sought by application of the Finite El-
ement Method. The purpose of this section is to highlight the basic expressions that
yield to the FEM solution. Dedicated texts [9, 10, 151] should be addressed for a more
comprehensive understanding of the topic.

The weak form

The set of equations 4.43 constitute the so-called strong form of the problem. The FEM
solution is based on the weak form of the problem which is gained by the integration of
the momentum equation multiplied by a test function in the form of virtual displacement
δu such that vanishes on the Dirichlet boundary Γtu:

∫
Ωt

([ρ(ü− b)−∇ · σ] · δu) dΩt = 0 ∀x ∈ Ωt (4.44a)

δu = 0 ∀x ∈ Γtu (4.44b)

After integrating by parts and applying the Gauss divergence theorem (eq. 4.27), the
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Cauchy’s stress theorem (eq. 4.17), the Neumann boundary condition (eq. 4.43b) and
the kinematical admissibility of the virtual displacement (eq. 4.44b), the weak form of
the equilibrium is obtained:

∫
Ωt

ρü · δu dΩt +

∫
Ωt

σ : (δu⊗∇) dΩt =

∫
Ωt

ρb · δu dΩt +

∫
Γt

t̂ δu dΓt (4.45)

Discrete form

The current domain Ωt is subdivided into elements Ωe so that Ωe ≈ ∪ne
e=1Ωe. The nodal

coordinates of the elements are denoted xI where I ∈ [1, nN ]. In the finite element
method, the motion u(x, t) is approximated by:

uh(x, t) =

nN∑
I=1

NI(x)uI(t) (4.46)

where NI(x) are the shape functions that interpolate the solution on the discretized
field from the values at the nodes uI . The shape functions must fulfill the partition of
unity at any point x, i.e,

∑nN

I=1 NI(x) = 1. In this work, the 4-nodded tetrahedra and
the 8-nodded hexahedra displacement elements are used.

The velocities and accelerations are obtained by taking the first and second material
time derivative of the displacements, giving:

u̇h(x, t) =

nN∑
I=1

NI(x)u̇I(t) (4.47a)

üh(x, t) =

nN∑
I=1

NI(x)üI(t) (4.47b)

The Galerkin solution employs the same shape functions to the approximation of the
virtual displacements:

δuh(x, t) =

nN∑
I=1

NI(x)δuI(t) (4.48)

By inserting the approximation functions into the weak form we obtain a discrete prob-
lem:
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nN∑
I=1

δuT
I

[∫
Ωt

ρühNI dΩt +

∫
Ωt

BT
I σ dΩt −

∫
Ωt

ρbNI dΩt −
∫
Γt

t̂NI dΓt

]
= 0 (4.49)

where the matrix BI includes all the spatial derivatives of the interpolation functions
NI . Since the virtual displacement introduced is arbitrary, equation 4.49 has to be
fulfilled for arbitrary nodal values δuI . Therefore, each term in brackets has to vanish
separately yielding a set of nN non-linear differential equations that can be expressed in
matrix form:

Mü+ f int = f ext (4.50)

Where M is known as mass matrix, f int is the vector of internal forces and f ext the
vector of external loads. ü is the vector containing all nodal accelerations. The integrals
in equation 4.49 are split into sums of integrals over each element Ωe, which are usually
evaluated by means of a Gauss integration rule.

4.3 DE-FE Contact

The two domains, FEM and DEM, are calculated separately and their communication is
through contact forces. The finite element mesh represents a moving boundary for the
particles; once a contact is detected, i.e., there is some interpenetration between a parti-
cle and a finite element, the penalty method determines the contact forces on the "DEM
side" that will be later transmitted to the "FE side". An alternative to this approach is,
for instance, the so called pinball method [11] which embeds spherical particles onto the
surface FEs in order to directly detect and characterize the contacts in a DE/DE fashion.

In this work, the Double Hierarchy Method (section 3) is used as a collision detection
method which characterizes and clearly defines how to evaluate the forces in a wide
range of situations involving spherical particles and planar triangles or quadrilaterals.

In a mesh fine enough it would be possible to simulate the local deformation of the
solids by simply applying a relatively high penalty parameter. However, that scale can
not be simulated in general, due to the amount of elements required for a single contact.
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Therefore the local deformations of the particle and solid involved in the contact will
be modelled with the contact model instead. The details on the contact laws to be
used were described in section 2.5.3. The contact model selected for the examples is the
HM+D model.

The external forces that act on a solid, as described in section 4.2.1, are composed by
body forces b(x) and surface tractions t(x). The part of the surface tractions which
come from the interaction with the particles through contact are determined by means
of the DE method. In a second step they are communicated from the DEs to the FE
nodes. Two different methods regarding the communication of forces are described in
this chapter: the direct interpolation method (section 4.3.1) and the Area Distributed
Method or shorter, ADM (section 4.3.3) which has been specially developed to overcome
the problems that the direct interpolation method presents, described in section 4.3.2.

4.3.1 Direct interpolation

The idea is developed for the illustrative case of a flat 2D surface where, for sake of
clarity, the tractions will be identified by a scalar normal pressure p(x) (figure 4.3). The
notation for the domain of the surface elements will be Ωe.

Figure 4.3: Area of contact and pressure of a sphere in contact with two FEs

Virtual work equilibrium is established between the evaluated contact pressure and the
interpolated forces on the FE nodes.
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δW int = δW ext (4.51a)
nN∑
i=1

Fi δui =

∫
Ω

p(x) δu(x) dΩ (4.51b)

We assume that the normal virtual displacement field δu(x) is approximated in the

space of the FE discretization δuh(x) ≈
nN∑
i=1

Ni(x) δui while we let the pressure p(x) be

a analytical scalar discontinuous function that will not be interpolated by the FEs:

nN∑
i=1

Fi δui =

∫
Ω

p(x)

nN∑
i=1

Ni(x) δui dΩ (4.52)

Now, an expression for every single node in the FE mesh can be obtained:

Fi =

∫
Ω

p(x)Ni(x) dΩ (4.53)

The integral over the whole domain can be split into the different finite elements:

Fi =
ne∑
e=1

∫
Ωe

p(x)Ni(x) dΩ (4.54)

For the particular case of assuming concentrated forces Fp at one point xPc, the pressure
can be expressed as a Dirac delta function, as the work of Michel [80] describes:

p(x) = Fp · δD(x− xPc) (4.55)

Plugging this into equation 4.54 yields:

Fi =
ne∑
e=1

∫
Ωe

Fp · δD(x− xPc) ·Ni(x) dΩ (4.56)

Since the integrand of the Dirac delta is only non-zero in xPc, the integral will vanish
in all the elements except for the one in which the point of contact xPc is located.
This is the case of the element labelled e©1 in figure 4.3. Differently, the integral in



DE-FE Contact 121

the element labelled e©2 is zero regardless of the fact that it has intersection with the
particle. Equation 4.56 translates into:

Fi = Ni(xPc) · Fp (4.57)

Figure 4.4: Point force and the area discriminants defining the triangle’s shape functions

This yields to the direct interpolation approach presented by the early works of Horner
[49] in which the external forces due to contact on each node are simply determined by
the respective nodal shape function weights (section 3.4.1) times the evaluated point
force Fp. This solution ensures the equilibrium of forces and torques with respect to any
point. The simple case of a linear triangle is depicted in figure 4.4.

Nakashima and Oida [91] in simulations of soil-tire interaction, Michael [80] for snow-
tire and Oñate and Rojek [95] in rock-tool interaction are some of the authors which
have also adopted this method for the communication of the contact forces involving de-
formable structures. However, as next section 4.3.2 reviews, this method does not meet
the requirements of Hertz-Mindlin theory in regions of contact which are non smooth
and they can lead to instabilities. Even if the evaluation of the forces is well determined
on the "DE side", the fact that it concentrates the contact force in one point is a clear
disadvantage in terms of accuracy on the "FE side".

Having said that, the direct interpolation of forces using the H2 method (or any of the
reviewed methods in section 3.1) can still be reasonable in cases where the size of the
DEs is relatively small compared to the size of the deformable FEs and the penetration is
negligible compared to the DEs radius, i.e., assuming small deformations (figure 4.5(b)).
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(a) A spherical particle colliding several FE (b) Many small particles colliding large FEs

Figure 4.5: Situations with different relative size ratio DE-FE

In general, situations where detailed FE analysis of strain and stress is conducted or
simply when the contact is to be correctly determined, more accurate schemes should
be used. Han et al. [44, 45], Munjiza [86], Wellmann [136], among others, present some
algorithms to that end. In this dissertation a new method is proposed which is based
on the distribution of the contact forces determined on the "DE side" to all the FE
involved in the contact. The method will be denoted Area Distributed Method and is
presented in section 4.3.3.

4.3.2 Non-smooth contact

The HM+D is based on the Hertz-Mindlin theory [47, 81] which is developed for case
of contact of bodies that present smooth surfaces with a unique normal. Contrarily, In
the DE-FE contact, plenty of non-smooth regions are encountered. The application of
these type of contact laws simply represents an heuristic model which tries to satisfy
some basic conditions as it was described in section 3.4, namely, conservation of energy
and avoidance of force discontinuities. Some of the situations that can result in non-
compliance of the above are the following:

• Artificial introduction of boundaries: Imagine the particle in figure 4.6 sliding
from one FE to the next one. Since the contact method allows the introduction
of certain interpenetration, the edge connecting elements 1 and 2 would suppose
a barrier if no additional assumptions are made. This problem is solved by the
simple introduction of the hierarchy between entities (section 3.4.1).
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Figure 4.6: Particle moving across two quadrilateral elements

• Discontinuity in tangential force: Similarly to the previous example, when
a particle crosses from one element to the next, the tangential forces should be
correctly transmitted, since they are normally calculated in a incremental manner.
In section 3.5.2 a special implementation that solves this problem is given.

• Multi-contact: Figure 4.7 shows two discretizations of the same situation which
should yield the same result. To do so, an elimination procedure should determine
properly which are the entities to be ignored and which are the relevant ones. Dif-
ferently from the classical hierarchy based algorithms, the H2 method is capable
to distinguish correctly those situations as described in section 3.4.2.

(a) Contact with planes discretized by many
small FEs

(b) Contact with planes discretized with one
quadrilateral element

Figure 4.7: Particle colliding two boundaries with different FE discretizations
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• Non-smooth evolution of normal forces: A deformable solid under contact
will evolve in time resulting in different contact status. Figure 4.8 depicts a case
in which the classical DE-FE methods (including H2) will determine one contact
force (Ft1 = f(kn, δ) · n) in the first situation, but two contact forces of similar
magnitude (Ft2 = f(kn, δ1) · n1 + f(kn, δ2) · n2)) in the second situation, leading
to a sudden increase of the force.

(a) Contact at a time t1 (b) Contact at a time t2 > t1

Figure 4.8: Particle colliding a plane of a deformable body

The H2 method has been specially devised to give a simple and robust solution to
the above-mentioned problems in case of contact with rigid structures. In the case of
deformable structures, however, the problem of the non-smooth evolution of the normal
forces takes special importance and it may yield to instabilities in the calculation of the
solid. To overcome this problem the Distributed Area Method is introduced next.

4.3.3 Area Distributed Method

An improvement to the direct interpolation is suggested here which tries to give bet-
ter quantitative results to the overall contact simulation involving particles simulated
by DE and structures or solids calculated with FE and the problems that the direct
interpolation method presents. The basic idea of the method is developed followed by
examples which prove its superiority against the direct interpolation and validate the
procedure. The implementation details of the algorithm can be found in Appendix B.

Derivation of the method

The point of departure is equation 4.54, where instead of introducing a point load, the
interaction forces are left as a distributed pressure (figure 4.9).
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Figure 4.9: Pressure function and centroid of the pressure on the intersection between
a DE and a FE

The centroid x̄p
e of the contact region in a given element weighted by the pressure

distribution is determined as follows (figure 4.9):

x̄p
e =

∫
Ωe

p(x) · x dΩ∫
Ωe

p(x) dΩ
(4.58)

If the position x is interpolated by the shape functions, it is easy to see from equation
4.58 that the following holds:

∫
Ωe

p(x)Ni(x) dΩ =

∫
Ωe

p(x)Ni(x̄
p
e) dΩ (4.59)

Now plugging this back to equation 4.54:

Fi =
ne∑
e=1

Ni(x̄
p
e)

∫
Ωe

p(x) dΩ (4.60)

The forces in a node Fi can be expressed as the contribution of the forces from every
element containing that node:

F e1
i + F e2

i + . . . = Ni(x̄
p
1)

∫
Ω1

p(x) dΩ +Ni(x̄
p
2)

∫
Ω2

p(x) dΩ + . . . (4.61)

Finally, the partial nodal force contribution from a given element is:

F e
i = Ni(x̄

p
e)

∫
Ωe

p(x) dΩ (4.62)
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The expression obtained can be regarded as a generalitzation of the direct interpolation
(equation 4.57). It suggests that the contact force contribution from each element should
be distributed among its nodes weighted up by the shape functions Ni(x̄

e
p) evaluated on

the centroid of the pressure distribution on the element.

The expression for the pressure between two bodies in contact given by the Hertzian
theory [47] is:

p(r) = p0
√

1− (r/a)2 (4.63)

Where r is the distance from the central point of contact, p0 the maximum pressure
and a the radius of the circular contact area. Further details are given in Appendix A.

Integrals of the pressure function can be achieved with by numerical integration in
a mortar-like [102] fashion with a sufficient number of integration points in order to
capture the intersection regions and its corresponding centroids such as the one depicted
in figure 4.9. What is suggested here instead, is to approximate the pressure as a uniform
function (figure 4.10) acting on the intersection surface. The value of the pressure is
simply determined as the total force divided by the total intersection area ph = F/AT

ensuring that the total integral coincides with the one of the Hertzian theory.

Figure 4.10: Hertz pressure distribution and its uniform approximation

Equation 4.62 then simplifies to:

F e
i = Ni(x̄

p
e)

∫
Ωe

p(x) dΩ ≈ Ni(x̄
p
e)

F

AT

Ap
e (4.64)

Ap
e are the intersection regions between the particle and the surface elements and x̄p

e are
their respective centroids. Note that the case of AT = πa2 happens only in case of full
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planar intersection. In general, the real intersection area will be AT �= πa2 and the way
to correctly determine it is AT =

∑ne

e=0 A
p
e. Finally, the contact forces are assembled

on the nodes accounting for the contribution from every element containing the node in
question:

Fi =
∑
e

F e
i (4.65)

For the case of linear triangles the intersection areas Ap
e and the centroids x̄p

e can be
analytically determined in an easy and cheap way which is detailed in Appendix C. The
extension of linear triangles to quadrilaterals or higher order elements is discussed in
section 4.3.3.

In a case with multiple contacts happening at the same time, this procedure applies
to every group of elements that form part of an entity with valid contact. A system of
master elements and slave elements is determined using the H2 elimination procedure
(section 3.4.2). The contact forces evaluated on every master are distributed among
the slaves elements in function of their intersection areas (see figure B.2). Additionally,
the forces on every master are scaled by the total amount of intersection area that the
particle presents with the different FEs. This way the contact forces evolve smoothly
in the same way as the total area does and thus, the discontinuity problem presented
in section 4.3.2 is solved. This procedure is fully described in Appendix B, dedicated to
the implementation of this method.

The validation of the Area Distribution Method and its comparison against the direct
interpolation is performed through several examples in section 4.4.2 and section 4.5.1.

