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Abstract: This paper proposes a method for the combined estimation of the state of charge (SOC) and
state of health (SOH) of batteries in hybrid and full electric vehicles. The technique is based on a set
of five artificial neural networks that are used to tackle a regression and a classification task. In the
method, the estimation of the SOC relies on the identification of the ageing of the battery and the
estimation of the SOH depends on the behavior of the SOC in a recursive closed-loop. The networks are
designed by means of training datasets collected during the experimental characterizations conducted
in a laboratory environment. The lithium battery pack adopted during the study is designed to
supply and store energy in a mild hybrid electric vehicle. The validation of the estimation method is
performed by using real driving profiles acquired on-board of a vehicle. The obtained accuracy of the
combined SOC and SOH estimator is around 97%, in line with the industrial requirements in the
automotive sector. The promising results in terms of accuracy encourage to deepen the experimental
validation with a deployment on a vehicle battery management system.

Keywords: battery; state of charge; state of health; artificial intelligence; artificial neural networks;
hybrid vehicles; electric vehicles; estimation

1. Introduction

The automotive industry is recently dedicating increasing attention to sustainability, with the
objective of mitigating the negative effects of vehicular mobility on the environment. Carmakers cope
with the always more stringent regulations about CO2 emissions, focusing their efforts on the
development of advanced powertrain architectures [1,2]. Solutions based on the adoption of full
electric (battery electric vehicles (BEVs)) powertrains or on the combination of an internal combustion
engine (ICE) and electric traction (hybrid/plug-in hybrid electric vehicles (HEVs/PHEVs)) are now
established as reliable alternatives to conventional powertrains [3,4]. They exploit batteries as the
primary energy source in BEVs or as an auxiliary source in HEVs and PHEVs [5]. In the automotive
industry, the most common battery technology exploits lithium because of its remarkable advantages
in terms of the energy density, fast charging, low maintenance, and long lifetime allowances. Moreover,
lithium-based solutions allow for obtaining powerful, compact, and light configurations together
with satisfactory levels of autonomy, which is currently settled in the order of a few hundreds of
kilometers [6]. However, the reliability and performance of these type of batteries are strongly
influenced by the management of the charging and discharging phases. It is indeed well known that an
appropriate handling of these operations is mandatory to avoid the occurrence of overcharging or deep
discharging, that would lead to permanent or hardly reversible damages of the pack. A continuous and
accurate monitoring of the battery state takes on significant importance to extend the battery lifetime,
effectively plan the trip route and charging stops, optimize the energy flow management of HEVs [7,8],
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and mitigate psychological effects, such as the range anxiety that is commonly experienced by a large
number of BEV drivers [6]. The main parameters to be assessed for a correct battery monitoring are
the residual available energy in the pack, known as state of charge (SOC), and the degradation suffered
by the battery, indicated by the state of health (SOH) [9]. As is well known, these two states cannot be
directly measured, since the technology to make a sensor that plays the equivalent role of a fuel gauge
is not available. Therefore, the adoption of some estimation techniques becomes mandatory [10,11].
Typically, carmakers exploit look-up tables (LUTs), where the SOC and SOH behavior is mapped during
the preliminary experimental characterizations conducted in a laboratory environment. These tests
are done following the so-called direct methods, which are based on ampere-hour counting or the
measurement of the internal impedance and open circuit voltage of the battery [10,12]. However,
the adoption of LUTs may have a high computational cost and imposes the storage of a huge amount
of data in the electronic control unit memory, particularly in the case of the SOH estimation. A further
class of methods exploits model-based techniques for the real-time assessment of both the SOC and
SOH [13]. The most common are the Kalman filter [14] and its derivations, namely the extended
(EKF) [15] and unscented Kalman filters (UKF) [16,17], the adaptive particle filter (APF) [18], and the
smooth variable structure filter (SVSF) [19]. Although these solutions can be implemented in real time
on a vehicle, they may suffer problems of inaccuracies if the reference model is not completely and
accurately tuned in all the possible operating conditions. An alternative and promising approach to
overcome this limitation is represented by artificial intelligence (AI). In most cases, these solutions
adopt artificial neural networks (ANNs) and allow getting rid of the model while obtaining satisfactory
levels of accuracy and reliability, provided that the networks are properly trained. An extensive
literature is dedicated to the methods for the estimation of the SOC [20–23] or SOH [24–27] with AI.
Nevertheless, to the best of the author’s knowledge, very few works deal with the combined estimation
of the SOC and SOH and most of them describe model-based techniques [28–30].

This paper proposes a technique for the combined estimation of the SOC and SOH with a set of five
ANNs: four regression networks dedicated to the SOC estimation and one classification network for the
SOH identification. The method is independent by the battery model and is designed with a training
phase conducted with datasets obtained from the preliminary laboratory experimental characterizations.
The SOC estimation exploits four nonlinear autoregressive neural networks with exogenous input.
Each of them is associated with a specific class of ageing (SOH) of the battery. The correct estimation
among the four outputs is selected according to the SOH identification, which is obtained separately
by a classifier that is done with a pattern recognition neural network. The SOH estimator provides a
class of ageing among four possibilities, ranging from 80% to 100% with a step of 5%. A further class
is associated to exhausted batteries and covers the range from 0% to 80% of the SOH, where 80% is
the degradation threshold in the automotive sector. The output of the SOH classifier is used to select
the correct SOC estimation among the four outputs of the regression ANNs, while the SOC estimation
is used as an input for the SOH classifier in a closed-loop recursive architecture. The SOH estimator
is an algorithm which is triggered only when a specific battery load condition in terms of the mean
charging/discharging capacity request in a predefined time window is detected. This procedure allows
reducing the training dataset of the SOH neural classifier to only one specific case. This aspect represents
a relevant advantage in terms of a size reduction of the training dataset and a consequent time saving
during the dataset collection and learning procedures. Additionally, the size of the network is smaller
with a consequent reduction of the memory occupation when deployed on the battery management
system (BMS).

