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In this paper the functions of the Péclet number that appear in the intrinsic time of the streamline
upwind/Petrov—Galerkin (SUPG) formulation are analyzed for quadratic elements. Some related
issues such as the computation of the characteristic element length and the introduction of source terms
in the one-dimensional model problem are also addressed.

1. Introduction

Besides the interest of the advection-diffusion equation as a mathematical model for several
physical phenomena, it represents the starting point for the development of numerical
methods for the approximate solution of more complicated transport equations. When the
convective terms of these equations become important, the standard Galerkin formulation
fails and numerical oscillations occur. These oscillations can only be avoided after a drastic
refinement of the finite element mesh. The lack of stability that the Galerkin formulation
shows in those cases is the common explanation for the nonphysical behaviour of the
numerical solution, although an examination of the analytical solution of the discrete
equations obtained for the one-dimensional convection-diffusion equation shows the same
problem.

The streamline upwind/Petrov—Galerkin (SUPG) method introduced by Hughes and
Brooks {1,2] is known to be one of the most efficient procedures for solving convection-
dominated equations (for an overview of this method, see [3]).

Our original interest was the development of numerical methods for the solution of the
incompressible Navier—Stokes equations using a mixed formulation in velocities and pressures.
It is well known that the interpolation spaces of these two fields must satisfy the so-called
Babuska-Brezzi conditions [4,5] (see also [6]). The simplest elements that verify these
conditions are quadratic in velocities. Nevertheless, quadrilateral elements with a bilinear
interpolation in velocities and constant pressure have been successfully used in [7] and their
possibilities analyzed [8]. This, together with the aim of applying the SUPG approach, led us to
this work, for which preliminary results have been presented in [9].

The original SUPG formulation has undergone several recent improvements that are not
considered here, such as the introduction of discontinuity-capturing terms [10-12] or the use of
the discontinuous Galerkin method in time [13]. The Galerkin/least squares method described
in [14] which allows the circumvention of the Babuka-Brezzi conditions [15] is not considered
either. However, all these modifications of the SUPG method share the requirement of a
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certain parameter, usually called intrinsic time, for which proper evaluation greatly in-
fluences the accuracy (not the stability) of the numerical solution obtained. Since the very
early developments of the SUPG and other Petrov—Galerkin methods for the solution of
advection-diffusion equations, the ‘optimal’ expression for this parameter in terms of the
clement Péclet number was known for linear elements [16]. Approaches other than the SUPG
formulation using quadratic elements have been studied [17, 18]. However, for this one it
seems that an ‘optimal’ intrinsic time for quadratic clements is missing, although using one half
of the optimal value for linear elements has been proposed [19). This choice will be justified in
this paper. 7

An outline of the paper is as follows. In Section 2 a short review of the SUPG method is
presented. In Section 3 we derive the expressions of the functions that define, in some sense,
optimal intrinsic times for one-dimensional quadratic clements. This results in different
expressions of these parameters for the different nodes of the element. The possibility of using
a unique intrinsic time is then considered. New expressions for the functions are obtained for
hierarchic one-dimensional quadratic elements. This section ends with the proof that optimali-
ty is maintained if certain source terms are introduced in the one-dimensional model equation.
In Section 4 the extension to multidimensional situations is presented. We propose a
methodology for computing the characteristic length of the element and notice the difficulties
inherent in the use of different intrinsic times for the different nodes of the element. In
Section 5 several numerical examples are discussed, both for one-dimensional and two-
dimensional problems. Finally, some conclusions are drawn.

2. The basis of the SUPG formulation

2.1. The continuous problem

Let 2 be an open bounded domain of RY (N=1,2,3) and I'=a02=1,UI,, with
I, N T, =@. Consider the convection-diffusion equation

d .
—a(—? +u-grad p —div(K-grad ¢p)= @, x€0,:€]0, T[,T>0, (2.1)
where ¢ = ¢(x, t) is the unknown function, & = u(x, f) is the velocity field, K = K(x, ¢) is the
diffusion tensor, that we assume is symmetric and positive-definite, and O = Q(x, t) is the
source term. The boundary and initial conditions for (2.1) are

é(x, ) =flx, 1), x€I,,t€]0,T[, (2.2)
n-K-gradp =h(x, 1), x€l,,:t€]0,T], (2.3)
H(x,0)= d(x), x€. (2.4)

In these equations f, h and ¢, are given functions and » is the unit outward normal to I

Although it is possible to discretize the above problem both in space and time using finite
elements [13,20-22], we will consider the finite element discretization only in space. This
results in an ordinary differential equation in time that can be solved numerically using finite
elements or finite differences. For this reason, the variational form of problem (2.1)~(2.4) will
be written as follows.