Extension to other elements

The presented method determines the normal contact forces based on the interpene-
tration of the bodies, δ and distributes it based on the calculation of the intersection
areas. This has been analytically resolved for the case of 4-nodded tetrahedra which
results in surfaces defined by linear triangles. In a general case, with quadratic or higher
order elements, the analytical determination of the contact intersections becomes more
involved.
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Figure 4.11: Determination of the contact point and normal in a non-planar surface

Figure 4.11 shows the case of a 4-nodded quadrilateral. nπ is the normal at the pro-
jection point Cπm to the curved surface πm defined by the element e©m. The surface is
described by the convective coordinates ξ and η. The contact projection (candidate to
contact point) is determined by the minimization of the distance [141]:

Cπm := x(ξ, η) | min
x(ξ,η)

‖Ci − x(ξ, η)‖ (4.66)

This can be translated into the solution of the system following system:

Ci − x(ξ, η)

‖Ci − x(ξ, η)‖ · ∂x(ξ, η)
∂ξ

= 0 (4.67a)

Ci − x(ξ, η)

‖Ci − x(ξ, η)‖ · ∂x(ξ, η)
∂η

= 0 (4.67b)

(4.67c)

And the normal is:

n =
(∂x(ξ, η)/∂ξ)× (∂x(ξ, η)/∂η)

‖(∂x(ξ, η)/∂ξ)× (∂x(ξ, η)/∂η)‖ (4.68)

This requires the employment of a root-finding technique which makes, in general, the
problem much more expensive. In any case, the analytical determination of the areas
becomes impractical and numerical integration has to be employed. In order to avoid
this, an alternative is proposed here which involves the subdivision of quadrilaterals, or
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any other super-linear elements, using linear triangles. Figure 4.12 shows the case of
a 6-nodded triangle and a 4-nodded quadrilateral subdivided with six and four linear
triangles respectively. An extra interpolation node has been introduced in the centroid
xcm of the original geometries to create the sub-triangles.

Figure 4.12: Possible subdivision of a 6-nodded triangle and a 4-nodded quadrilateral
into 3-nodded linear triangles

The sub-triangles T m
α substitute their parent entities e©m during the determination of

the intersection areas and centroids. The total intersection area Ap
e and the intersection

centroid x̄p
e are determined from the intersection areas and centroids of its sub-triangles

using the basic composition described in Appendix C through equation C.1. Afterwards,
the nodal forces are interpolated to the original parent elements’ nodes by means of
the shape functions as described in equation 4.64. This is the procedure used for the
examples involving hexahedra in this work.

4.4 Time integration

Both implicit and explicit integration methods are widely used in computational solid
mechanics. The choice is strongly dependent on the type of simulation of interest. It
is highlighted in the book of Belytschko et al. [10] that an explicit integration method
is advisable for dynamic contact problems where the high frequency response is the
matter of interest. This is the case of the contact problem in which the characteristic
collision times are relatively small compared to the simulation times. Furthermore, the
multiple collisions of particles with a structure happening along the simulation have to
be well captured. Since small time steps are required for the resolution of the contact
between DEs and FEs, good accuracy can be achieved using schemes that only perform
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one evaluation of forces per time step and are cheaper than higher order schemes or
implicit schemes. The fact that no linearisation is needed is also a clear advantage as
previously discussed for the DE integration in section 2.6. Another important outcome
of the use of an explicit integration is the easier parallelization of the code.

The implemented strategy is based on the explicit procedure described in the book by
T. Belytschko [10] under the name of Central difference method. It is algorithmically
identical with the Velocity Verlet scheme described for the discrete element method
which turned to have a very good balance between accuracy and computational cost
with very low memory requirements. The full description of the algorithm can be found
in section 2.6. The update of nodal velocities and displacements needs the explicit
determination of the accelerations ün+1 from equation 4.50 which is rewritten here for
the updated time step n+ 1:

Mün+1 = f ext
n+1 − f int

n+1 (4.69)

This can be accomplished without solving any system of equations provided the mass
matrix M is diagonal. Lumped mass matrices will be used to achieve so. Then, the
solution goes node by node and evolves with different evaluations of time. The assembly
is performed nodally accounting for the contribution of the internal forces and external
forces which are assembled element by element. The case of the contact forces due to
the interaction with the particles has been detailed in section 4.3.3 (equation 4.65).

4.4.1 Explicit scheme critical time step

One of the notable disadvantages of explicit integration schemes, as mentioned in sec-
tion 2.6, is their conditional stability. In a general situation, involving several particles
interacting with solids discretized by finite elements, the time step should respect the
criterion determined in section 2.6.4 regarding DE/DE and DE-FE interaction as well
as the stability limits of the integration of the solid mechanics problem itself.

Similarly as for the DEM, the stable time step in the central differences scheme can be
approximated by the highest frequency of the linearised system. For the case of a mesh
of constant strain elements with rate-independent materials it can be evaluated as:



Time integration 131

Δtcrit =
2

ωmax

≤ mine,k
2

ωe
k

= mine
le
ce

(4.70)

Where k is the coordinate index, le is a characteristic length of element, ce is the
wavespeed and α is a reduction factor that takes into account the non-linearities which
destabilize the system; Belytschko [10] proposes a value ranging 0.8 ≤ α ≤ 0.98.

Rayleigh damping

The Rayleigh damping is the one implemented in the code where the coupled DE-FE
procedure has been developed. The linear equations of motion for a damped system are:

Mü+Cu̇+Ku = f ext (4.71)

Where f int is expressed in function of a damping matrix C and a stiffness matrix K (see
equation 4.50). A common choice is to define C as a linear combination of M and K

so that the system can be diagonalized with the same eigenvectors as the undamped case.

C = a1M+ a2K (4.72)

a1 and a2 (also known as α and β in the literature) are input parameters that usually
are calibrated to obtain a desired fraction of the critical damping ξ. It can be calculated
element-wise as:

ξk =
a1
2ωk

+
a2ωk

2
(4.73)

The new critical time step can be derived in the same way as before for the new linear
system:

Δtcrit = maxk
2

ωk

(√
ξ2k + 1− ξk

)
(4.74)
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4.4.2 Energy assessment

Unfortunately, there is not a well-defined methodology to accurately predict the time
step needed to be used in a coupled DE-FE simulation. There are many factors involved
such as the integration scheme of each of the methods, the characteristics of the simula-
tion, the contact models used, the constitutive modelling of the materials, etc. On the
top of that, it has been shown for the DEM that the theoretical time stability of the
integration scheme does not suffice to ensure the overall stability (section 2.6.4) and the
concept of Contact Resolution was employed.

On the other hand, it is common practice to determine the stiffness of the contact kn

as a merely numerical penalty which enforces the impenetrability condition not intend-
ing to model the dynamics of the contact. In those cases, the penalty is often selected
in function of the assumable time step. In this section the use of an energy check is
proposed as a method to ensure the stability of the system from a global point of view.
If the time step is correctly selected, the energy is expected to be constant along the
simulation (accounting for the dissipation terms); otherwise, if an increase of energy is
detected, the stability is not ensured and the time step should be reduced.

The expression for the energy balance (4.33) can be used to derive a measure of energy
for the different mechanisms involved in the problem. Using an explicit integration
scheme, the amount of energy at every time step can be approximated assuming that
all quantities are constant within a time step:

E int
FE =

∫
Ωt

ρΔwint dΩ (4.75a)

Ekin
FE =

∫
Ωt

1

2
ρv · v dΩ (4.75b)

Ebody
FE =

∫
Ωt

u · ρb dΩ (4.75c)

where the superscripts denoting the time step have been omitted for clarity. The work
done by the traction forces due to contact are not accounted on the FE side, instead
they are easily evaluated on the DE side as contact forces with every master. Now the
expressions of the all the energy involved in a system of particles is detailed:
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Ekin
DE =

nP∑
i

(
1

2
mi ‖vi‖2 +

1

2
Ii ‖ω̇i‖2

)
(4.76a)

Ebody
DE =

nP∑
i

mi g
Tu (4.76b)

Where g is the gravity and Ii is the nodal inertia which in case of a sphere is a constant
value for all reference frames. The elastic energy generated by the contacts will be
denoted Econt. It will be calculated for every particle p ∈ nP in the system accounting
for all DE contacts j ∈ nC,DE and every FE contact k ∈ nC,FE in the following way:

Econt =

nP∑
i

(
1

2

nC,DE∑
j

(UDE + FDE +DDE) +

nC, FE∑
k

(UFE + FDE +DDE)

)
(4.77a)

The factor 1/2 in the particle contact summation comes from the fact that in a full
particle loop the contact between particles i and j will be accounted twice. On the
other hand, the energy contribution coming from the contact between DEs and FEs will
be accounted just on the DE side, and therefore, the full energy has to be computed.
The quantities U , F , D correspond to the elastic, frictional and dissipative energy terms
that are computed depending on the contact model employed.
The computation of the elastic energy is described here for the Hertzian contact law
(section 2.5.2) which can be applied to both DE/DE and DE-FE contact:

Un+1 = Un
n+1 + Ut

n +ΔUt
n+1 (4.78a)

Un+1
n =

∫ δn+1

0

Fn(δ) dδ (4.78b)

ΔUt
n+1 = ΔFte Δs (4.78c)

The tangential part is calculated incrementally with the elastic tangential force incre-
ment (equation 2.36) and the incremental displacement (equation 2.31a). Differently,
the normal elastic force can be directly evaluated by the integral expressed above since
it is a conservative force:
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Un+1
nHertz =

∫ δn+1

0

Fn(δ) dδ =
2

5
kn δ

2 (4.79)

where kn is was defined in equation 2.38a.

Finally, the global balance of energy reads:

E int + Ekin = Eext + E0 (4.80a)

E int
FE + Ekin

FE + Ekin
DE = Ebody

FE + Ebody
DE + Econt + E0 (4.80b)

Where E0 is an arbitrary initial energy.

4.5 Validation examples

The purpose of the following examples is to validate the described coupled procedure
together with the methodology developed for the communication of forces from DE to
FE in the Area Distributed Method.

4.5.1 Impact on simply supported beam

A particle-structure interaction academical example is presented here which consists on
a spherical particle colliding a simply supported beam (figure 4.13). Two different cases
are reproduced here in order to assess the coupled DE-FE procedure. The reference
solution to this problem, earned from linear modal dynamics, was proposed by Timo-
shenko in 1951 [126] and is reviewed in [78].

Two examples are reproduced with the same parameters, in the first one the radius
is 0.01m and the length of the beam is 15.35m while the second one has a particle of
0.02m of radius and a length of 30.70m for the beam. The material properties described
in [78] are summarized together with the simulation parameters in table 4.1. The first
case produces a single impact while the second yields to three of particle/beam impacts.
The meshes used are 60 × 4 × 3 8-nodded elements respectively for the length, height
and depth in the first example and 120× 4× 3 in the second example.
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(a) Front view (b) Side view

Figure 4.13: Simply supported beam hit laterally at its centre by a sphere

Table 4.1: Simulation parameters

Material properties DE FE Calculation parameters

Radius (m) 0.01/0.02 - Contact Law Hertzian
Density (kg/m3) 7960 7960 DE-FE Model ADM
Young’s modulus (GPa) 215.82 215.82 Initial vel. (DE) (m/s) [0.0,−0.01, 0.0]

Poisson’s ratio 0.289 0.289 Gravity (m/s2) [0.0, 0.0, 0.0]

Restitution coeff. 1.0 - Time step (s) 1 · 10−8

Friction coeff. DE-FE 0.0 - Neighbour search freq. 50

The results (figure 4.14) are quite satisfactory since the HM+D model simply defined
by the material properties is able to perfectly reproduce the contact forces. Once the
contact finishes, the beam oscillates in a combination of different excited modes. The
largest frequency mode, which can be easily identified in the figures, corresponds to the
natural frequency of the structure and it is perfectly matched. The higher vibration
modes however, are not correctly captured by the linear hexahedra elements available
in the code, which are not the best suited elements to simulate flexural modes. As a
consequence of that, there is a deviation on the second and third contact events in the
second example (figure 4.14(b)).
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(a) Analytical solution versus the numerical ADM solution for the beam 1

(b) Analytical solution versus the numerical ADM solution for the beam 2

Figure 4.14: Results of the lateral impact of a sphere on a simply supported beam
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4.5.2 ADM vs Direct interpolation

A comparison is performed between the direct interpolation and the Area Distribution
Method using a coarser mesh of 10× 1× 1 hexahedra. The results for the contact force
predicted by the ADM (figure 4.15) are considerably accurate despite of the bad quality
of the mesh. The direct interpolation instead, yields to very inaccurate results, as it
predicts a stiffer contact due to consideration of a contact force with two planes as can
be seen in figure 4.16. The effect of the sudden change in normal force (section 4.3.2)
can be clearly seen in the results. It corresponds to the instant in which the contact
dectection goes from a contact with a single edge to a contact with two planes.
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Figure 4.15: Analytical solution versus numerical solutions for the direct and the dis-
tributed methods in a coarse mesh

Figure 4.16: Displacement at t = 0.12ms (deformation ×2000)
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4.5.3 Energy in a single DE-FE collision

The two methods for the DE to FE communication of forces are analysed from the
energy point of view in this example. The energy of an elastic collision of a spherical
particle with a FE cube is reproduced here. A frictionless particle moves without gravity
towards the cube inducing a normal collision. The cube has its 4 inferior nodes fixed.
The contact law used is the Hertzian contact law and the constitutive material model
for the solid is Neo-Hookean. The properties are summarized in the following table 4.2:

Table 4.2: Simulation parameters

Material properties DE FE Calculation parameters

Radius (m) 0.3 - Initial pos. (DE) (m/s) [0.0, 0.03, 0.0]

Density (kg/m3) 2 · 103 1 · 103 Initial vel. (DE) (m/s) [0.0,−1.0, 0.0]

Young’s modulus (Pa) 5 · 106 5 · 106 Gravity (m/s2) [0.0, 0.0, 0.0]

Poisson’s ratio 0.2 0.2 Time step (s) 5 · 10−5

Restitution coeff. 1.0 - Neighbour search freq. 1
Friction coeff. DE-FE 0.0 -

(a) Cube meshed by one hexahedron (b) Cube meshed by six tetrahedra

Figure 4.17: Sphere impacts a cube
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The cube is meshed using one single hexahedron and six tetrahedra (figure 4.17). The
latter case presents again the problem described in section 4.3.2 in which the contact
surfaces deform implying a contact with two planes instead of the single plane contact
that occurs with the quadrilateral surface of the hexahedron. The two cases have been
run using both the direct interpolation and the Area Distribution Method (ADM).
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(a) Direct interpolation with 8-nodded hexahedron
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(b) Direct interpolation with linear tetrahedra
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(c) ADM with 8-nodded hexahedron
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(d) ADM with linear tetrahedra

Figure 4.18: Direct interpolation and ADM behaviour comparison in a single collision

The results show that all cases behave in a similar way except for the direct interpolation
method using tetrahedra, which presents a stiffer contact (shorter duration) yielding to a
higher excitement of the solid cube. The distributed method instead, manages to capture
the same contact time for the two discretizations. This is because the intersection area
is the one controlling the magnitude of the total force, which is practically the same in
the two cases (figure 4.18(c) and figure 4.18(d)), regardless of how many contact forces
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act on the particle.

Energy test in a multi DE-FE system

A final example is designed to check the global conservation of energy of the coupled
DE-FE algorithm. All frictional and dissipation mechanisms have been disabled for sake
of simplicity and a purely elastic constitutive law is used for the material description
and for the contact modelling.
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(a) Simulation set-up (b) Displacement at time t = 23.4s. 2D view

(c) Displacement at time t = 23.4s. 3D view

Figure 4.19: Pendulum-like prism interacting with several spherical DEs
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A prismatic structure with a node fixed in one extreme oscillates like a pendulum under
the action of a gravity force. Four spherical particles are set in the domain which have
collision with the structure, among themselves, and with the rigid walls closing the do-
main (figure 4.19(a)). The prism has been discretized with a mesh of 4× 4× 20 = 320

8-nodded hexahedra.

The test has been run using a Hertzian contact law with a large deformation Neo-
Hookean model for the solid. The ADM has been used to interpolate the forces. The
parameters are summarized in the following table 4.3:

Table 4.3: Simulation parameters

Material properties DE FE Calculation parameters

Radius (m) 0.6 Gravity (m/s2) [0.0,−1.0, 0.0]

Density (kg/m3) 1.5 ·103 1 · 103 Time step (s) 5 · 10−5

Young’s modulus (Pa) 1 · 106 5 · 106∗ Neighbour search freq. 1
Poisson’s ratio 0.2 0.2 DE-FE contact model. ADM
Restitution coeff. 1.0 -
Friction coeff. DE-FE 0.0 -

∗ The Young’s modulus of the surrounding walls was set to Ewall → ∞.

The results (figure 4.20) are obtained evaluating all energy terms in the system. Since
the deformation and collision regime is fully elastic and no frictional neither dissipative
forces are considered, the total amount of energy expressed by equation 4.81 should be
constant along the simulation. For the presented results, E0 is set such that total energy
ET = 0.

ET = E int
FE + Ekin

FE + Ekin
DE − Ebody

FE − Ebody
DE − Econt − E0 (4.81a)
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Figure 4.20: Total energy of the system

As the simulation evolves the behaviour turns more chaotic. Since there is no dissipa-
tion, the prism excites different high frequency vibration modes due to the collisions in
different positions and directions. The overall energy keeps balanced as it was expected.
The results validates the DE-FE coupling by means of the Area Distributed Method
and indicates that the time step selected for this simulation is stable.
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4.6 DE-FE coupling flowchart

Figure 4.21: Basic flowchart of the coupled DE-FE for particle-structure interaction



Chapter 5
DE model for cohesive material

Within the DEM, the individual particles are modelled as stiff bodies which interact via
contact forces. This simplification has the advantage of representing the complicated
microscopic behaviour by a simple system of linear equations based on a relatively small
number of parameters. In problems where large deformations and fracture are involved
the DEM has attractive features in contrast to continuum-based methods such as FEM,
specially its naturally discontinuous behaviour. The main aspiration is to have a gen-
eral computational method for unified modelling of the mechanical behaviour of solid
and particulate materials, including the transition from solid phase to particulate phase.

It is agreed that the Discrete Element Method is a great technique to simulate the
discontinuous media as a system of independent particles in dynamic motion. How-
ever, regarding the simulation of continua, the lack of theoretical basis even for linear
elasticity has restricted its application. There have been, a large number of different
approaches for this question: How should the contact models be characterized (micro
scale parameters) in order to resolve the macro scale continuum behaviour? The chal-
lenge in all DEM models is to find an objective and accurate relationship between the
DEM parameters and the standard constitutive parameters of a continuum mechanics
model, namely the Young modulus E, the Poisson’s ratio ν and clear determination of
the stress and strain tensors and its constitutive relations.

The definition of the micro parameters can be done globally with uniform values for
all interactions between particles or locally based on the properties of each pair of par-
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ticles at its interaction points. The first approach has been taken by several authors
[63, 95, 105] which obtain the values correlating numerical experiments and laboratory
tests or performing an adimensional analysis as is suggested in [50, 52]. Alternatively,
the local approach, tries to find a mechanical relationship between the micro and macro
parameters. It encompasses many different interpretations for the definition of the DEM
parameters [29, 35, 46, 101, 120, 128].

Both of these approaches give DEM a phenomenological character which relies on a cal-
ibration process in order to correctly determine the parameters that rule every specific
problem. Generally, the results are dependent on the discretization and the accuracy is
far below that of continuum based methods. Alternatives to this are, on the one hand,
the use of a two scale or embedded DE-FE combined method [85, 95, 146] in which the
FEM is adopted in the continuum parts and the DEM is used when damage appears.
On the other hand, some alternative methods have been published which use energy
equivalence principles to model the inter-element laws claiming not to require calibra-
tion [83]. These approaches are still not too widespread and require further development
to be adapted to non-linear problems with proper description of failure.

In this chapter, spherical particles are employed as discrete elements to model geoma-
terials, namely rock or concrete. To that end, a constitutive model framed on the local
approach, the DEMpack model [96], has been developed and it will be thoroughly de-
scribed in section 5.2. Classical methods are used for the contact detection (section 2.2)
with a special treatment of the neighbours which can have bonds which are cohesive or
not and can handle initial gaps and interpenetration. The integration of the equations
of motions will be performed normally with the Velocity Verlet scheme, see section 2.6.1.

After the discussion on general characteristics of the DE methods applied to simulate
continua and the presentation of the model, some basic numerical analysis are presented
to asses the behaviour of the method. Later on, a set of examples regarding the simula-
tion of laboratory tests on concrete specimens are presented; they have been run under
the developed Virtual Lab module (section 6.1.4) which is integrated in the DEMpack
code (www.cimne.com/dempack).
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5.1 DEM as a discretization method

5.1.1 Simulation scale

The first aspect to decide is the relation between a discrete element in the simulation
and the physical particles or media being modelled. The one-to-one approach has been
successfully applied to problems which lie in different scales including simulations at the
atomistic level (figure 5.1(a)) under the framework of molecular dynamics, to simula-
tions of granular matter, ranging from powder particles (μm) to rock blocks (m).

The fracture of geomaterials such as rock or concrete occur at the mesoscale (mm),
generally in the interfaces between the aggregates and the paste (figure 5.1(b)). At this
scale, a simple concrete laboratory concrete specimen of 15 cm diameter and 30 cm
height, involving fine aggregates on the order of 500 μm, would require approximately
5 million one-to-one discrete elements.

(a) Crystalline micro-structure of cement (b) Detail of paste, agregate and voids in concrete

Figure 5.1: Two different scales in concrete. Taken from: Google images

Since this becomes impractical for applications on real structures, normally this is
done in a very small domain from which, using multi-scale approaches, macroscopic
constitutive laws for a FE discretization can be derived. Alternatively the macroscop-
ical approach can be taken. It involves the employment of larger elements in which a
measurement is assumed to yield values which are representative of the whole volume
modelled by the element discarding any discontinuity in the media that composes it. In
this regard, the employment of DE as a discretization method to macroscopically model
a continuum might lead to a contradiction. It is also debatable that, at this macroscopic
scale, the simulation of fracturing using discrete elements can yield meaningful results
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in the prediction and tracking and branching of fractures.

In this chapter, the DEMpack model is presented, which attempts to simulate geo-
materials employing DEM as a discretization method at the macroscopic level. Basic
numerical analysis and presentation are included in the chapter to support the discussion
on whether the method is adequate or not for this purpose.

5.1.2 Partition of space

The first challenge a DEM faces is the fulfilment of the partition of space. The dis-
cretization of the complete volume of a body without the addition of extra volume
or the inclusion of voids is not feasible using spherical particles or other similar DE
geometries.

Spheres packing

The meshes obtained when discretizing regular geometrical 3D objects such as cubes,
prisms or cylinders with spheres having tangential contact yield a lot of empty space
left. The maximum density sphere packing that can be obtained for a regular mesh
comes from a distribution in the following manner:

Figure 5.2: So-called cubic packing for spheres. Taken from: Wolfram Alpha

Starting with a layer of spheres in a hexagonal lattice, the next layer is placed in the
lowest points you can find above the first one, and so on in the same way oranges are
stacked in a shop. At each step there are two choices of where to put the next layer,
so this natural method of stacking the spheres creates an uncountably infinite number
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of equally dense packings, the best known of which are called cubic close packing and
hexagonal close packing. Each of these arrangements has an average density of:

π

3
√
2
≈ 0.740480189 (5.1)

The Kepler conjecture states that this is the best that can be done, i.e, no other ar-
rangement of identical spheres has a higher average density.

The optimal (minimum) porosity obtained with particles of the same radius is then in
the order of 25%. Higher compactness obviously require the combination of different
sizes. However, a considerably large dispersion (small spheres in contact with large
ones) yields obvious counterparts in a DE simulation such as inefficient global search
algorithms, heterogeneous contact characterization and limiting critical times for the
explicit schemes.

Mesh generator

The discrete meshes that are used in DEMpack are generated using the sphere mesher
of GiD. It has to be pointed out that, since the mesher has some imperfections, gaps,
inclusions and some abnormal big or small particles will be obtained. This has to be
taken into account in the next sections to properly define their properties in the model.

Figure 5.3: Cut view of a 3D sphere mesh with imperfections generated by GiD

In section 5.3, the explanation of how to deal with these imperfections and how to
complete the volume modelled can be found.
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5.1.3 Characterization of bonds

The overall behaviour of a material can be reproduced by locally associating a simple
constitutive law to each contact interface. The interaction between spherical elements i
and j with radius Ri and Rj is defined within an interaction range which is not always
a tangential contact situation (Figure 5.4).

1− β ≤ dij
Ri +Rj

≤ 1 + β (5.2)

dij is the distance between the centroids of particles i and j and β is the interaction range
parameter in the initial configuration. The equilibrium position is then defined including
gaps or indentations up to some tolerance ±β. In this work, the value of β = 0.15 was
chosen for the examples. By the introduction of the initial delta δ0 = ±β(Ri +Rj), the
initial distance dij can be simply written as:

dij = Ri +Rj + δ0 (5.3)

The handling of these non tangential contacts is further discussed in terms of the im-
plementation in section 5.1.4.

Figure 5.4: Definition of the contact interface bond

Every bond represents an interaction region that accounts for some volume of the full
discretized domain. The interface has an associated contact area:

Aij = πR2
c (5.4)

Rc is taken in the DEMpack model as Rc = min(Ri, Rj). This choice does not ensure
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however, that the representative volumes, here represented as cylinders, accomplish the
partition of unity. Instead, these volumes usually present overlapping between different
contact pairs which, at the end, translates into an over-stiff system. The DEMpack
method suggests the employment of a corrected area:

Āij = αAij (5.5)

with a global correction correction value α:

α = 40
P

Nc

(5.6)

where Nc and P are the average number of contacts per sphere and the average porosity
in the mesh. Eq.(5.6) has been deduced by defining the optimal values for the number
of contacts per sphere and the global porosity equal to 10 and 25%, respectively (see the
perfect packing of spheres in section 5.1.2). Some analysis done with the model showed
that this correction of areas is still mesh-dependent and has to be calibrated. In section
5.3 a new area determination is proposed which improves the DEMpack model in terms
of avoiding mesh-dependency for the stiffness characterization.

5.1.4 Neighbour treatment in the cohesive model

A few details are given here on the implementation of a generic cohesive model using a
sphere mesh.

Initial indentation

The position of equilibrium for the contacts is set with their initial configuration. The
initial status between the spheres is not always a tangential contact and can involve
gaps or initial indentations up to some tolerance limit β to be defined for every mesh.
This has been depicted in figure 5.4. The initial distance of each pair is stored as the
passive initial contact status (equilibrium)1.

1In a discontinuum case, normally the initial indentations are eliminated before the simulation starts
to ensure tangential contacts.
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Cohesive groups

The model allows testing different cohesive entities which are meshed independently
with spheres. Each of these entities may form an independent body with particles inter-
connected through bonds that typically can resist tension and shear. Several cohesive
entities, with the same material or with different materials, can interact among them
and also with other discontinuum particles in the model.
In terms of implementation in the DEMpack code, the requisites for a cohesive bond to
be generated are:

• Particles having an initial positive indentation or initial gap smaller than certain
tolerance.

• Particles belonging to a cohesive group (no discontinuum particles).

• Particles belonging to the same cohesive group (same body).

As a clarification example, figure 5.5 shows a pillar and a foundation of concrete which
constitute two separate bodies identified with two different cohesive groups. The par-
ticles defining every group are cohesive since the material is concrete. The contacts
between concrete particles belonging to a different group however, are non cohesive, and
a frictional contact is defined. Finally the gravel surrounding the structure form part of
a third group which is non cohesive.

Figure 5.5: Pillar and foundation of cement in a granular terrain. Example of the bonds
formed in each of the different cohesive groups
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Neighbour lists

In the DEMpack software the neighbouring particles of a given DE are sorted in the
following way:

[Current neighbours ] = [Initial neighbours] + [New neighbours]

The initial neighbours array is fixed and only the new neighbours are updated at each
time step. The initial list is formed during the initialization phase of the simulation with
the neighbours that meet the above-mentioned conditions forming a cohesive bond. The
initial neighbour array has two arrays associated to it, one array containing all the val-
ues for the initial indentations δ0 which defines the equilibrium position with each of
the initial neighbours and an array with an integer defining the failure status of every
contact. The failure status is initialized with a value indicating that a cohesive bond
exists until failure occurs and then changes to a value categorizing the type of failure
given by the constitutive law, namely shear failure, tension failure, etc.

The DEMpack constitutive law applies directly to the initial neighbours which are still
cohesive. This permits simulating cohesive material with large deformations in which
the large negative indentations could not be traced by the neighbour search algorithm.
On the other hand, the rest of the neighbours are treated as a discontinuum contact as
described in chapter 2 and they need to be found regularly by the neighbour search.

5.1.5 Cohesive models in linear elasticity

The main goal of using DEM in the simulation of cohesive materials such as concrete
or rock, is reproducing its characteristic multi-fracturing pattern, as well as an accurate
determination of the strains and stresses which they are subjected to. The aspiration is
to have a general method for a unified modelling of the mechanical behaviour of solids
and particles, including the transition from the solid to the particulate phase.

A necessary first step for the method to assess, is to reproduce the linear elasticity.
Unfortunately, there is not a direct unique general way to achieve that. An example of
the state of the art for each of the two approaches described in the introduction of the
chapter, namely the global and the local approach, are briefly reviewed in this section.
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Dimensional Analysis - Global Approach

Huang [52] used dimensionless laws in order to estimate the mechanical behaviour of
an assembly of particles under quasi-static conditions. It is assumed that the problem
is governed by the following set of characteristics parameters: kn, kt, R̂, e, ρ, L, v;
where kn and kt define the contact stiffness in normal and tangential directions, R̂ is
an averaged radius, ρ the density, L is the sample length, v is the load velocity and e

the porosity of the assembly, as an indirect measure of the particle size distribution and
contact density. Later, Yang et al. [144] showed that the porosity e may not be a good
index to represent the particle size distribution, and generalized the influence of the
particle assembly by a parameter Φ summarizing different mesh effects such as particle
size distribution, coordination number (average number of neighbours per particle), etc.