If for a given ¢ € ]0, T[ the function g(x, t) belongs to a space J of functions defined on {2,
the mapping ¢+~ g(-, t) from 10, T[ to & will also be denoted by g(r). Consider the following
function spaces: :

-
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Vi=H'(2), (2.5)
V(g)={ecH' ()| e=gonT,}, (2.6)

where g is a given function. The weak form of (2.1)-(2.4), imposing the initial condition in a
strong form, is: given ¢, € L*(R2) and @ : 0, T[— L*(Q), find ¢ :]0, T[— ¥( f) such that

aq; (d(2), v) + ale(t), v)=1lv) VveE ¥, (2.7)

#(0) = ¢, (2.8)
where (-, -) denotes the inner product of L*(2), a(-, ) is the bilinear form

a(p, v) = J’Q (vu - grad ¢ + grad v - K - grad ¢) d2 (2.9)
and /(-) the linear form

I(v) = L vQ df2 + er vhdl . (2.10)

2.2. Finite element discretization

Let {£2°} be a finite element discretization of the domain (2, with index e ranging from 1 to
the number of elements NE. Consider the spaces

Vii={e€ V| pla € P2}, (2.11)

V'(g):={¢ €& | ¢la € PL2)}, (2.12)

where P, (£2°) is the set of polynomials of degree at most k on £2°. The semidiscrete form of
(2.7), (2.8) using the SUPG method is: find ¢" : J0, T[— ¥"(f) such that

£ (7). V) + 0, (8", V) = L, (B) Yo ETHO), (2.13)
$°(0) = ¢, (214
where
(@, v),, = (0, 0) + 2, fm Tu-grad v ¢ d2 | (2.15)
e=1
NE
a, (o, v)=a(e,v)+ Z LE tu - grad v{u - grad ¢ — div(K - grad ¢)] d42, (2.16)
L,(w)=1lv)+ > Le ru-gradv O dQ . (2.17)
e==1

The parameter 7 in (2.15)—(2.17) is called intrinsic time. It will be written as

a’h’
g ah (2.18)
2 |
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where the superscript e refers to elemental values. Here, u” is a characteristic velocity of the
element, ||u|| = (u- u*)'", A" is a characteistic length and o is a nondimensional parameter
the expression of which will be discussed in the next section.

REMARKS 2.1. (1) For typical C" finite elements, Tu - grad v will be discontinuous across
interelement boundaries. Since K - grad ¢" will also be discontinuous, the sum of integrals in
(2.16) cannot be expressed as a global integral over £2. The Euler-Lagrange equations for
(2.13) are precisely (2.1) and the boundary conditions (2.2) and (2.3) (essential and natural,
respectively) together with the additional condition of diffusive-flux continuity across interele-
ment boundaries [2].

(2) For rectangular bilinear elements in 2-D or trilinear elements in 3-D, with K, = K§,, K
being a positive constant and §, the Kronecker delta, we have that div(K - grad ¢") =
K A¢" =0 within each element. This is always the case with linear triangles or tetrahedra.
However, this term cannot be neglected if quadratic elements are used.

(3) Equation (2.13) is obtained weighting (2.1) and (2.3) with the function

w=uv+7u-gradv (2.19)

with 7u - grad v affecting only the element interiors. Only the diffusive flux multiplied by v can
be integrated by parts (using the divergence theorem).

2.3. Convergence analysis

One of the main attributes of the SUPG formulation for the convection-diffusion equation is
that a complete convergence analysis can be performed. This was done in [13, 23], using the
discontinuous Galerkin method in time.

The purpose of this subsection is only to see how the intrinsic time fits in this analysis. For
that, we can consider the steady-state problem in (2.1)—(2.3) and the corresponding discrete
weak form: find ¢" € ¥""(f) such that

a,(¢" v)=1,(v) YoEV"(0), (2.20)

Assuming K, = K&, in (2.1), with K >0, the following error estimate can be proved [13}:

¢~ &"lli= Ch" Sl (2.21)

where ¢ is the solution of the continuous problem, C is a constant, / is the mesh parameter,
-]l is the norm of the Sobolev space H*(£2), k the degree of the complete polynomial of ¥
and |}| -!|| is the norm defined by

llwlll:= VKllgrad w|l, + Vh[lu - grad wl|, + {[wl], . (2.22)

What is important for us is that to prove (2.21), the intrinsic time defined in (2.18) must
verify the following conditions:

= K= (2.23)

if K<hl|a|, (2.24)
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where C, and C, are constants. Now, let us define the element Péclet number as

_ e
Sk (2.25)

[

where the superscript e in K has been introduced to include the possibility of nonconstant
diffusion. From (2.23) and (2.24) it can be seen that if a“ in (2.18) is a function of v° (i.e.,
a’ = a(y®)) then, a necessary condition for (2.21) to hold is

a(y)=0(y°) as y"—0, ' (2.26)
a(y)=0(1) as y*—wx, (2.27}

where O stands for ‘order’. As will be seen in the following section, the functions & we will
obtain satisfy (2.26) and (2.27).

REMARK 2.2. In [13], 7° is set to zero when K > h®||u*|| (diffusion dominated case).

3. The optimal intrinsic times for one-dimensional quadratic elements

3.1. General considerations

In this section we will consider the one-dimensional steady-state problem (2.1)—(2.4), that
in this case reads: find ¢ = ¢(x) such that

d d?
ud—f—Kd—§=Q(x), 0<x<L, (3.1)
o(0) = &g » d(L)= b, (3.2)

where u and K will be considered positive constants, L >0 and ¢, and ¢, are given boundary
values of the function ¢. First, we shall assume Q(x) =0 and in Section 3.6 the introduction of
source terms will be addressed.