Since there are seven parameters and three independent dimensions, according to the
Buckingham theorem four independent dimensionless parameters govern the elastic re-
sponse of the assembly:

{
kt
kn

,Φ,
R̂

L
,

v√
kn/ρ

}
(5.7)

It is assumed that, if an enough number of particles is considered, the ratio (r/L << 1)

can be ignored. The same can be assumed for the velocity, considering the condition of
quasi-static loading (v/

√
kn/ρ << 1). The dependence of the elastic constants on the

micro-scale parameters can thus be reduced to the following scaling laws:

EL

kn
= ΨE

(
kt
kn

,Φ

)
, ν = Ψν

(
kt
kn

,Φ

)
(5.8)

According to the found scaling laws, the macroscopic elastic constants E and ν are
completely determined if the normal and shear stiffness are known for a given size
distribution of the particles. This means that the relationship between the micro pa-
rameters kn, kt and the macro parameters only hold for a specific assembly of particles,
with a given configuration, and can not be scaled to a different one. In other words, the
method is mesh dependent and needs calibration.
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This approach was also followed by Labra [63], obtaining the following results:

(a) Plot κ versus ν in 2D. Taken from: Labra [63]

(b) Plot κ versus ν in 3D. Taken from: Labra [63]

Figure 5.6: Poisson’s ratio for different values of κ in a UCS test on a concrete specimen

Labra found out that, for a given assembly, the kt/kn ratio is the main key to determine
the macroscopical Poisson’s ratio of the model. As it can be seen, there exists a limitation
on the maximum value of Poisson’s ratio to the value of 0.25 in 2D case and nearly 0.3

in 3D. Similar results are obtained in the alternative local approach as it is shown next.

Regular assemblies - Local Approach

An interesting study was perform by Tavarez and Plesha [120] with a local definition of
the contact parameters in a regular assembly of particles. Their attempt was to theo-
retically establish the micro-macro parameters relationship for a given unit cell of the
material.

Figure 5.7 shows an isotropic solid material element (with known E and ν) subjected
to uniaxial stress. The volume of material is then modelled using the DEM close-packed
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Figure 5.7: Close-packed DEM unit cell for determination of inter-element spring con-
stants. Taken from: Tavarez and Plesha [120]

unit cell with the loading shown in Figure 5.7. The unit cell contains seven elements
having three degrees of freedom per element (two translations and one rotation). Due
to the symmetry of loading, all rotations in the unit cell are zero. Therefore, a matrix
equation for the 14 translational unknowns can be expressed in the form of:

K · u = f (5.9)

Expressing the stiffness matrix K as a function of kn and kt and the geometry and
solving for a known case with determined vectors f and u, the normal and tangential
elastic stiffness for this assembly can be found:

kn =
1√

3(1− ν∗)
· E∗t , kt =

1− 3ν∗

(1 + ν∗)
· kn (5.10)

Where E∗ and ν∗ are E and ν for the 2D plane stress or E/(1 − ν2) and ν/(1 − ν)

respectively in plane strain case.

Figure 5.8: DEM discretization and unit cell used in Tavarez and Plesha work. Taken
from: Tavarez and Plesha [120]

The normal and tangential stiffness obtained in numerical simulations by this method-
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ology is in total agreement with equations 5.10. Assuming the shear stiffness must be
non-negative, it is interesting to note that these equations limit the maximum value of
ν to 1/3 for plane stress and 1/4 for plane strain. This results are in the same line as
the ones obtained by the dimensional analysis previously shown.

In general, both global and local approaches require a calibration procedure for every
mesh in order to correctly capture the Young’s modulus and Poisson’s ratio. In the case
of regular assemblies this is not necessary since an analytical expression can be derived
for a given mesh; the disadvantage of this method however, is that the multi-fracture
path is predefined by the mesh as well. In both reviewed methods the Poisson’s ratio
is limited to maximum values of 1/4 and is mesh dependent. The aim of this chapter
is to analyse the DEMpack model, a local approach using irregular meshes, which aims
to model in first instance the linear elasticity problem for different values of Young’s
modulus and Poisson’s ratio and later be able to simulate the failure of material. First
the description of the model is presented followed by numerical analysis to asses its
propertites as a discretization method.

5.2 The DEMpack model for cohesive material

The characterization of the constitutive behaviour of a material in the DEM is through
one-dimensional non-linear relationship between forces and displacements at the contact
interfaces. Standard constitutive models for the cohesive DEM are characterized by the
following parameters:

• Normal and shear stiffness parameters kn and kt.

• Normal and shear strength parameters Fn and Ft.

• Coulomb internal friction angle and coefficient φs and μs.

• Coulomb dynamic friction angle and coefficient φd and μd.

• Local damping coefficients cn, ct at the contact interface.

The rheological model is exactly the same as the one presented in chapter 2 for the
discontiuum model (figure 2.6). It has the peculiarity that now the bonds can work
both in compression and tension. On the top of that, limiting values for the forces in
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both normal and shear direction determine changes in the contact laws such as breakage
of the bonds, plasticity, damage, etc. After fully breakage of the bonds, the particles
recover their original discrete frictional behaviour.

In this section, the so called DEMpack model for the analysis of concrete material will
be presented. The model, which derives from the linear LS+D law (section 2.5.1), has
been developed by Oñate et al. in [96] and implemented in the DEMpack software to
be used in engineering projects. It has been validated through the analysis of concrete
samples in several laboratory tests such as the Uniaxial Compressive Strength (UCS)
test, triaxial tests and the Brazilian Tensile Strength (BTS) test. The results obtained
with that model compare well with experimental data for the tests provided by the Tech-
nical University of Catalonia (UPC) for the concrete samples reported in Sfer et al. [112].

The DEMpack model, as other cohesive models, presents several limitations which will
be briefly reported here together with the proposal of a few possible improvements.

5.2.1 Elastic constitutive parameters

Let us assume that an individual particle is connected to the adjacent particles by
appropriate relationships at the contact interfaces between the particle and the adjacent
ones. These relationships define either a cohesive bond or a frictional sliding situation
at the interface.

Normal contact force

The normal force Fn at the contact interface between particles i and j is given by

F ij
n = σnĀ

ij (5.11)

where σn is the normal stress (σn = niσijnj) at the contact interface and Āij is the
effective area at the interface defined in eq. 5.5.

The normal stress σn is related to the normal strain between the spheres, εn, by a
visco-elastic law as:

σn = E εn + c ε̇n (5.12)
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where the normal strain and its rate can be expressed:

εn =
un

dij
, ε̇n =

u̇n

dij
(5.13)

Combining equation 5.13 and 5.12 into equation 5.11, the normal force-displacement
relationship at the interface between particles i and j is deduced as:

F ij
n =

Āij

dij
(Eun + cu̇n) = knun + cnu̇n (5.14)

In this expression, the concept of the indentation δ is generalized to the displacement
un which can be positive (tension) or negative (compression). Substituting eqs. 5.5 and
2.19 into 5.14 we find the expression of the stiffness and viscous (damping) coefficients
at the contact interface as:

kn =
απR2

c

dij
E , cn =

α2πRcξ

dij

√
meqkn (5.15)

Eq.5.14 is assumed to hold in the elastic regime for both the normal tensile force Fnt

and the normal compressive force Fnc . It results in a model equivalent to the LS+D
(section 2.5.1) with its own particular definition of the kn stiffness.

Shear forces

The shear force Fij
t along the shear direction tijs is modelled by the LS+D model (section

2.5.1) which applies in both compression and tension states. Here an expression using
an incremental update is presented:

F ij, n+1
t = F ij, n

t + kt Δsn+1 (5.16)

No local damping was employed in the tangential direction. The limiting values of
the tangential force are defined by the failure mode described in section 5.2.3. The
determination of the relative tangential displacement Δs was detailed already for the
discontinuum case in section 2.5.1. The stiffness value kt is deduced similarly as the
normal forces yielding to a ratio:

κ =
kt
kn

=
1

2(1 + ν)
(5.17)
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5.2.2 Global background damping force

Some application examples happen to be in a static or quasi-static regime. The appli-
cation of a global damping to all the particle systems can numerically help the dynamic
explicit calculation achieving a quasi-static state of equilibrium. This damping which is
non-viscous is additional to the local damping introduced at the contact interface. The
following global damping forces Fdamp

i and torques Tdamp
i were considered:

Fdamp
i = −αt

∥∥∥∥∥Fext
i +

nc∑
j=1

Fij

∥∥∥∥∥ u̇i

‖u̇i‖
(5.18)

Tdamp
i = −αr ‖Ti‖

ωi

‖ωi‖
(5.19)

This damping reduces the total unbalanced forces resulting in every particle. The
translational and rotational damping coefficients αt and αr are design parameters. A
practical choice is to define αt and αr as a fraction of the stiffness parameters kn and
kt, respectively. In this work the value taken for the laboratory tests in section 5.5 is
αt = αr = 0.2. Alternative a viscous type damping can be used as described in [63, 95].

5.2.3 Elasto-damage model for tension and shear forces

In order to reproduce the behaviour of the fictional cohesive materials like cement,
rock or concrete, the DEMpack model introduces a simplified unidimensional non-linear
elasticity, plasticity and damage laws as well as a specific uncoupled2 failure criteria.
These models were specially designed for its application in projects in the field of concrete
test simulation (section 5.5) and rock mechanics. For convenience the upper indices i, j
are omitted from now onward in the definition of the normal and shear forces Fij

n , Fij
t

at a contact interface.

Normal and shear failure

The DEMpack model assumes that the bonds are cohesive (they can work both in
compression and tension) until some failure criteria related to the shear or tensile stresses
is met. The uncoupled failure (de-bonding) criterion for the normal and tangential

2The term uncoupled means that the tension and shear failure criteria are independent of one
another.
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directions at the contact interface between spheres i and j is written as:

Fnt ≥ Fnt , Ft ≥ Ft (5.20)

where Fnt and Ft are the interface strengths for pure tension and shear-compression
conditions respectively, defined in the model as:

Fnt = σf
t Ā

ij , Ft = τ f Āij + μs ·max (Fn, 0) (5.21)

where σf
t and τ f are the tension and shear failure stresses, respectively and μs = tanφs

is the (static) internal friction parameter. These values are assumed to be an intrinsic
property of the material. The failure stress σf

t is typically determined from a BTS
laboratory test. In this work, τ f and φs have been taken respectively as the cohesion
and the internal friction angle of the Mohr-Coulomb criterion.

Figure 5.9: Uncoupled failure criterion in terms of normal and shear forces

The values of τ f and φs can be estimated following the procedure proposed by Wang
et al. [134] for rocks:

K = tan2

(
π

4
+

φs

2

)
, P = 2τ f tan

(
π

4
+

φs

2

)
(5.22)

where K is the slope of the line that fits the values of the limit axial stress versus the
confining pressure for different triaxial tests and P is the value of the limit axial stress
(defining the onset of the non linear branch) for the Uniform Compressive Strength
(UCS) test. The value of φs and τ f are obtained from equations 5.22. The cohesive
models of the DEM, in general, require the calibration of these parameters phenomeno-
logically using this or other procedures trying to fit the experimental curves [96, 128].
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Figure 5.9 shows the graphic representation of the failure criteria described by eq. 5.20
and eq. 5.21 which assumes the simplification that the tension and shear forces con-
tribute to the failure of the contact interface in a decoupled manner. On the other hand,
shear failure under normal compression forces follows a Mohr-Coulomb type constitutive
law, with the failure line being a function of the cohesion, the compression force and the
internal frictional angle.

Damage evolution law

Elastic damage can be accounted by assuming a linear evolution of the damage param-
eters dn and dt which control the loss of stiffness in the force-displacement relationships
in the normal (tensile) and tangential directions, respectively (Figure 5.10).

(a) Damage law for tension (b) Damage law for shear

Figure 5.10: Undamaged and damaged elastic module under tension and shear forces

The constitutive relationships for the elasto-damage model are written as:

Normal (tensile) direction

⎧⎨
⎩Fnt = kd

n un = (1− dn) kn un , if 0 < dn ≤ 1

Fnt = 0 , if dn ≥ 1
(5.23a)

Tangential direction

⎧⎨
⎩Ft = kd

t ut = (1− dt) kt ut , if 0 < dt ≤ 1

Fnt = 0 , if dt ≥ 1
(5.23b)

For the undamaged state dn = 0 and dt = 0, while for a damaged state 0 < dn ≤ 1 and
0 < dt ≤ 1. kd

n and kd
t are damaged elastic stiffness parameters.
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The evolution of the damage parameters is chosen evolve linearly between the two limits
ul and uf for both tangential and tensional directions that have to be introduced in the
model. Therefore, the evolution of the damage parameters is expressed:

dn =
un − ul

n

uf
n − ul

n

, dt =
ut − ul

t

uf
t − ul

t

(5.24)

Damage effects are assumed to occur when the failure strength conditions are satisfied:

Fnt ≥ Fd
nt

, Ft ≥ Fd
t (5.25)

At the same time the limit strengths Ft and Ft evolve due damage in a non-linear way:

Fd
nt

= kn(1− dn) ·
[
ul
n + d(uf

n − ul
n)
]

Fd
t = kt(1− dt) ·

[
ul
t + d(uf

t − ul
t)
] (5.26)

where Fd
nt

and Fd
t are the damaged interface strengths for pure tension and pure shear

conditions, respectively. Other definitions using fracture mechanics arguments can be
found in [76, 95].

5.2.4 Elasto-plastic model for compressive forces

Figure 5.11: Normal compressive stress-axial strain relationship in a Uniaxial Strain
Compaction test for a saturated cement sample. Taken from Oñate et al. [96]
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The compressive stress-strain behaviour in the normal direction for frictional materials
such as cement and concrete is typically governed by an initial elastic law up to a limit
defined by the compressive axial stress σel, followed by a non-linear elastic-plastic be-
haviour that varies for each material. An example is given in figure 5.11.

The common strategy in a DEM code is to phenomenologically identify the parameters
that define a generic and simple non linear and plasticity law on the normal contacts
[128]. Here, a simple model is introduced where the elasto-plastic relationships in the
normal compressive direction are defined as:

ΔFnc = kni
Δun for Δun ≥ 0 (5.27a)

ΔFnc = kn0Δun for Δun < 0 (5.27b)

where kn0 is the initial (elastic) compressive stiffness corresponding to the material
Young’s modulus E = E0, and kni

is the tangent compressive stiffness given by:

kni
=

kn0

YRCi

(5.28)

YRCi is the ratio between the original and the new apparent Young’s modulus YRCi =

E0/Ei. Several consecutive branches can be introduced in the model based on the
definition of the strength limits, denoted LCSi, in which the compressive stiffness changes
its slope as depicted in figure 5.12.

Figure 5.12: Definition of the model parameters of the elasto-plastic model
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In the same way, the compressive stress limit at which the plasticity starts has to be
also introduced. Normally it will coincide with the first change of slope introduced.
After that point, the unloading follows the initial elastic slope instead of going over the
non-linear loading path.

5.2.5 Post-failure shear-displacement relationship

A bond can break if the shear forces or normal forces in tension reach their respective
strengths. In case of employing a damage law, the complete failure occurs when the
maximum damage is achieved. After that point, the bond is no longer cohesive and the
basic frictional contact is recovered from the LS+D model (section 2.5.1).
Figure 5.13 shows the evolution of the failure lines from the undamaged to the fully
damaged state for the uncoupled model.

Figure 5.13: Damage surfaces for uncoupled normal and shear failure

5.3 Virtual Polyhedron Area Correction

This section describes a methodology to derive the contact areas in every bond such
that the partition of space is fulfilled in a similar way as a Voronoi tessellation would
do but in a very cheap and efficient manner. This provides an alternative to the global
adjustment parameter α (eq. 5.6) that the DEMpack model does in order to correct the
overestimation of the bonding areas (section 5.2.1) which was found not to be accurate.
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Contact parameters derivation

As a first step, the determination of the representative contact area Ac in a bond is
reviewed. The method proposes to obtain kn and kt from the respective equivalent axial
and shear stiffness that corresponds to a truncated conical volume (figure 5.14).

Figure 5.14: Definition of the contact interface bonds in the Virtual Polyhedron method

The derivation is as follows:

un = uj
n − ui

n =

∫ L

0

ε dx =

∫ L

0

Fn

EA
dx =

Fn

E

∫ L

0

dx

A(x)
(5.29)

A linear variation of the radius:

R = Ri (1 + λx) where λ =
Rj −Ri

Ri · (Ri +Rj + δ0)
(5.30)

yields to:

Fx = knun kn = πE
RiRj

Ri +Rj + δ0
(5.31)

Proceeding similarly, for the shear stress, the following is obtained:

kt = πG · RiRj

Ri +Rj + δ0
,

kt
kn

=
1

2(1 + ν)
=

G

E
(5.32)

The contact area can be regarded as:

Aij = πRiRj (5.33)

and then, the stiffness parameters rewritten:
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kn =
EAij

Ri +Rj + δ0
, kt =

GAij

Ri +Rj + δ0
(5.34)

The full derivation can be found in [109].

Virtual polyhedra

Obviously, the areas resulting from equation 5.33 yield to overlapping of the contact
domains defined by the bonds ij linked to particle i. The solution suggested here is to
introduce a local correction (eq. 5.35) rather than the global factor proposed by the
DEMpack model (eq. 5.6).

Āij = αiA
ij (5.35)

The determination of a consistent area of interaction can be achieved by defining a
portion of the plane centred at the contact point and normal to the line connecting
two particles which is limited by the intersection with other contact planes (figure 5.15).
These intersections lead to complex geometries that define irregular polyhedra of n sides
surrounding every particle. This would have the advantage that the partition of unity of
the domain would be achieved by the associated volumes. However, the determination
of these geometries and their respective area is an expensive calculation.

Figure 5.15: Polyhedron associated to a particle. Taken from: De Pouplana [27]

Trying to preserve the simplicity of the method, an approximation to this procedure is
introduced. The idea is to approximate the irregular polyhedra of n faces to a virtual
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regular one of the same number of faces and determine the total covered surface as
the surface of the regular one. The assumption is that the total area of the resulting
polyhedron is similar to the total area of its regular counterpart. It has been found
numerically that the assumption of similar total surface between regular and irregular
polyhedra enclosing an sphere is accurate.

Figure 5.16: Platonic Solids, regular polyhedra. Taken from: Wikipedia

Table 5.1: 3D Polyhedra area ratio

Polyhedron Tetrahedron Hexahedron Octahedron Dodecahedron Icosahedron

Num. of neigh 4 6 8 12 20

Surface area 24R2
√
3 24R2 12R2

√
3 600R2

25+11
√
5

√
5+2

√
5

5
120R2

√
3

7+3
√
5

Ratio of areas 3, 308 1, 910 1, 654 1, 325 1, 207

The radius can be taken as (1 + β)Ri when the initial configuration is not tangent.

Table 5.2: 2D Polygons area ratio

Polygon Triangle Square Pentagon Hexagon Heptagon Octagon Nonagon

Num. of neigh 3 4 5 6 7 8 9

Ratio of areas 1.654 1.273 1.156 1.103 1.073 1.055 1.043

Polygon Decagon Hendecagon Dodecagon Tridecagon Tetradecagon

Num. of neigh 10 11 12 13 14

Ratio of areas 1.034 1.028 1.023 1.020 1.017

Table 5.1 summarizes the values of the ratio between the surface of the existing regular
polyhedra (Platonic solids, Figure 5.16) and the surface of the target sphere. Since the



Numerical analysis of the cohesive model 169

number of neighbours can be any, the rest of the values for the virtual polyhedra has to
be interpolated. For academical purposes, the same is done for the 2D case with regular
polygons in table 5.2.

First, the areas Aij with every contact are normally calculated using equation 5.33.
Then, the surface of the sphere is calculated with the radius of the particle (affected
by β). The area As,nc of the equivalent virtual polyhedron (or polygon) is obtained by
applying multiplying the sphere area times the corresponding ratio of areas in function of
the number of neighbours. Finally the corrected areas of contact Āij for every neighbour
are determined applying the weighting value αi calculated as:

αi =
As,nc∑nc

j=1 A
ij

(5.36)

There are several aspects of this methodology to take into account regarding its imple-
mentation:

• The contact between two particles i and j yield to different values of contact area
Āij and Āji at each side. In order to respect Newton’s Third Law, the mean of the
two values can be employed.

• The particles situated at the boundaries are not completely surrounded by other
spheres and need a special treatment. Details on this are given in [109].

• The corrected areas are calculated once at the beginning of the simulation and
define the stiffness values of the contacts. In large deformation cases the areas
could be recalculated.

• After failure of the bonds, the classic LS+D model employed needs to be defined
with the same stiffness as in the cohesive model in order to avoid sudden change
in the contact forces.

5.4 Numerical analysis of the cohesive model

The objectives of this section is to numerically analyse the DEM applied to the modelling
of a continuum by means of doing simple tests and checking basic aspects of the method
such as convergence, mesh dependency, etc. This will be done employing the formulation
derived in section 5.3.
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5.4.1 Area determination assessment

In this section several examples are performed in order to check whether the method
proposed in section 5.3, the Virtual Polyhedron Area Correction, correctly estimates the
area of the geometries.

(a) Mesh 2D-1 (b) Mesh 2D-2 (c) Mesh 2D-3 (d) Mesh 2D-4 (e) Mesh 2D-5

Figure 5.17: 2D meshes used in the area determination analysis

A rectangular geometry of 5 cm width and 10 cm height is meshed by 5 different meshes
in 2D (figure 5.17) which range from a regular assembly of discs to a highly heterogeneous
distribution of the particle radius. Theoretically, in every contacting pair a character-
istic area Āij in 3D, or length in 2D, (section 5.3) is assigned so that, in average, no
overlaps are introduced (figure 5.18).

Figure 5.18: Contact areas (lengths in 2D) associated to each contact

In order to check how well is the area assigned to the contacts, the following strategy
is done: several horizontal strips are determined defining groups of particles in contact.
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The total contact area between the particles of each group projected horizontally should
match the transversal length (area in 3D) of the geometry. Several strips are set in
order to average the values obtained. This is also done for two different 3D meshes of a
cylinder of 15 cm diameter and 30 cm height.

(a) Strips defined in mesh 2D-1 (b) Strips defined in mesh 3D-1 (c) Strips defined in mesh 3D-2

Figure 5.19: Examples of the strips defined in the meshes

In the following table 5.3 the properties of each mesh are presented together with he
numerical results of the total area evaluation on the interfaces.

Table 5.3: Properties of the meshes and results of the calculation of area

Mesh 2D-1 2D-2 2D-3 2D-4 2D-5 3D-1 3D-2

Num. of elements 2260 1262 725 1343 325 10511 13500

Mean radius (mm) 0, 72 1, 02 1, 42 1, 02 2, 0 4, 21 3, 86

Rel. stand. Dev.1(%) 45, 65 31, 16 10, 24 9, 23 0, 00 25, 25 25, 83

Coord. number2 5, 08 5, 14 5, 24 5, 79 3, 76 10, 98 10, 97

Mesh porosity3(%) 11, 04 9, 39 6, 77 11, 14 18, 31 25, 44 25, 73

Num. area (cm, cm2) 5, 17 5, 13 5, 11 4, 93 5, 00 179, 4 178, 3

Relative error (%) 3, 3 2, 6 2, 2 −1, 4 0, 0 1, 5 0, 9

1 Rel. stand. dev.: the ratio of standard deviation over the mean value.
2 Coord. number: average number of neighbours per particle calculated as NC = 2nc/np.
3 Mesh porosity: the complementary of the volume fraction of particles in the mesh over the
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geometric volume.

The results are quite satisfactory since the main goal here was to obtain a method to
weight the area assigned to the contacts in a way that the real geometry was respected.
It can be stated that the Virtual Polyhedron Area Correction method is able to cor-
rectly determine the areas of contact for 2D and 3D cases involving homogeneous and
heterogeneous meshes.

5.4.2 Linear elasticity assessment

As explained in section 5.1.5, the given expressions for kn and kt are not universal to
irregular meshes even if the area correction (section 5.3) is applied. Instead, a calibra-
tion procedure is needed [46, 63, 128].

In order to study the capabilities of the presented simple linear model, a parametric
study is performed with a linear combination of the stiffness parameters:

kn = α · E · Āij

(Ri +Rj + δ0)
, kt = β · G · Āij

(Ri +Rj + δ0)
(5.37)

with α and β varying in the range:

α ∈ [ 1.00, 1.20, 1.50, 1.75, 2.00 ]

β ∈ [ 0.00, 1.00, 2.00, 2 · (1.00 + ν), 3.00 ]
(5.38)

A simple uniaxial compression is applied to each of the 2D meshes presented in figure
5.17. The linear elasticity relations read:

εy =
1

E
σy , εx = − 1

E
νσy (5.39)

Assuming uniform stress and strain in the complete model, the measure for a macro-
scopic Young’s modulus output and Poisson’s ratio can be obtained from the measured
quantities as:

E =
σy

εy
, ν = −εx

εy
(5.40)

The test is performed introducing as input: E = 20MPa and ν = 0.25. The output
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macroscopic values of E and ν are measured for the different combination of α and β.
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Young’s modulus results

(a) Young’s modulus (MPa) for mesh 2D-1 (b) Young’s modulus (MPa) for mesh 2D-2

(c) Young’s modulus (MPa) for mesh 2D-3 (d) Young’s modulus (MPa) for mesh 2D-4

(e) Young’s modulus (MPa) for mesh 2D-5

Figure 5.20: Parametric study of output Young’s modulus for different meshes



Numerical analysis of the cohesive model 175

Poisson’s ratio results

(a) Poisson’s ratio for mesh 2D-1 (b) Poisson’s ratio for mesh 2D-2

(c) Poisson’s ratio for mesh 2D-3 (d) Poisson’s ratio for mesh 2D-4

Figure 5.21: Parametric study of output Poisson’s ratio for different meshes

Results of Poisson’s ratio of mesh 2D-5 have not been included since that mesh yields a
0.0 value in any case.
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From the results the following can be concluded:

• It seems that the correct value of the Young’s modulus is asymptotically recovered
when the tangential stiffness becomes larger for every mesh. This is a consequence
of the correction of areas which ensures that the static forces are well calculated
in the undeformed system formed by linear springs (weighted by the areas).

• There is a linear correlation between the local α value and the global stiffness of
the model as it was expected in small deformations.

• The values of kn have no influence on the output Poisson’s ratio.

• Given a mesh and a value of β such that the correct Poisson’s ratio measure is
obtained, there exists a value of α in the range of [1.0,∞] which recovers the
correct macroscopic behaviour in terms of Young’s modulus.

• The output Poisson’s ratio can result in non feasible values greater than 0.5.

• The meshes with higher heterogeneity of radius yield higher Poisson’s ratio. Mesh
2D-2 yielded a ν = 0.94 for β = 0.0.

• The values of Poisson’s ratio seem to converge to some value near zero (which can
even be slightly negative) when the value of β increases.

• The values obtained for β = 1.0 yield a good aproximation of the Poisson’s ratio
for all the meshes except for mesh 2D-5 which obviously yields a null Poisson’s
ratio.

Even though the ratio kt/kn has influence on the output ν, it is clear that the range
of values is given by the geometrical assembly of the particles and thus, is totally mesh
dependent. It seems a good strategy to choose a high value of β, or in the limit,
restrict the tangential displacement in the contacts, in order to recover the exact Young’s
modulus value with no need of calibration (α = 1.0). This yields to a null or negligible
Poisson’s ratio. Then, the desired Poisson’s ratio could be recovered by enforcing the
equations of linear elasticity in the bonds that are formed arround every particle.
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5.4.3 Mesh dependency

The mesh dependency has been already shown (section 5.4.2) also for the simple case
of linear elasticity where, given the same micro parameters (kn and kt), different macro
parameters (E and ν) were measured. Figure 5.22 shows an example of the previous
parametric study.

(a) Stress-Strain plot for all 2D meshes (b) Poisson’s ratio plot for all 2D meshes

Figure 5.22: Output Young’s modulus and Poisson’s ratio for the 2D meshes using
α = 1.00 and β = 1.00

In this case the vertical strain was imposed. The measure of ν is done macroscopically,
tracking the position of the particles with respect to its initial position. The measure of
stress, is done by evaluating the forces that the top and bottom particles receive.

5.4.4 Convergence

In the article by Sfer et al. [112] experimental curves for a UCS test on concrete spec-
imens are reported. Oñate et al. [96] have reproduced the results using the DEMpack
model. This is the example chosen to analyse the convergence of the cohesive model
presented. The parameters of the simulation are detailed in section 5.5.

The convergence analysis will be done from three perspectives: Number of elements,
time step, and quasi-staticity.
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Convergence in the number of elements

In the introduction, it has been discussed on whether the DEM is or not a discretization
method. A property of a FE discretization is its convergence in the number of elements.
A similar analysis is performed here with DEs to draw conclusions on that aspect. The
following meshes are used:

Table 5.4: Meshes used in the convergence analysis

Mesh 100 250 500 1 k 5 k 13 k 70 k

Num. of elements 107 251 497 1004 4959 13500 71852

Mean Radius (mm) 18.75 14.27 11.50 9.20 5.40 3.86 2.26

Coord. number 7.64 8.32 8.87 9.29 9.63 9.55 10.15

In order to have a fair comparison, different time steps have to be used for each mesh
since their stability limits depend on the size of the particles. The estimation of the
critical time step is based on the highest frequency of the system. The dependency of
the frequency on the size of the particle can be easily derived for the case of a bond
between two identical particles:

ωi =

√
ki
mi

=

√√√√πE · R2
i

2·Ri+δ0

3/4πR3
i · ρ

(5.41)

simplifying for δ0 → 0:

ωi ∝ 1/
√

R2
i ∝ 1/Ri (5.42)

The ratio of time steps relates to the ratio in the number of particles in the following
way:

Δt1
Δt2

∝ ω2

ω1

∝ R̂1

R̂2

∝ 3

√
V1

V2

∝ 3

√
N2

N1

(5.43)
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The time step is linearly proportional with the radius of the smaller spheres in the mesh
and therefore inversely proportional to the cubic root of the number of particles in the
mesh. Taking the 13 k mesh as the reference one, with a Δt = 1e − 7, the others were
scaled accordingly.

Figure 5.23: Convergence analysis for the number of particles in the discretization

Although the results seem to converge by increasing the number of elements, its monotony
and order of convergence for the variables of interest such as the yield stress are difficult
to determine. The visualization of the results and the cracks tracking is obviously better
defined for finer meshes (see figure 5.31).

Convergence in time step

The value for the critical time step for the reference 13 k mesh is of: Δtcr ≈ 6e−7. The
following values have been used in the analysis: [1e−8, 5e−8, 1e−7, 5e−7].