From here onwards, N will denote a generic shape function of the element and W a
weighting function. According to (2.19), this weighting function will be expressed as

W(x) = N(x)+ 7u %{;: (3.3)

and the intrinsic time of (2.18) as

a’h’
¢ = 3.4
T 2u (3.4)

Throughout this section we assume that [0, L] is discretized using a uniform finite element
partition with elements of length 4. Thus, the Péclet number vy = uh /2K and the parameter «
will be the same for all the elements. From (3.3)_and (3.4) we have

W(x) = N(x) + %h ‘% , (3.5)
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where « will depend on the Péclet number vy (see (2.26). (2.27)). We call the function
« = a(y) the upwind function. This function will be considered optimal if the finite element
solution obtained with the weighting functions given by (3.5) is nodally exact, i.e. both the
analytical and the finite element solution of (3.1), (3.2) take the same values at the nodes of
the finite element mesh.

It is well known that for linear elements optimality is attained if a(y) is chosen as

1
a(y) =coth(y)— 5 (3.6)

Our aim is to derive the expressions of the upwind functions using quadratic elements. First,
we observe that applying the Galerkin method (i.e., W= N) to (3.1), (3.2} with O(x) =0 the
following difference equations are obtained:

[T+ vld,, —[8+ 4y]d, .1+ 140, + [-8+4y]d, it 1—v]d,. =0 (3.7

for the ‘extreme’ nodes (nodes 1 and 3 in Fig. 1) and

[—4—2yld, + 8¢, 1 t[~4+2y]d,,, =0 (3.8)

for the ‘central’ nodes (node 2 in Fig. 1). The indexes in (3.7) and (3.8) are used according to
Fig. 2.

Since different equations are obtained for the extreme and the central nodes, it can be
anticipated that no single optimal upwind function will exist for quadratic elements. Instead,
we will consider

N,

W.(x) = N.(x) + 9‘21‘ %}i , fori=1,3, (3.9)
Bh dN.

Wz(x) = Nz(x) + 7 "a‘ﬁ . (310)

3.2. The upwind functions « and 3

The upwind functions « and 3 appearing in (3.9} and (3.10) are determined following the
same criteria as for linear elements, i.e. by solving analytically the resulting difference
equations obtained applying the SUPG method to (3.1) and (3.2) and by subsequently
imposing that the numerical solution be nodally exact.

If the weighting functions (3.9) and (3.10) are used, the new difference equations obtained
(instead of (3.7) and (3.8)) are

[1-6a+y(1+a)ld, ,—[8—12a+ y(4+8a)]d, .,/
+[14 + 14ay]d,, + [-8 - 12a + ¥{4 — 8a)]d,.1 1 2

+[l+6a+y(-1+a)]d,,, =0 (3.11)
N;l N2 NJ
Element e | Elemnent e+
! 2 3 m?? m-1/2 m ms1/2 m?]
Fig. 1. Three noded quadratic element and shape Fig. 2. Indexes referring the nodes of two adjacent

functions. elements.
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for the extreme nodes and

[—4—¥(2+4B)]o, +[8+8yBld, .., T[4+ v(2-4B)]¢,., =0 (3.12)

for the central nodes. Obtaining ¢,,, ,,, in terms of ¢,, and ¢,, ., from (3.12) and the analogous

expression of ¢, _,, in terms of ¢,,_, and ¢, and inserting both expressions in (3.11), the
following equation is found:

a b, tad, taé, =0, (3.13)
where

a, =3+3y+ y2+3yﬁ + yZB +2‘)/2a +3'y2aB s
a,=—(6+2y"+6y8 +6y°aB), (3.14)
ay=3-3y+y +3y8 -y B-2y’a +3y%p.

Since A =1 and A = a,/a, are the roots of the characteristic polynomial of (3.13) (see [24]),
its analytical solution is

bo=C (D), (3.15)

3

where C, and C, are constants depending on the boundary conditions. If x, is the abscissa of
the mth nodal point and ¢(x,,) the value of the exact solution of problem (3.1), (3.2) at this
node, it can be readily seen that ¢ = ¢(x, ) if and only if

4
a5

=e”, (3.16)

Now, assuming that (3.16} holds, from (3.12) one finds that ¢(x . ,,,) = ¢,..,,, if and only if

oo AT (2 TAB) + e[ - y(2-4B))]

3785 . (3.17)
Assume vy # 0. From (3.17)
_1 y_ 2
B(y)=5 (coth 3 ,y) (3.18)
and from (3.16)
_ 2
a(y) = (3+3yB)tanhy =By + v ) (3.19)

(2 — 3B tanh y)vy*

The expressions of @ and B given by (3.19) and (3.18) are the sought upwind functions.
Unfortunately, these expressions look rather more complicated than the corresponding
function for linear elements (3.6).

REMARK 3.1. The use of the SUPG formulation with linear elements for homogeneous
equations and neglecting the contribution of div(K grad ¢} in (2.16) may be interpreted simply



246 R. Codina et al., SUPG formulation using quadratic elements

as the introduction of numerical diffusion along the streamlines [1]. However, this is not the
case for quadratic elements for two reasons: firstly, the term div(K grad ¢) cannot be
neglected, and secondly, the existence of two optimal upwind functions would imply a
non-constant added diffusion.