The results (figure 5.24) corroborate that a time step slightly lower than the critical
one (5e − 7) is not enough for the stability of the system. However, the calculation is
stable for a time step of 1e − 7, which is approximately the value resulting after the
application of the safety value β = 0.17 (section 2.6.4).
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Figure 5.24: Convergence analysis for the time step selection

The solution does converge when the time step is smaller as shown in figure 5.24.

Convergence in quasi-staticity

The explicit formulation of the DEM is naturally conceived to solve dynamic problems.
However the quasi-static conditions of the tests can also be simulated by imposing
displacements and tracking the resulting forces. The quasi-static brittle fracture of a
concrete specimen subject to a uniaxial compressive test reported in Sfer et al. [112]
have been simulated. The mesh used for this analysis is the 13 k mesh previously used.
A few special considerations have to be done:

• The experimental loading velocities are of 0.0006mm/s. At this velocity the
real experiment takes 20 minutes to reach the desired failure deformation around
0.25%. Using the selected stable time step 1e− 7, a number of 1, 25e10 time steps
would be required at that velocity which is obviously not feasible and thus, the
velocity of the simulation has to be drastically incremented.

• Extra damping is needed in quasi-static simulations in order to kill the dynamic
effects. In this sense, the restitution coefficient is set close to zero, e = 0.0015,
killing all the local contact unbalanced forces.

• The non-viscous global damping (section 5.2.2) will be employed to reduce the
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total unbalanced forces resulting in every particle. A value of α = 0.2 is used in
the analysis.

• The mass of the particles can be also modifiable since the accelerations are not an
interesting result in a quasi-static simulation. In a dynamic analysis however, the
porosity of the mesh should be taken into account and increase the mass associated
to the particles that compose the simulated body. In this particular analysis the
mass value has not been modified.

The reference experimental data in [112] corresponds to a loading velocity of 0.0006mm/s.
The simulated loading velocities have been: [0.002, 0.020, 0.100, 0.200, 1.000] m/s. This
particular case has been designed with no damage in the constitutive law in order to
check if the model can reproduce the brittle behaviour.

Figure 5.25: Convergence analysis for the loading velocity

The results clearly show that the loading velocity has influence on the results. The
elastic part is well calculated even for the 1.0 m/s case, where the dynamic effects
appear in shape of elastic waves produced by an excessively fast loading. The failure
however, gives higher peak values and higher deformation ranges for the high velocity
cases yielding to a ductile behaviour. On the other hand, the slowest case of 0.002m/s

yields a extremely brittle behaviour matching the laboratory results.
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5.4.5 Stress evaluation and failure criteria

The phenomenological approach is widely used in the simulation of cohesive materi-
als using the DEM. The failure parameters of a given model have to be calibrated by
performing different typified tests and tuning the parameters that fit the experimental
curves [128]. The methods considered in most of the cases however, which are based
on unidimensional failure criteria on the contacts, do not suffice to represent the real
behaviour of the failure mechanisms in the continua.

To show this idea, a simple test has been performed involving a cylindrical concrete
specimen discretized by 70 k DEM particles subjected to a hydrostatic pressure simu-
lating the hydrostatic load stage prior to a the deviatoric loading in a triaxial test. A
variable denoted failure criterion state (FCS) has been used to indicate how close to
failure is a bond under the criteria detailed in section 5.2.3. The value is calculated as:

FCS =

⎧⎪⎪⎨
⎪⎪⎩

max
(

Fs

F ,
Fnt

Fnt

)
for Uncoupled Mohr-Coulomb without damage law.

max
(

Fs

F , un

uf
n

)
for Uncoupled Mohr-Coulomb with damage law.

1.0 for Broken bonds
(5.44)

(a) Hydrostatic loading in a speciment (b) Failure criterion state plot on bonds

Figure 5.26: 3D cylindrical specimen meshed with 70 k spheres under the hydrostatic
loading stage of a triaxial test
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Figure 5.26(b) shows the values of FCS ranged [0.0, 0.3] plotted in linear elements con-
necting the centres of the particles which simulate the bonds. It can be seen that, in
some contact elements, values near the 30% of the failure criterion have been reached.
The results correspond to the end of the hydrostatic loading of a triaxial test where a
confinement of 30 MPa has been reached. The fact that some contacts are already closer
to the failure contradicts the real effect of the confinement which pushes the failure point
further.

The problem is obviously that the contact only captures the confinement in one di-
rection, the normal one. A possible way to improve this is the development of failure
criteria based on the real three-dimensional stress and strain states in the continuum.
This can be achieved by averaged measures of strain and stress tensor in the vicinity of
the particles. The definition of these average stress and strain tensors is widely discussed
in literature for granular materials and discrete media [6, 62].

5.5 Practical application in a project

One of the projects carried out within the scope of this thesis is presented here. Weath-
erford Ltd. company was interested in numerically reproducing the typical tests carried
out in a material laboratory with concrete-like specimens in order to validate the cohe-
sive DE model.

The DEMpack model was used to model the behaviour of these materials which can
range from brittle to ductile depending on the confinement conditions. After some cal-
ibration work, the model is able to predict the failure and the strain-stress evolution in
different cases.

A specific user interface specially devised for the numerical simulation of laboratory
tests have been developed and used for the project: the Virtual Lab. It is introduced in
section 6.1.4.
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5.5.1 Triaxial and Uniaxial Compressive Tests on concrete spec-
imens

The experimental tests were carried out at the laboratories of the Technical University
of Catalonia (UPC). Details on testing are given in [112]. The concrete used in the
experimental study was designed to have a characteristic compressive strength of 32.8
MPa at 28 days. Standard cylindrical specimens (of 150mm diameter and 300mm

height) were cast in metal molds and demolded after 24 h for storage in a fog room.

(a) View of the testing device (b) Seccion of the testing device

Figure 5.27: Display of the triaxial experiments in the laboratory. Taken from: Sfer et
al. [112]

The triaxial tests were prepared as shown in Figure 5.27, with a 3-mm-thick butyl sleeve
placed around the cylinder and an impermeable neoprene sleeve fitted over it. Before
placing the sleeves, two pairs of strain gages were glued on the surface of the specimen
at mid-height. Steel loading platens were placed at the flat ends of the specimen and
the sleeves were tightened over them with metal scraps to avoid the ingress of oil. The
tests were performed using a servo-hydraulic testing machine with a compressive load
capacity of 4.5 · 106 N and a pressure capacity of 140 MPa. The axial load from the
testing machine is transmitted to the specimen by a piston that passes through the top
of the cell.



Practical application in a project 185

Several levels of confining pressure were used in order to study the brittle-ductile tran-
sition of the response: 1.5, 4.5, 9.0, 30 and 60 MPa. First, the prescribed hydrostatic
pressure was applied in the cell, and then the axial load was increased at a constant
displacement rate of 0.0006mm/s.

5.5.2 Description of the material model

The model employed is the DEMpack model, described in section 5.2. Table 5.5 shows
the DEM parameters for the UCS and triaxial tests for confining pressures of 1.5, 4.5,
9.0, 30.0 and 60.0 MPa.

ρ (kg/m3) μs μd E0 (GPa) ν σt
f (MPa) τf (MPa) α uf

n/u
l
n uf

t /u
l
t

2500 0.90 0.25 28 0.2 5.0 16.0 1.0 0.2 0.2

LCS1 (MPA) LCS2 (MPa) LCS3 (MPA) YRC1 YRC2 YRC3

20 45 70 3 12 22

Table 5.5: DEM parameters for UCS and triaxial tests on cylindrical concrete samples
for confining pressures of 1.5, 4.5, 9.0, 30 and 60 MPa

The value of the shear failure stress τ f and the internal friction angle have been es-
timated as τ f = 16 Mpa and φs = 42◦ (μs = 0.9) using the procedure described in
section 5.2.3. The Coulomb friction coefficient has been estimated from numerical tests
as μd = 0.90. The tensile strength is deduced from the flexural test as τ f = 4.5 Mpa
which translates into a value of τ f = 3.2 MPa in the BTS test. This assumption has
been validated numerically.

The parameters denoted LCS are limits in the compressive normal local stress where
the elastic-plastic curve changes its slope and YRC are the values of the reduction of
the normal stiffness as described in section 5.2.4. These together with the factors uf

n/u
l
n

and uf
t /u

l
t, defining the damage model, have been determined by adjusting the curves

to the experimental data in a phenomenological characterization procedure [96, 128].
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5.5.3 Simulation procedure

The simulation of a triaxial test within the DEM reproduces the experiment as follows:

(a) The confining pressure is applied up to the desired hydrostatic testing pressure.

(b) A prescribed axial motion is applied at the top of the specimen until this fails,
or until the axial compressive strain reaches a desired amount of strain while the
confining pressure is held constant.

The confining pressure in the numerical model is directly applied to the spheres that
lay on the surface of the specimen. A normal force is applied to each surface particle
in the radial direction and vertical direction respectively to the lateral particles and the
ones on the top and bottom. The magnitude of the force is computed as Fni

= γ p π R2
i

where p is the confining pressure. The factor γ adjusts the areas in order to ensure that
the total application area of the pressure matches the total surface of the geometry.

For the Uniaxial Compressive Strength (UCS) and the Brazilian Tensile Strength (BTS),
the process starts by step (b) with zero confining pressure. Further details can be found
in [96].

5.5.4 Comparison of numerical and experimental results

Figures 5.28 and 5.29 show the stress-strain curves obtained for the Triaxial tests for
confining pressures of 1.5, 4.5, 9.0 and 30 MPa while figures 5.30 and 5.32 show the
results for the Unixaial Compressive Strength (UCS) and the Brazilian Tensile Strength
(BTS) tests using the DEMpack model.

The generation of the samples and the set up of the conditions was done using the so
called Virtual Lab module (section 6.1.4) of the DEMpack software in a mesh of approx-
imately 13 k spheres for all cases except the BTS which was performed using a slightly
larger mesh of approximatelly 16 k spheric particles.

The results have been reported in the article by Oñate et al. [96] showing good agree-
ment with the experimental values reported in [112].
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Triaxial tests

Figure 5.28: Triaxial test on concrete samples with 1.5 MPa, 4.5 MPa and 9.0 MPa
confining pressure. Experimental results in [112] versus DEM results for 13 k. Taken
from: Oñate et al. [96]
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Figure 5.29: Triaxial test on concrete samples with 30 MPa and 60 MPa confining
pressure. Experimental [112] versus DEM results for 13 k. Taken from: Oñate et al.
[96]
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Uniaxial Compressive Strength test

Figure 5.30: Uniaxial Compressive Strength (UCS) test on concrete sample. DEM
results for the 13k mesh in KDEM. Taken from: Oñate et al. [96]

(a) Horizontal displacement before failure (b) Horizontal displacement after failure

Figure 5.31: Horizontal displacement results of a centred section of a 3D cylindrical
specimen meshed with 70 k spheres (deformation ×2)
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Brazilian Tensile Strength test

Figure 5.32: Brazilian Tensile Strenght test (BTS) on concrete sample. DEM results for
the 13 k mesh in KDEM. Taken from: Oñate et al. [96]

(a) Displacement results before failure (b) Displacement results after failure

(c) FCS results before failure (d) FCS results after failure

Figure 5.33: Horizontal displacement of a centred section of the specimen at the begin-
ning of the loading and after failure in a BTS test (deformation × 10)
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5.6 Cohesive DEM flowchart

Figure 5.34: Basic flowchart for the cohesive DEM





Chapter 6
Implementation and examples

6.1 DEMpack

DEMpack (www.cimne.com/dem) is a DEM-based software developed within the frame-
work of the open source code Kratos Multiphysics (www.cimne.com/kratos). It consists
of an open-source code under BSD license written in a hybrid Python/C++ language
together with packed GUI’s developed for specific problems.

The DEMpack project started at 2012 with the begging of this thesis and the number
of the DEM code developers has been increasing ever since forming now a group of 5
core people plus contributions from other collaborators. As part of the thesis objectives,
all developments presented in this document have been implemented in the DEMpack
code and are available to any user or developer.

6.1.1 Code structure

The DEMpack code is integrated in the KratosMultiphysics framework (or Kratos) [25]
which is a platform for the development of multi-disciplinary FE-based codes. Kratos
provides a common data structure to all the different applications. In this sense, it
facilitates the combination of applications. In this work the coupled DE-FE procedure
benefited from several developments already implemented in the solid mechanics appli-
cation of Kratos. Apart from that, the Kratos core provides built-in utilities common
in FE-codes and high performance tools to be used in any application.
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The main script of the DEMpack code is written in python language. It reads the input
files, sets the simulation properties, launches the calculation and writes the output files.
It has an interface connecting to the core functions of the code (which is written in C++)
giving a high flexibility and permitting the performance of a lot of analysis and control
operations. The files that constitute the core of the DEM application are structured in
different modules in the following way:

• Strategies: are the main scripts which define the workflow of the calculation.
Every problem has its own specific strategy: discontinuum DEM, coupled DE/FE,
cohesive DEM, coupling with fluid, etc.

• Elements: define the particle properties and the contact characteristics, specify
the necessary variables to consider and determine how the forces and torques need
to be calculated. Some of the existing elements in the code are the basic discrete
spherical element, the cohesive spherical element, the DE/FE element and other
special elements for the fluid coupling, thermal coupling etc.

• Utilities: are the different tools necessary in the DEM algorithm such as contact
detection, energy calculations, creation and destruction of particles in inlet and
outlet regions, geometrical operations, visualization and post-process utilities, etc.

• Integration schemes: Several explicit schemes are available to integrate the
movement of the particles and clusters.

• Contact constitutive laws: the interaction of particles is trough specific contact
laws which defined here such as the LS+D, HM+D, etc.

• Conditions: are entities used to apply contact or other kind of boundary condi-
tions. In case of contact with FE, the contact conditions are the surface elements
forming part of the FE mesh.

6.1.2 Levels of usability

The DEMpack code, as an open-source code can be accessed at different levels depending
of the type of user as described in the following figure 6.1:
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Figure 6.1: Usability levels of the DEMpack code

All the capabilities and developments are integrated in a user-friendly GUI which can
be used by engineers to perform a DE or DE-FE combined analysis. An overview of
the interface is found in next section 6.1.3. For special operations and higher control
of the algorithm, the advanced user can interact with the python interface which has
access to most of the functions of the code and requires a very basic coding knowledge.
In a higher level of complexity, developers can access to the core of the application
and modify or extend it as they please. More and more developers join the Kratos
community bringing new developments and capabilities to the code. The documentation
online (http://kratos-wiki.cimne.upc.edu) and the help from the Kratos community in
the forums provide support to the development of the new users’ applications.

6.1.3 Combined DEM-FEM user interface

As an output of the developments of the thesis a user interface integrated in the GiD pre
and post-processor has been generated in collaboration with the rest of the developers
forming part of the DEM Team. The so called Solid-DEM interface is an extension of
the basic DEM interface of the DEMpack software which permits the assignment of all
conditions and properties necessary for a basic coupled DE-FE analysis.
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Figure 6.2: Overview of the coupled DE-FE user interface of DEMpack

The example in figure 6.2 shows the basic menu of the interface which is divided in
the SOLID and DEM part. Regarding the solid part, the material properties and
constitutive law can be defined as well as the type of elements needed for the calculation.
The contact conditions are assigned to the surface where contact is expected to happen
and classic boundary conditions can also be applied. To the DEM part, the properties
of the material, the contact law to be used and other boundary conditions are applied to
the particle meshes. The general options allow the inclusion of bounding boxes limiting
the domain of the calculation, the introduction of gravity and use of other advanced
features. Simulation parameters such as the time step, the integration scheme, the
neighbour searching frequency etc. can also be defined here. Finally, the selection of
results for the visualization are available for both DEs and FEs.