3.3. Asymptotic behaviour of a and 3

When linear elements are used, it is common to approximate «(y) given by (3.6) by the
function

Y .
=, if0=sy=3,

a(y)=13 (3.20)
b, #Hy>3,

since a(y)—1as y— oo and a{y)=v/3+ O(y"’) as y— 0. For the functions a(y) and B(y)
given by (3.19) and (3.18), a straightforward computation reveals that

. . 1
lim a(y)=1,  lim B(y)=5. (3.21)

Expanding a{y) and B(y) in Taylor series in the neighbourhood of y =0, the following
expressions are found:

a(y)=5+007), By = +00r). (3.22)

So, (3.19) and (3.18) can be approximated, respectively, by

Y .
=< it 0=y=12,

a,(y)=1 12 (3.23)
1, if y>12,
-1342—, if0<y=6,

Ba(Y)Z 1 (3'24)
5, if y>6.

However, from Fig. 3 it is seen that (3.23) and (3.24) do not give such a good approximation
to (3.19) and (3.18), respectively, as (3.20) does to (3.6). In Fig. 3, the upwind functions for
linear elements are labelled ‘I’. Functions (3.20}, (3.23) and (3.24) are called asymptotic
approximations.

REMARK 3.2. The upwind functions «(y) and S(y) satisfy conditions (2.26) and (2.27).

3.4. Abouwt the possibility of a unique intrinsic time

We have seen that nodally exact results for the solution of (3.1), (3.2) using the SUPG
formulation can only be obtained if the weighting functions (3.9) and (3.10) are used, with «
and B given by (3.19) and (3.18). However, one could try to obtain a unique intrinsic time for
all the nodes of the element (i.e., o = B8) with another definition of ‘optimality’. '

An obvious design criterion for the upwind function is that it must not be strongly
dependent on the boundary conditions, in the sense that the difference between the values of
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Fig. 3. Upwind functions for linear and quadratic elements and their asymptotic approximations.

this function and the functions that give nodally exact results for different boundary conditions
should be bounded and as small as possible.

From (3.15) it is seen that if (3.16) holds, the constants C, and C, that depend on the
boundary conditions happen to be the same as the corresponding constants for the analytical
solution of (3.1) that are determined from (3.2). Thus, although with a unique upwind
function, (3.16) will not be satisfied, we can try to obtain this function, say «'(y), by
minimizing the difference

a, —a,e”’ . (3.25)

If in (3.14) we set a = B and try to satisfy (3.16), the following equation is obtained:

Pla)i=a’+ba+c=0, (3.26)
with )
b= 37 coth(y), (3.27)
c=2 Loty + L (3.28)
YooY 3

The discriminant A:= b> —4c of (3.26) is plotted in Fig. 4. Since A can be negative, (3.26)
does not have real roots for all values of y. However, we could try to minimize P(«a), i.e. to
choose

ay = —% b= % (coth('y) - %) . (3.29)

From (3.27)-(3.29) it is easy to see that b— —1, ¢~ } and ¢,— } as y— =, and then
Hm P =L
lim o) = 73 -

So the function
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Fig. 4. Discriminant 4 of (3.26) and values of P(a,) for «, given by (3.29).

al(y)= % (Coth('y) - %) (3.30)

seems to be a good candidate for use as the upwind function since, although (3.26) is not
fulfilled, P(a') remains small. In Fig. 4 this value is represented against the Péclet number.
Like the function a'(y) given by (3.6), a'(y) can be approximated by

, if0=sy=3,

a,(y)= (3.31)

BN | o2

, Ify>=3.

The function o '(7y) given by (3.30) is represented in Fig. 5, together with a(y) and S(v) of
(3.19) and (3.18), for purposes of comparison.

REMARK 3.3. The function a'(y) given by (3.30) has been proposed in [19] as the result of
numerical experiments.

3.5. The functions a and B for hierarchic elements

The objective of this section is to investigate how sensitive the optimal upwind functions are
to the interpolation used within each element. This sensitivity is a clear handicap when the
previous concepts have to be applied in multidimensional situations, in which case the

T T T T T T T T T P T T T T O T e e P I T e Y

o
E al _

01 02 03 04 05 06 07 03 09
I
1

(TSI IYTSTTITTE IY TR RTITTE IUTFUNIR A AATRRUIYT] SNCTNSTTE AURURTONTY AUTRRNNETIRTIVRUNTELARVINATE
0. 5. 10. 15. . 25. 30, 35, 40. 45. 50.
Peclet Number

Fig. 5. Upwind functions for quadratic elements.
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expressions of the shape functions take different forms depending on the direction one
considers. This will be discussed in more detail in Section 4.
Now, let us consider the unknown function ¢(x) interpolated within each element as

d(x) =N (x)d, + N,(x) A, + N,(x) ¢ . (3.32)

where N,, N, and N, are the shape functions shown in Fig. 6, ¢,, ¢, and ¢, the nodal values of
¢ and A¢, the difference between ¢, and the linear interpolation at node 2 obtained from ¢,
and ¢,.

A similar analysis to that made in Section 3.2 shows that the optimal upwind functions are
now given by

ﬁ%w=§+g%q—$, (3:33)
1 1,1 1
o (')/)—(1+—B) coth('y)—( ﬁ B +;), (3.34)

where the label ‘h’ refers to the hlerarchic formulation of the element. The asymptotlc
behaviour of the upwind function «" is completely different to the corresponding « given by

(3.19), whereas the asymptotzc behaviour of 8" is similar to that of the function 8 in (3.18). In

fact, now we have that 8" — %, a"— 1 as y—o and

&"(y)= 1z v +O(r").
B"(v)= % ¥ +0(v%)

in the neighbourhood of y = 0. So, the asymptotic approximations for a" and 8" will be

f-;— ifosy<5,

a(v)={; (3.35)
Lg, ify>35,
—% if0<y<6,

B: =1, (3.36)
5 ify>6.

“

We see that 82(v) = B,(¥) (see (3.23)) but a’(y) and e (y) differ totally (see (3.23)).

In Fig. 7, the functions a"(y) of (3.34) and B"(vy) of (3.33) are represented.

The main conclusion of this analysis is that the optimal upwind functions are very sensitive
to the finite element interpolation chosen. This should be kept in mind since it is known that

N Nz N3
7 2 3

Fig. 6. Hierarchic shape functions for three noded quadratic elements.
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Fig. 7. Upwind functions for hierarchic quadratic elements.

too diffusive results are obtained if the upwind function is overestimated, whereas oscillations
may occur if it is underestimated.

3.6. Introduction of source terms

Up to now, we have only considered the homogeneous equation (3.1), i.e., with O(x)=0.
We have proved that the upwind functions (3.18) and (3.19) give nodally exact solutions in
this case. Now we can prove that in fact this is also true for certain functions Q(x).

In order to place the problem within a general framework, let us assume that the
continuous problem can be written as

(A.C) Find ¢ € ¥(f) such that a(¢, v) = i(v) Vv eE ¥(0).

For the sake of clarity, we will consider that the function spaces ¥ and ¥( f) are those given
by (2.5) and (2.6). This problem is defined by a bilinear form a(-, -} and a linear form /(- ).
We also need to consider the problems

(B.C) Find ¢ € ¥(0) such that a(é, v) = i(v) Vv €&E ¥(0),
(C.O) Find ¢ € ¥(f) such that a(¢, v) =0 Vv ¥(0).

The discrete problems corresponding to (A.C), (B.C) and (C.C) will be denoted (A.D),
(B.D) and (C.D), respectively. These problems are obtained simply by replacing ¥, ¥(f) and
¥(0) by ¥Y"C ¥, ¥"(f)C¥(f) and ¥"(0)C ¥(0). The spaces ¥" and ¥"(f) are those
defined in (2.11) and (2.12). We assume that all these problems have a unique solution.

Now, let w: % — %" be the projection from ¥ to ¥" defined by m(¢)= ¢, the finite
element interpolant of ¢. In this context, a solution ¢ of (A.D) can be defined to be nodally
exact if the solution ¢* of (A.C) verifies w(¢~) = ¢.

REMARK 3.4. The bilinear form a(-, -) and the linear form /(- ) can arise from any consistent
weighted residual method, for example the SUPG.

‘The result we wish to prove is

PROPOSITION. If there exists a function ¢ € V" such that
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a(y, v)y=Il{v) Vv V(0), (3.37)
then, if problem (C.D) has a nodally exact solution, so does (A.D).

PROOF. We first observe that if (C.D) has a nodally exact solution (n.e.s.), then such a
solution can be obtained for (A.D) if and only if it can be obtained for (B.D). To see this, let
¢ be a n.e.s. for (A.D) and ¢, a n.e.s. for (C.D). Put ¢, =¢ — ¢,. Then ¢, € ¥"(0) and
a(,, v) = a(d, v) — a(¢,, v) = (v) Vv € ¥"(0), so ¢, is a n.e.s. for (B.D), since = is linear.
Reciprocally, let ¢, and ¢, be n.e.s. for (B.D) and (C.D), respectively. Then ¢ = ¢+, E
V) and a(d, v) = a(,, v) + a(¢,, v) = I(v) Vv € ¥"(0). ¢ will be a n.e.s. for (A.D).

Now we prove that a n.e.s. for (B.D) can be obtained. By (3.37) this problem can be stated
as: find ¢ € ¥"(0) such that a(¢, v) = a(y, v) Vv € ¥"(0), since ¥ "(0) C ¥(0). Set 6 = ¢ — .
8 is the solution of: find § € ¥""(—) such that a(8, v) =0Vv € %""(0). This problem has the
form (C.D), so & can be computed nodally exact. Let §* and ¢* be the solutions of the
continuous problems (C.C) and (B.C) corresponding to the discrete problems for § and @.
Since € ¥", and using agajn (3.37), 6* = ¢* — i, and so

m(¢*)=w(8* + ¢)
=7(6*)+ w(¢) (= is linear)
=8+ = (Sisan.e.sandl,lrEth).