6.1.4 The Virtual Lab

The Virtual Lab is a wizard based on the GiD pre and post-processor which interacts
with the DEMpack code through the basic DEM user interface of DEMpack. It was
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developed by the DEM team of CIMNE in collaboration with the Quantech company.
This tool was developed in the context of a project with Weatherford Ltd. company
which was interested in performing simulations with several cohesive materials using
the DEMpack model. Detailed information of this aspect can be found on the author’s
master thesis [109].

The wizard automatically sets all the options and parameters needed for the simulation
of material tests, it loads predefined meshes and automatically assigns the material
properties and conditions to the mesh elements. It guides the user, step-by-step, through
the preparation of the laboratory tests presented in section 5.5.1. The available tests in
the wizard are the following:

• Uniaxial Compressive Strength Test

• Triaxial Compressive Test

• Hydrostatic Loading Test

• Oedometric Test

• Brazilian Tensile Strength Test

Figure 6.3: Selection of the type of experiment in the wizard
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The definition of a new case starts with the selection of the test as shown in figure 6.3
to later selected a predefined mesh and geometry of the specimen (figure 6.4).

(a) Geometry and mesh selection available for the
hydrostatic, triaxial, UCS and Oedometric tests

(b) Geometry and mesh selection available for the
Brazilian Tensile Strength test

Figure 6.4: Predefined mesh and geometry selection in function of the test in the wizard

Next, the material properties and the parameters of the DEMpack model (section 5.2)
are defined (figure 6.5).

Figure 6.5: Definition of the material parameters in the wizard
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The calculation settings such as duration of the simulation, loading velocity of the
plates, applied pressure (for triaxial and hydrostatic cases) and the calculation time
step are selected in a next step as depicted in figure 6.6. Finally, the user can select
which variables are of interest for the post-process of simulation as shown in figure 6.7.

Figure 6.6: Definition of the general settings in the wizard

Figure 6.7: Selection of the output results in the wizard

The last step is to run the simulation selecting the parallelization type (figure 6.8).
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Figure 6.8: Preparation of data and run

The post-process is automatically generated as well as the stress-strain graphs such as
the ones presented in section 5.5.4.

6.2 Performance

It is of capital importance for a DEM code to be efficient in terms of computational cost
since it constitutes a expensive method that usually requires the use of large number of
elements to obtain meaningful results. All the developments have been performed with
concerns on efficiency and memory storage as well as possibility of parallelization of the
different procedures.

6.2.1 Parallelization

A Discrete Element Method code without parallelization has a very limited use in prac-
tice. The explicit DEM performs independently for each particle: the neighbouring
search, the force calculation and the integration of motion. The parallelization of these
steps can be done in a relatively easy way.

There exist two types of remarkable architectures for multiprocessor computing (fig-
ure 6.9), the Shared Memory Machines (SMM) and the Distributed Memory Machines
(DMM). In computer science, Distributed Memory refers to a multiple-processor com-
puter system in which each processor has its own private memory. Computational tasks
can only operate on local data, and if remote data is required, the computational task
must communicate with one or more remote processors. In contrast, a Shared Memory
multi-processor offers a single memory space shared by all processors.
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Figure 6.9: Cluster of Distributed Memory Machines. Taken from: Google Images

OpenMP parallelization

The suitable technique for SMM is Open MP (Open Multiprocessing); it permits par-
allelizing the loops of the process by using compilation directives so that the loops are
split into different sets that are calculated in the different CPU of the same computer.
OpenMP runs on a shared memory system so most of the personal computers would
permit parallelizing the calculation and saving time. The code runs in serial until a
parallelizable loop is found, runs then the loop in parallel and afterwards, reverts back
to serial. In this sense OpenMP works fine if every unit step of the loop (normally a
loop over the particles) is independent from the others and the parts in serial represent
a very small part of the computation. In section 6.2.2 a scalability test using OMP is
performed.

MPI parallelization

For DMM architecture the suitable technology is the MPI (Message Passing Interface);
this would permit running a case, usually with large number of particles in a computer
cluster where hundreds, thousands or more CPUs intervene in the calculation. Within
MPI the entire code is launched on each node which would store the data in its own
memory. The transfer of information and the synchronization of the calculation can be
controlled. It is also possible to combine MPI with OpenMP to get the best of every
technology and adapt to the specific architecture of each cluster.
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In the developments of the DEMpack code a first version of MPI parallelization for the
basic discontinuous and for the cohesive DEM was acquired and the results were promis-
ing. There is however, a lot of work currently ongoing on this topic, also in the topic
of parallelizing via MPI a combined DE-FE problem which gets much more involved in
terms of communication as the case of only DEs.

The MPI implementation includes not only the communication between the computing
nodes but also the rebalancing of particles associated at each node in order to avoid
that a processor has a workload much larger than others in which case the performance
decreases drastically.

(a) Initial disposition of particles with the initial
partition

(b) The partitions evolve as the simulation evolve
to keep an optimal balancing

Figure 6.10: Particles in different processors in a hourglass simulation

Figure 6.10 shows an example where the rebalancing is done dynamically as the sim-
ulation evolves. The colour in each particle indicates in which processor it is being
handled; it can be seen that the particles move from one processor to another one while
the simulation evolves in order to minimize the communication between processors and
keep the workloads balanced.
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6.2.2 Helical mixer example

In order to evaluate the overall method behaviour, the simulation of a particle mixer has
been carried out. The model represents a rotatory mixer where contact occurs between
DEs and the three different FE entities (facets, edges and vertices) of the boundary
mesh composed by triangular and quadrilateral elements. Additionally, the simulation
has been used to evaluate the parallelization behaviour.

Description of the simulation

Figure 6.11: Geometry of the helical mixer. Distances in meters

Table 6.1: Simulation parameters

Material properties Calculation parameters

Radius (m) 0.0035 Rotation vel. (rad/s) [0.0, 0.0, 0.0]

Density (kg/m3) 1000 Gravity (m/s2) [0.0,−9.81, 0.0]

Friction coeff. DE/DE 0.50 Time step (s) 5 · 10−5

Friction coeff. DE/FE 0.75 Neighbour search freq. 1

Young’s modulus (Pa) 107 Simulation time (s) 20.0

Poisson’s ratio 0.2
Rolling friction coeff. 0.001
Restitution coeff. 0.4
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Fig. 6.11 shows the geometry of the mixer, figs. 6.12(c) and 6.12(d) show the initial
and final arrangement (after 20 seconds) of the particles respectively and finally, fig.
6.12(a) shows the triangles used in the mesh and and 6.12(b) the quadrilaterals. The
simulation is performed with a mesh composed by 29559 DEs, 848 triangular FEs and
1600 quadrilateral FEs. The material properties and simulation parameters used are
described in table 6.1. Additionally, in this test, some rolling resistance moment has
been added to model the particle irregularities. The contact between the DE and the
rigid FE is evaluated by the H2 method. The contact law used was the HM+D.

(a) Triangular FEs (b) Quadrilateral FEs

(c) DEs initial arrangement (d) Spheres arrangement after 20 s.

Figure 6.12: Mesh used in the horizontal rotatory mixer and simulation results

Code performance in serial

The DEMPack code was tested in a machine with an Intel Xeon E5-2670. It took 29
hours, 20 minutes and 30 seconds in serial to run 20 seconds of simulation which com-
prehend 400000 time steps. Some results on the performance of the code are presented
in Table 6.2. In this specific case, which involves approximately 30 k DE and 2.5 k FE,
it can be seen that the calculation effort for DE/FE contact search represents about the
20% of the total CPU time. The results showed that by splitting the Fast Intersection
and the H2 Method the code turned to be 5% faster which is a significant improvement
for this case, where most of the contacts are DE/DE rather than DE/FE. It can be also
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seen that the cost of the H2 Method is very low (only 1%) when the split is applied.

Table 6.2: Serial performance of the code for the industrial example

Split Fast + H2 Direct H2 Method

DE/DE Contact Search 53.9% 51.4%

DE/FE Contact Search 20.7% 23.9%

- Create Bins and others 4.5% 4.2%

- Fast Intersection 15.1% -
- H2 Method 1.2% 19.7%

Total time 105630 s 111041 s

Code performance in parallel

Graphs in fig. 6.13 show the code performance using an OpenMP parallel computing
strategy. Based on the results it can be concluded that, despite being the speedup far
from the ideal linear case, the fact that the contact check algorithm is totally parallel
helps to the performance.
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Figure 6.13: Scalability test results on the helical mixer
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6.3 Application examples

The possible applications of the developments presented in this dissertation are shown
through several academical examples.

Screw conveyor

An example of industrial application of the DE involving large amount of particles is
presented here (figure 6.14). The rigid structure presents non-smooth regions (vertices
and edges) contacting with the particles.

Figure 6.14: View of the screw conveyor handling the particles

The model has an inlet which inserts particles and a bounding box delimiting the
domain after which the particles are eliminated, the particle while

Membrane elements

The implementation of the coupled between the DE and the FE solver is flexible in the
sense that the coupling is effective through the communication of contact forces between
the two domains, from the particles to the FE nodes. This can be applied to any solid
or structural element present in the computational solid mechanics code used, which in
this case is in the Kratos platform. An example of combination of a particle DEM with
structural elements such as membranes is shown in figure 6.15.
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Figure 6.15: Sphere impacts a membrane

Cluster particles with membrane elements

Previously in section 5.5, the triaxial laboratory tests on concrete specimens were simu-
lated applying the pressure as an external normal force on the surface particles. A more
realistic approach is needed in cases where the samples are formed by a non cohesive
granular material such as the ballast particles presented in figure 6.16. In this case, the
use of a membrane, simulating the real experiment conditions, is necessary to keep the
sample compact and to properly apply the pressure on the particles which relocate along
the simulation. This example has been run by Irazábal [53] with DEMpack reproducing
the experimental results in [103].

(a) View of the membrane (b) View of the clusters

Figure 6.16: Triaxial test on a ballast sample modelled with sphere clusters and mem-
brane elements
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Cluster particles with solid elements

A structure simulating the tread of a tire is presented in figure 6.17 which interacts
with a stone modelled by a cluster of spheres. This type of analysis could be conducted
to analyse the effect of stones catching of different tire designs as well as the damage
induced to them.

Figure 6.17: Stone catching in a tire tread

Impact with plasticity

One of the possible application fields is the simulation of shot peening which is a cold
working process that aims to improve fatigue strength of metallic parts by bombarding
its surface with small (generally) spherical shots. Details in terms of residual stresses
and plastic strains are of interest and can be studied using a coupled DE/FE procedure
[43, 90]. Just serving as a demonstration of capabilities, figure 6.18 shows a metal sheet
which is being shot by particles at different direction and velocity producing plastic
deformation and local residual stresses in the metal.

Figure 6.18: Visualization of the plastic strain in a metal under a shot peening process



Chapter 7
Conclusions and outlook

Within this work, a multi-purpose parallel 3D Discrete Element Method code has been
developed and implemented in the so called DEMpack software to be used by the CIMNE
researchers in industrial applications. The theoretical developments of the thesis have
covered the topics of granular material simulation, cohesive material models and the in-
teraction of particles with rigid and deformable structures. The conclusions from every
aspect tackled in the dissertation are summarized in the following lines.

Two main contact laws have been analysed to be used for the DE-DE and DE-FE
interaction, the linear spring dashpot model (LS+D) of Cundall and Strack [24] and
the Hertzian model (HM+D) from Thornton [125], adapted from the original by Tsuji
[130]. These models have been selected after a thorough bibliographic revision due to its
popularity and the balance between simplicity and accuracy that they present in both
elastic and inelastic collisions. It has been appointed that the HM+D is the one that
has to be used when the contact dynamics are to be well captured while any of the two
models can be used as a mere penalty method in other situations where the contact
details are not of capital importance and faster computations are required.

The use of explicit integration methods prior to implicit ones has been justified for
the dynamic character of the method in the granular material problems that have been
addressed. Several explicit one-step schemes have been tested in different situations
in terms of accuracy, efficiency and stability being the Velocity Verlet scheme selected
as the most advantageous one. It remains to be seen under which conditions can an
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implicit integration algorithm be advantageous in cases of quasi-staticity calculations as
the ones presented in chapter 5.

The integration of rotations showed to require higher order integration schemes to
achieve similar a level of accuracy. To do so, a RK-4 scheme proposed by Munjiza [88]
has been adapted to quaternions in order to improve its efficiency. By doing so, the
computational cost of the scheme is drastically reduced and the storage of the rotations
is performed with less than half of the memory compared to the original algorithm which
operates with rotation matrices.

It has been remarked, still in chapter 2, that the stability of the DE simulation can
not be achieved simply by ensuring the explicit scheme stability. The use of the contact
resolution concept has been suggested.

In chapter 3 a new contact detection algorithm, the Double Hierarchy Method, recently
published by Santasusana and Irazábal [110] has been presented. The method has been
designed to be accurate, robust and efficient, placing special attention to non-smooth
contact situations, multi-contact and cases where the DEs and FEs sizes differ consid-
erably or cases where the relative indentation between them can be significantly high.
This method can be used with different types of contact FEs providing a high level of
accuracy in terms of contact force continuity in inter-element FE transitions and allow-
ing multi-contact scenarios with high mesh independence and low effort. It has been
designed to make it easy to implement and adapt to an existing DEM code. In addition,
the algorithm has been conceived to be fully parallelizable, something essential in order
to allow the calculation of real cases with a great amount of discrete and finite elements.

The DE-FE contact detection is split into two stages: Global Neighbour Search and
Local Contact Resolution. Furthermore, the Local Contact Resolution level is split into
two phases. The first one, the Fast Intersection Test, aiming to determine which FE
are in contact with each DE, discards in a efficient manner all the FEs not contacting
the DE. Once the FE with contact are known, the second phase, the Double Hierarchy,
takes place in order to accurately calculate the contact characteristics and to remove
invalid contacts.
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The accuracy and robustness of the proposed algorithm has been verified by different
benchmark tests. An industrial example is also presented to show its computational
efficiency and test its parallel behaviour. Having in mind that in a shared memory
parallelization the performance is limited by the amount of serial parts of the code, the
possibility to parallelize an important part of the code, such as the contact detection,
allows the computation speed to scale up. The results proved that the split of the Local
Resolution into a Fast Intersection and the Double Hierarchy Method greatly improves
the overall performance.

The description of the method has been complemented with its limitations which are
basically in the normal contact force in cases involving concave transitions and in the
tangential force when a particle slides across different FEs. The errors are quantified
and a solution is given to the case of the tangential force. Notwithstanding those limi-
tations, it can be concluded that the H2 method presents superiority in several aspects
compared to the other DE-FE contact detection algorithms available in the bibliography.

The coupling between the DE method and a solid mechanics problem has been de-
scribed in chapter 4. The presented algorithm consists in calculating separately the two
domains which communicate through the contact forces. The detection of contacts is
carried out by the H2 method and the evaluation of the forces is done on the "FE side"
by adapting the HM+D law to the case of DE-FE contact. The key point of discussion
in the chapter is the way the forces are communicated from the DEs to the nodes of
the FEs. A new method is developed which distributes the forces into all the elements
involved in the contact weighted by the intersection areas of the particle and the respec-
tive FEs. The solution presented for the intersection area calculation is based on the
assumption of a discretization of planar triangles with a uniform pressure distribution.
After describing the procedure several examples proved its superiority against the popu-
lar direct interpolation of forces. The examples showed how the problems regarding the
continuity of forces are solved with the employment of the proposed Area Distributed
Method (ADM). Further assessment is needed to analyse the error introduced by the
method due to the uniform approximation of the pressure and also the lack of accuracy
introduced by the use of linear triangles to approximate quadratic elements. Also the
performance of the method should be analysed to give a stronger support to the choice
of the proposed simplifications.