Since w(¢*) = ¢, we have that ¢ is a n.e.s. for (B.D). O

REMARKS 3.5. (1) In our case the forms a(-, -) and /() will not be given by (2.9) and (2.10)
but by (2.16) and (2.17). This does not introduce any problem since the solution of problem
(2.1)—(2.4) satisfies (2.13)-(2.14).

(2) Condition (3.37) means that the equation of the continuous problem has a solution, not
necessarily satisfying the boundary conditions, that belongs to the space of interpolation
tunctions. Thus, although we know how to obtain nodally exact solutions for (3.1), (3.2) only
with O(x) =0 using quadratic elements, the same procedure will give nodally exact solutions
for source terms elementwise linear, since if Q(x)=ax + b, with a and b constants, the
general solution of (3.1) is, for u#0,

- L+ 2 et ﬁ)
¢(x)mC1+Czexp(Kx)+2ux +(u+ )% (3.38)

where C; and C, are constants to be determined from the boundary conditions. Setting C,=0
we obtain a function that belongs to the interpolation space, i.e., satisfies (3.37).

4. Multidimensional convection-diffusion equation

In order to compute the intrinsic time given by (2.18) for each element in the multi-
dimensional convection-diffusion equation (2.1), the values of 4°, K° and «° that give the
Péclet number (2.25) are needed. We must also know which is the expression of the upwind
function «® = a(y*) that corresponds to the node under consideration.

We compute the velocity «° simply as the average of the nodal velocities of the element and
K° as the diffusion along the flow direction. Since we have assumed that K in (2.19) is a
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second order tensor, this diffusion will be

. WKy
K = eq2 (41)
7

where the sum convention is used.
The computation of A° and the choice of the upwind function will be explained in more
detail.

4.1. The characteristic length

To simplify the notation we will consider the two-dimensional case, although what follows is
completely general.

Let 9 be a convex domain in R? transformed into @' C R? by an affine mapping f = (f,, f,)-

Using the notation of Fig. 8, let

I=||B~Al, U=[B-AY (4.2)

and v’ = (Df)v, where Df is the Jacobian matrix of f. Since

f

f(B) =fA) + I
=flA)+ (Df)(B—A), (4.3)
we have that
r ”f,:” = (Df)(B - 4),
I'(Df) ‘o' =1'v
= |lv'[|(B — A) (4.4)

and taking the Euclidian norm on both sides of (4.4)

v

fell

ll

1. (4.5)

My M
TN Ay
\§ hJ //’“hzg
o=@ BB
B .
8 de -
Al 4 " 73 1 4 7
A T hy=hy=2/3 hy=hy=2
g E—'x hg:‘/}m/2

Fig. 8. Transformation of a domain in R by an affine Fig. 9. Parent domains for triangular and quadrilater-
mapping. ‘ al elements.
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Formula (4.5) aliows us to compute the characteristic length in the flow direction as

B (4.6)

where index N indicates that the value corresponds to the parent domain of the element with
‘natural’ coordinates (£, ). Equation (4.6) reduces the computation of 4° to that of hy, which
can be easily estimated since the geometry is now very simple. In our computations we have
taken, for the parent domains of Fig. 9, k=2 for quadrilateral elements and hy =0.7 for
triangular elements.

REMARKS 4.1. (1) The length 4° defined by (4.6) depends on the point (x, y) of £2°. Thus,
it will be numerically different at each integration point. Also, the exact value of h,, depends
on each point, although the assumption of a constant value seems reasonable.

(2) From (4.3) it can be seen that (4.6) will be exact whenever the mapping f can be
considered affine. This will always be the case with straightsided triangles and paralielograms
in two dimensions.

(3) In [11,25], formula (4.6) with hy =2 was suggested heuristically, without defining its
limits of validity. Note that the parametrization of the parent domain defines h,,.

4.2. Assignment of upwind functions

In Section 3, the expressions of the upwind functions « and 8 for quadratic elements were
obtained. The weighting function of a certain node of an element will be obtained using a or 8
depending on the position of the node. Clearly, in multidimensional situations this position is
relative to the direction of the flow, which complicates the definition of a node as ‘extreme’ or
‘central’. This, of course, is an important drawback for the use of different upwind functions.

The heuristic criterion we have followed is based on the assignment of upwind functions
taking into account whether a node is extreme or central for certain directions of the flow. For
2-D elements, we have taken these directions as those defined by the coordinates &, 0 (see
Fig. 10) for the nine-noded Lagrangian element and those defined by the area coordinates
1—=£¢—m, £ and 7 for the six-noded triangle. For the corner nodes of the elements, the
function a has been chosen and for the interior node of the nine-noded element, the function
B. The problem arises when the upwind function for the midside nodes must be determined.
For example, the shape function of node 5 for the nine-noded element (see Fig. 10) along the
1= —1 line corresponds to the shape functions of node 2 in Fig. 1, i.e. a central node,
whereas along the ¢ =0 line the corresponding shape function is that of node 1 in Fig. 1, an
extreme node. So, the upwind function of node 5, say &, will be taken as a combination of
functions « and B. In Fig. 10, the nodal numbering in the parent domain and the chosen
upwind functions are indicated.