212 Conclusions and outlook

The coupling has been devised with the problem of particle-structure interaction in
mind in which the high frequency response given by the impacts is a matter of interest.
This and the fact that multiple contacts occur along the simulation reinforce the use of
a explicit integration scheme which adapted perfectly with the DEM explicit scheme. A
global balance of energy of the coupled procedure is performed proving that the ADM
predicts correctly the contact without the inclusion or loss of energy. The idea of using
the balance of energy to check the global stability of the method has been then intro-
duced but further developments have to be done in order to design a methodology that
can be useful to that end by taking into account all energy terms in a simulation.

The modelling of cohesive materials such as rock, cement or concrete within the DEM
has been put on the frame in chapter 5. Basic numerical analysis clearly highlighted the
problems that the DEM presents trying to reproduce the macroscopical measures such as
the Young’s modulus and Poisson’s ratio out of the micro parameters of the model even
in the linear elastic regime. It has been clearly shown how the problem is completely
mesh dependent. Apart from that, the convergence in the number of elements does not
define a clear monotonous tendency. A consistent partition of the discretized domain
using spheres or other simple particle shapes requires also some extra operations. An
improvement to the determination of the contact areas has been proposed using virtual
polyhedra which seems to consistently define the interfaces in the model in a simple and
efficient manner for 2D and 3D cases involving homogeneous and heterogeneous meshes.

Even more complex is the modelling of the non-linear behaviour of materials and frac-
turing. The existing literature is still far from presenting a methodology that properly
predicts the behaviour of material failure with meaningful results in the sense that the
tracking of fractures is accurate to a level which can be useful and competitive in com-
parison to continuum-based methods. Some alternative exists attempting to solve the
problems presented by the basic DEM which increase the complexity of the method
up to a level which can make us reconsider if the employment of discontinuum-based
method for a continuum mechanics problem is still advantageous against a two-scale
model or a continuum-based method.

The DEMpack model has been employed in an industrial project in the prediction of
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the behaviour of concrete through several laboratory tests. The method, which is based
on a phenomenological approach, is able to predict the failure and the strain-stress evo-
lution after a calibration procedure. The necessary next step would be the simulation of
the failure in real applications with structures in order to see whether the fitted model
is capable to be extrapolated to real scenarios.

A great outcome of the present PhD thesis is the contribution to the DEMpack soft-
ware. It constitutes a versatile and complete code which has many capabilities and
includes a set of user-friendly GUIs integrated in the GiD pre and post-processor ready
to be applied to industrial problems in a wide range of fields. Some of the possible appli-
cations have been demonstrated with simple academical examples included in chapter 6.

The code has been developed with concerns on efficiency and has been fully parallelized
using OMP. The parallelization in MPI for big clusters has been implemented only for
the DE domain. Further developments in the code have to concentrate in this direction
in order to earn a fully parallelized coupled DE-FE software that can be scaled up for
large simulations.
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Appendix A
Hertz contact theory for spheres

Basic derivation

The case of the normal contact of two elastic bodies with spherical surface of radii R1

and R2 was solved by Hertz in 1882 [47]. The origin of coordinates is set at the initial
contact point O being the x − y plane the common tangent plane of the two surfaces.
The profile z for any of the surfaces in a region at a small distance r from the origin of
coordinates can be described by:

z1 =
r2

2R1

, z2 =
r2

2R2

, r << R1, R2 (A.1)

When a force F is applied to press the bodies together a circular contact region is pro-
duced where the pressure acts to deform the original spherical surfaces. The framework
of this theory assumes that this region, characterized by the radius a, is small compared
to the radii of curvature (a << R1, R2). The distance between these two surfaces can
be described as:

δ − uz1 − uz2 =
r2

2Req

, where Req =

(
1

R1

+
1

R2

)−1

(A.2)

where δ is the apparent indentation of the surfaces at the initial contact point O and uz

the displacement due to local deformation in direction z in points close to O. Hertz pro-
posed a distribution of pressure under the area of contact that give rise to displacements
which satisfy the equation A.2:
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p(r) = p0
√

1− (r/a)2 (A.3)

The solution for the displacements using the proposed pressure distribution is:

uzi =
1− ν2

i

Ei

πp0
4a

(2a2 − r2), r ≤ a (A.4)

where p0 is the maximum pressure located in the initial contact point O. And the
equivalent Young modulus E∗ is:

E∗ =
(
1− ν2

1

E1

+
1− ν2

2

E2

)−1

(A.5)

The solution of the displacements substituted into equation A.2 yield:

πp0
4aE∗ (2a

2 − r2) = δ − (1/2Req)r
2 (A.6)

from which the radius of the contact circle can be derived:

a =
πp0Req

2E∗ (A.7)

And the apparent indentation of the two spheres:

δ =
πap0
2E∗ (A.8)

The total contact force relates to the pressure by:

F =

∫ a

0

2πr p(r) dx =
2

3
p0πa

2 (A.9)

Therefore, the maximum pressure p0 is 1.5 times the mean pressure in the contact
region. Other useful relationships are:

a2 = Req δ (A.10)

p0 =
2

π
E∗
√

δ/Req (A.11)
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F =
4

3
E∗√Req δ

3/2 (A.12)

The derivation of expressions for more general cases can be found in the book by Johnson
[55] and also in the book by Timoschenko [126].

Collision time in hertzian contact

Given a normal collision of two spheres i and j with no gravity, the time for which
the spheres remain in contact can be derived from the energy balance. Before the
collision the initial energy can be expressed in terms of the initial relative velocity v0

and equivalent mass meq:

E0
k =

1

2
meqv

2
0, where meq =

(
1

m1

+
1

m2

)−1

(A.13)

During the contact event the kinematic energy can be expressed as:

Et
k =

1

2
meq δ̇

2, where t ∈ (tc0, tcf ) (A.14)

and the elastic energy produced by the elastic deformation of the spheres colliding can
be obtained from the external work performed by the total contact force P (equation
A.12) along the relative indentation δ:

Et
e =

∫ δ(t)

0

F (δ) dδ =
8

15
E∗√Reqδ

5/2 (A.15)

Equating the energies:

1

2
meqv

2
0 =

1

2
meq δ̇

2 +
8

15
E∗√Reqδ

5/2 (A.16)

The maximum indentation δ is obtained when the relative velocity is zero (δ̇ = 0):

δmax =

(
1

γ

)2/5

v
4/5
0 , where γ =

16

15

E∗√Req

meq

(A.17)

An expression for the relative velocity during contact can be found from the previous
equation A.16:



220 Hertz contact theory for spheres

dδ

dt
=
√

v20 − γ δ5/2 (A.18)

Since the problem is symmetric, the time of the collision can be calculated as twice the
time in which the indentation δ varies from 0 to δmax:

tc = 2

∫ δmax

0

1√
v20 − γ δ5/2

dδ =
2δmax

v0

∫ 1

0

1√
1− x5/2

dx (A.19a)

tc ≈ 2.94328
δmax

v0
= 2.94328

(
1

v0 γ2

)1/5

(A.19b)

Further information on this topic can be found in [55] and [126].



Appendix B
Implementation of the Area
Distributed Method

The different aspects of the algorithm which have to be included/modified in the basic
DEM algorithm in order to implement the Area Distributed Method are detailed below.

Extended neighbour search

Figure B.1: Concept of extended radius. FE with contact and masters are highlighted
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A cell-based global search algorithm (section 3.2.1) is applied to the DE/FE search us-
ing enlarged bounding boxes on the DEs. Figure B.1 shows an example of a particle
and its extended radius Rext > R. In this situation all the FEs present in the figure
would be determined as FE potential neighbours. In yellow, the FE with contact that
are determined by the Fast Intersection Test (section 3.3) are shown. Additionally, the
two entities with valid contact are labelled as masters and their contact points depicted.

Extending the search we make sure that, during several time steps, the valid entities
to consider will be included in the FE potential neighbours list and therefore, there is
no need to perform the complete search every time step. Instead, the local resolution
applies at every time step only for the stored FE potential neighbours. This way the
continuity of tangential forces in non-smooth transitions can be ensured by employing
the strategy described in section 3.5.2.

Determination of Masters and Slaves

First, the Fast Intersection is applied as usual to the FE potential neighbours to obtain
the FE with contact. This has to be done every time step. Figure B.2 shows an example
where the FE with contact have been highlighted with blue and pink colour.

Figure B.2: Contact with multiple elements from two hierarchy groups.
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Now the slaves and masters have to be determined. This is done by the H2 elimination
procedure: whenever the Distance Hierarchy (section 3.4.2) determines that a given el-
ement ea has hierarchy over an element eb, the second becomes a slave to the first. This
has to be done for all pairs of neighbours determining, as usual, which are the entities
with valid contact (hereafter called masters) and which are the slaves to every master.
Each of the colours in Figure B.2 indicate a groups of masters and the corresponding
slaves in the example. A table similar to the following one is obtained:

Masters em Slaves es,m

e1 [e1, e2, e3]

e6 [e4, e5, e6, e7]

Table B.1: Correlation of masters and slaves determined by the H2 elimination proce-
dure

The areas of every element Ap
e and their centroids x̄p

e are determined using simple
geometry operations (described in Appendix C). The total area for every master is
determined by the sum of the areas of every slave belonging to that master. Am =∑

s A
p
es,m . The total area of contact of the particle is the sum of all the contact areas,

or equivalently, the sum of all the masters area: AT =
∑

e A
p
e =

∑
m Am.

Force evaluation

First of all, the tangential force is recovered from the old one as described in equation
2.37. The way to determine which is the correspondent contact force in case of multi-
contact ensuring continuity has been described in section 3.5.2. Next, the Hertz Mindlin
contact model 2.5.2 is applied as usual, updating the normal and tangential forces in
the contact together with the dissipation terms. Finally, the normal forces are scaled in
every master by the total contact area:

Fm, scaled
n = Fm

n · Am

AT

(B.1)

If the normal forces are not scaled, there is a sudden increase of the contact forces
when new points of contact are generated due to the FE deformation (see section 4.3.2).
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Instead, if the total area in contact is the variable controlling the magnitude of the force,
the transitions become smooth.

DE to FE force communication

Once the forces in DE are fully determined, they are communicated to the nodes of the
solid in contact. Each master contact force is transmitted to its FE slaves.

Figure B.3: Contact force communicated from one DE to two FEs.

In figure B.3 a particle is depicted which has contact with two finite elements. Since
the two elements are coplanar and the contact point Pc lies on e©1, the H2 method
determines that e©1 is the only master ; elements e©2 and e©1 itself are the slaves of
this system. Therefore, the forces that are transmitted to each of the elements are
determined as follows: F e1 = A1/(A1+A2) ·F and F e2 = A2/(A1+A2) ·F . The normal
forces in Fn do not need to be scaled since the area of the master Am = A1+A2 coincides
with the total area of contact AT of the particle (no other contacts are present). Now,
the contribution of every element to the nodal forces are calculated by interpolation of
the elemental forces evaluated at the centroids x̄p

e of every intersection area:

F e
i = Ni(x̄

p
e)F

ei (B.2)

Finally, those forces are nodally assembled yielding the total nodal forces Fi =
∑

e F
e
i .

This is the case of nodes 2 and 4 in the example, which receive the contribution from
the two elements.



Appendix C
Circle-triangle intersections

In general, the intersection of a sphere and a linear triangle in a 3D space yields to a 2D
geometry composed by circular and straight lines. Figure C.1 shows one of the possible
situations.

Figure C.1: Possible intersection between sphere and triangle

The basic geometrical expressions developed in section 3.3 will be useful here. Cπ is
the centre of the sphere projected onto the plane (review figure 3.4) and a is the radius
of the intersection circle which is related to the indentation δ as follows: a = Rδ being
R the radius of sphere. vi are the coordinates of the nodes and ei are the vectors joining
the vertices that define the edges.

The grey area, denoted Ap
e corresponds to the particle with the element, i.e. the inter-

section of the triangle and the circle. The total area of the circle will be denoted A0 and
it is simply calculated as: A0 = πa2. Note that, in a general case, the real intersection
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is smaller than the total circle area, AT =
∑ne

e=0 A
p
e < A0. The areas coloured cyan and

magenta help the definition of two types of auxiliary regions that will be useful for the
determination of Ap

e and x̄p
e:

• Segments: Outer or inner areas of the circle that are completely cut only by an
edge.

• Spikes: Outer or inner areas of the triangle, cut by the circle, which contain only
one vertex.

With the above definitions we can say that figure C.1 contains an outer spike on vertex
v3 and two outer segments, one on edge e2 and another one on edge e3.

In general, the area and centroid of any geometry composed by basic parts with areas
A1, A2, A3, . . . , Anm and centroids x̄1, x̄2, x̄3, . . . x̄nm can be defined by:

Ap
e =

m=nm∑
m=0

Am (C.1a)

x̄p
e =

∑m=nm

m=0 x̄m · Am

Ap
e

(C.1b)

Where the area will be introduced with sign to consider the case of subtraction.

Basic geometry definitions

Circle
Acirc = π a2 (C.2a)

x̄circ = Cπ (C.2b)

Triangle
Atri = 1/2

∥∥e1 × e2
∥∥ (C.3a)

x̄tri = 1/3
(
v1 + v2 + v3

)
(C.3b)
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Sector

Figure C.2: Possible cases of sector from the intersection of a circle and a triangle

Asec =
1

2
a2θ (C.4a)

x̄sec = Cπ +
4 a · sin(θ/2)

3 θ
· ne2 (C.4b)

Segment

Aseg = Asec ± Atri (C.5a)

x̄seg =
x̄sec · Asec ± x̄tri · Atri

Aseg (C.5b)

Spikes

Figure C.3: Spike defined from the intersection of a circle and a triangle
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Aspk = Atri(pint
1 ,v2,pint

2 ) + Aseg(pint
1 ,Cπ,p

int
2 ) (C.6a)

x̄spk =
x̄tri(pint

1 ,v2,pint
2 ) · Atri(pint

1 ,v2,pint
2 ) + x̄seg(pint

1 ,Cπ,p
int
2 ) · Aseg(pint

1 ,Cπ,p
int
2 )

Aspk

(C.6b)

Classification table

Aiming to have an efficient way to compute the intersections Ap
e and their centroids,

a classification is suggested here which divides the possible configurations in 8 differ-
ent cases which are easy and fast to identify. The classification is based on two criteria:
Number of vertices circumscribed in the circle and number of edges crossed by the circle.

Figure C.4: Possible intersection between sphere and triangle
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Each of the case is determined by composition of the different geometrical elements
involved:

Once the case is determined by applying simple geometry, a specific procedure is applied:

(a) Evaluate the full circle.

(b) Subtract the only segment from the circle.

(c) Subtract the two segments from the circle.

(d) Subtract the three segments from the circle.

(e) Evaluate the only spike.

(f) Substract the two spikes from the triangle.

(g) Subtract the only spike from the triangle.

(h) Evaluate the full triangle.
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