6 5. &

Fig. 10. ‘Assignment of upwind functions for the 6-neded and 9-noded elements.
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The best numerical results have been obtained taking §; as the functions
8 = fi(@)a +[1-fi(0)]B, (4.7)

where for the six-noded element

f(8)=sin 8,  fi(0) :f4(6 + ;2_) . f.(@)=cos’ 8, (4.8)
and for the nine-noded element

£.(8)=f,(0)=sin" 6, £.(8)=f,(8) =cos’ 8. (4.9)
In (4.7)-(4.9), @ is the angle shown in Fig. 10.
REMARK 4.2. Notice that for bilinear quadrilateral elements the expression of the upwind

function will not be the ‘optimal’ if the velocity is not parallel to the edges, since the shape
functions are not linear along those directions.

5. Numerical examples

The examples presented in this section have been run on a CONVEX-C120 computer using
double precision.

5.1. One-dimensional problems

EXAMPLE 1. In this example we solve problem (3.1), (3.2) with u=1, K=0.01, Q(x) =
sin{mx), L =1 and ¢, = ¢, = (. The interval [0, 1] is discretized using ten quadratic elements
of equal length 0.1. This gives the value y = 5 for the Péclet number. The analytical solution 1s

b(x)=C, + G, exp(% x) + ﬁ% {sin(wx) - k% cos('rrx)} , (5.1)
with
C,= 2u : (5.2)
(P’ + K (1 - exp(—— %))
C, = “% (1 + exp(—?z))c2 : (5.3)

Condition (3.37) is not fulfilled and in fact nodally exact solutions are not obtained. However,
the use of the optimal upwind functions of (3.18) and (3.19) gives results (Fig. 11(a)) that
cannot be distinguished from those of the analytical solution (linear interpolation between
nodes has been used in the plots). In Fig. 11(b) the solution obtained using the unique
function (3.30) is plotted and Fig. 12 shows the relative error (in percentage) obtained using
the two methods.

We observe that the use of (3.30) gives a solution that smooths the right boundary layer.

EXAMPLE 2. In this case we solve the transient problem
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Fig. 11. Solutions of Example 1. {a) Using the upwind functions (3.18) and (3.19). (b) Using the unique upwind

function (3.30).

9¢ 99
6t+u3x

¢(0,1)=0,
(1, 0)=1,
¢(x,0)=x,

-K

i‘ﬁ’=o, 0<x<1,t>0,
ax
1>0,
t>0,
0<x<1.

The analytical solution for this problem can be expressed as

d(x,t)=x+ i; % (1—exp(— A1) exp(

10l

100

iU

2K x) sin(amx) ,
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Fig. 12. Relative errors for the solutions (a) and (b) of Fig. 11.
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with ,
-4 2
A, 7K + K(nw) (5.9)
2
B = ﬂﬂ——w [(-1)" exp(—i%) - 1] . (5.10}
U 2 2
7t
4K

We have taken u =1 and K =0.02. Again, ten quadratic elements of length 0.1 have been
used. The ordinary differential equation that results after space discretization has been solved
using the Crank—Nicolson scheme. Based on the results in [26], the time step has been taken as
At =0.05, which gives a Courant number C:=2u At/h =1. In Fig. 13 the solution obtained
applying the Galerkin procedure is shown for ¢=0, 0.25, 0.5, 1 and 2 (using a linear
interpolation between nodal values for plotting). Observe that for this rather small Peclet
number (v = 2.5) oscillations occur even at an early stage.

In Figs. 14(a) and (b) the solution obtained with the optimal upwind functions (3.18) and
(3.19) and the upwind function (3.30) are represented. The first result is indistinguishable from
the analytical solution (5.8)-(5.10). Again, the smoothing of the right boundary layer when
using (3.30) can be observed.

EXAMPLE 3. We consider in this example the Burgers’ equation

au du 0°u
—— —— < x < > .
ar+u6 vaz 0, 0<x<1,t>0, (5.11)

with boundary and initial conditions

u(0,0=0, >0, (5.12)
u(l,t)=1, >0, (5.13)
wx,0)=x, 0<x<1. (5.14)

The nonlinear equation (5.11) has been solved using the secant Newton method. In this case, a
convection-diffusion-like equation must be solved for each iteration. The interval [0, L] has

o, 0.1 0.2 03 04 03 06 07 0B 05 L

¢ ol 02 03 Ojll 0.5 06 07 08 09 1

Fig. 13. Galerkin solution of Example 2.
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0.1 02 ¢3 94 05 06 07 05 03 L
61 0.2 03 04 05 04 0.7 0.8 0% |

ek o] prtbrTEicy =i et sl 5
0. 0.1 42 03 04 05 06 07 08 09 L 0. 01 02 03 04 035 06 07 08 0% 1.

Fig. 14. Solutions of Example 2. (a) Using the upwind functions (3.18) and (3.19). (b) Using the unique upwind
function (3.30).

been discretized using ten equal-length quadratic elements. The Crank—Nicolson scheme with
Ar=0.05 has been used in time. The viscosity » has been taken as » = 107% which gives an
element Reynolds number Re := w4 /2y = 2500. The convergence criterion has been chosen as
llz,, — u, ' ||.. <107, where u} is the value of u at the jth iteration of the nth time step. Four
iterations were needed for the SUPG formulation and six for the Galerkin method.

‘The qualitative shape of the solution u(x, ) of (5.11)-(5.14) may be predicted if we take
v=0in (5.11) and solve this equation with the conditions (5.12) and (5.14). In this case, the
analytical solution is

x
u(x, t)y = T+7° (5.15)

1.e., a straightline with slope decreasing in time.
In Fig. 15, the Galerkin solution for ¢ =1 is shown. As expected, high oscillations occur.
The solutions with the SUPG formulation are depicted in Figs. 16(a) and 16(b), using the
upwind functions of (3.18) and (3.19) and that given by (3.30), respectively. A better
resolution of the right boundary layer is obtained in the first case.

0.2 0.1 0, 0.1 02 03 04 05 0.6 07 03 0% L

0. 0.1 02 0.3 04 05 06 CT 08 09 1.

Fig. 15. Galerkin solution of Example 3.
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Fig. 16. Solutions of Example 3. (a) Using the upwind functions (3.18) and (3.19). (b) Using the unigue upwind
function (3.30).

5.2. Two-dimensional problems

EXAMPLE 4. The steady-state case in (2.1) with the boundary conditions (2.2) and (2.3) has
been solved, with

w:}_}{ }:_11{
Q‘]z’z 13l

I,=00, I,=0

b
1

V2 V2
(e )= (%2, %)
Ky, ) =2X107%,, QG ) =5,
fx, y)=0.

The domain {2 has been discretized using a vniform finite element mesh with 21 X 21 nodes in
all the cases. The resulting Péclet number is vy =2.5 for quadratic elements (A =0.1) and
v=1.25 for linear elements (k= 0.05). This example was chosen for testing the adopted
expressions (4.7)-(4.9). Results obtained with quadratic and linear quadrilaterals and triangu-
lar elements and using the optimal upwind functions of (3.18) and (3.19) are shown in Fig. 17.
The results obtained for quadratic elements are almost the same as for linear elements.

EXAMPLE 5. This and the following examples have been taken from [11]. Now, (2.1) with
d¢/at=0 and the boundary conditions (2.2) and (2.3) is solved, with

o=] 32 Al w ]3],
I,=a0, I,=0,
u(x, y) = (=, 1),

78 " _
Kij(xa y):10 5;‘;‘! Q(xv y)”'"oa
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Fig. 17. Results of Example 4 using triangular (3 and 6 nodes) and quadrilateral (4 and 9 nodes) elements.

1
sinm(1+2y), ifx=0and —z=y=<0,
flx, )= 2

0, else .

In all the cases, 31 X 31 nodal points and a uniform finite element mesh have been used. For
the small diffusion considered, the solution of this problem is just the advection of the sine
profile. The objective of this problem was only to test the accuracy of the algorithm, since the
exact solution is very smooth and the Galerkin method only produces small amplitude
oscillations. Results obtained with different quadrilateral and triangular elements using the
optimal upwind functions are depicted in Fig. 18. Similar accuracy is obtained in all the cases.

EXAMPLE 6. Again, the steady-state problem (2.1)-(2.3) is solved, now with

a=]3 3|54l
I,=80, I,=8,

u(x, y) = (cos 6, —sin 6) ,

K (x,y)=10"%,, O(x,y)=0,

_ 1, if(an’)Erls
f(xay)—{o, if (x, ¥) € Iy |

T3 [a3)o 22l 3

I, =T, 1T, .

with

This problem shows the inability of the SUPG formulation to preclude overshoots and
undershoots when sharp layers are present.
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b

Fig. 18. Results of Example 5 using triangular (3 and 6 nodes) and quadrilateral (4 and 9 nodes) elements.

We have solved this problem with the angles 8 given by tan = 7, 1 and 2. The resulis
shown in Figs. 19-21 correspond to the latter case, when overshoots and undershoots are more
important. However, it is seen that they are bigger using linear elements than using quadratic
elements. The solution obtained using the upwind functions (3.18) and (3.19) together with
(4.7)~(4.9) looks better than that obtained with the single upwind function (3.30), although
the different computational effort must also be considered.

Fig. 19. Results of Example 6 using 3-noded linear triangular and 4-noded bilinear quadrilateral elements.
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Fig. 20. Results of Example 6 using quadratic triangular (6 nodes) and biquadratic quadrilateral (9 nodes) elements
with the upwind functions (3.18) and (3.19). :

Fig. 21. Results of Example 6 using quadratic triangular (6 nodes) and biquadratic quadrilateral (9 nodes) elements
with the upwind function (3.30).

6. Conclusions

In this paper we have derived the expressions of the upwind functions that give nodally exact
results for the one-dimensional steady-state convection-diffusion equation using the SUPG
formulation with quadratic elements. In this case, two different functions are needed, one for
the ‘extreme’ nodes and another one for the ‘central’ node. This complicates the extension to
multidimensional problems, although good results have been obtained with the methodology
proposed in the paper. Also, the possibility of a unique upwind function has been studied. The
results are not so good, but the greater simplicity of this procedure must also be considered for
practical purposes. In fact, in that case there is no more computational work due to the SUPG
method needed than for linear elements. On the other hand, the feasibility of using different
intrinsic times in the case of elements of order higher than two seems very restricted.
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