The paper describes the design of the two estimators and the validation phase is conducted with
the adoption of driving cycles acquired on a mild hybrid electric vehicle. The performance of the
SOC estimator is evaluated by comparing the temporal evolution of the expected and estimated state
of charge, whereas the SOH classifier accuracy is measured by using a confusion matrix, a common
evaluation tool of classification algorithms.
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The novel contributions of this work are as follows: a) the proposal of a combined estimation of
the SOC and SOH with ANNs, allowing to make the method independent from the model and valid
for every operating condition, provided that the network training dataset is complete and accurate;
and b) the proposal of an SOH estimation method that is triggered only when a specific load condition
corresponding to a predefined charging/discharging current profile is detected: this results in a compact
algorithm that can be trained with a dataset that is smaller with respect to what would be needed in
the case of a reproduction of the whole set of ageing conditions.

2. Method

The proposed method aims to provide a combined estimation of both the SOC and SOH of a
battery. The approach is equally valid for a battery pack, module, or for the single cell.

Figure 1 illustrates the overall layout of the method that is composed of two subsystems: the SOC
estimator, consisting of four regression ANNs, that is illustrated in the top left dashed box, and the SOH
estimator, that exploits a neural classifier, that is reported in the bottom right dotted box. As is well
known, the behavior of the two parameters is connected: the SOC of a battery is strongly influenced
by the ageing, as well as the SOH estimation needing the information of the SOC variation during
the charging/discharging operations. This motivates the adoption of a recursive loop architecture,
where the SOC output is provided as an input to the SOH classifier and vice-versa. Both algorithms
were trained on the basis of the preliminary experimental characterizations conducted in a laboratory.
The two subsystems are described in detail in the following sections.
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Figure 1. Overall method architecture. Dashed box: state of charge (SOC) estimation. Dotted box: state
of health (SOH) estimation. i(t): charging/discharging current. v(t): voltage at battery terminals. T(t):
battery temperature. E(t): energy request. SOH classes: 1: (100 ÷ 95)%; 2: (95 ÷ 90)%; 3: (90 ÷ 85)%; 4:
(85 ÷ 80)%.

The battery pack considered for the study is composed of 168 cells (the cell model is Kokam SLPB
11543140H5, its characteristics are reported in Table 1) in the configuration 12p14s (p: parallel, s: series).
The pack has a nominal voltage of 48 V, a nominal capacity of 60 Ah, and is designed for a mild hybrid
electric vehicle with a peak electric power of around 20 kW, obtained considering a discharge rate of
around 7C in nominal conditions.
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Table 1. Main characteristics of the battery cell.

Typical Capacity (@0.5C, 4.2 V ÷ 2.7 V, 25 ◦C) 5 Ah

Nominal Voltage 3.7 V

Cut-off voltage 2.7 V

Continuous current 150 A

Peak current 250 A

Cycle life (Charge/Discharge @ 1C) >800 cycles

Charge
condition

Max. Current 10 A

Voltage 4.2 V ± 0.03 V

Operating
Temperature

Charge 0–40 ◦C

Discharge –20–60 ◦C

Mass 128.0 ± 4 g

Dimension
Thickness 11.5 ± 0.2 mm

Width 42.5 ± 0.5 mm

Length 142.0 ± 0.5 mm

2.1. SOC Estimation

The SOC estimator consists of four parallel regression ANNs (dashed box in Figure 1) working on
the same inputs. Each network is associated with a specific ageing condition: SOH class 1 (from 100%
to 95%), SOH class 2 (from 95% to 90%), SOH class 3 (from 90% to 85%), and SOH class 4 (from 85% to
80%). The threshold of 80% was decided considering that in the automotive sector, a battery has to be
considered exhausted when the capacity or power fading is higher than 20%. The step of 5% is aligned
with the typical precision that can be reached when dealing with the SOH estimation problem [31,32].

Each of the four regression ANNs receive, simultaneously, the following signals as inputs:
charging/discharging current (i(t) [A]), voltage at battery terminals (v(t) [V]), and temperature
(T(t) [C]). They provide four different outputs: ˆSOC1(t), ˆSOC2(t), ˆSOC3(t), and ˆSOC4(t). The final
SOC estimation ( ˆSOC(t)) is obtained with a downstream selector that is operated by a signal fed back
from the SOH classifier output, that is running separately, as indicated in Figure 1.

The structure of the four SOC estimators is the nonlinear autoregressive neural network with
exogenous input (NARX) architecture. Typically, this layout is adopted for prediction tasks and finds
an application in industrial engineering fields as well as in other sectors, namely linguistic search
engines or weather forecasting. However, its effectiveness has been demonstrated also for estimation
tasks and has been presented as an effective solution to estimate the SOC of lithium batteries in [21],
where an additional comparison with other ANN architectures in terms of the computational cost
and estimation accuracy is provided. The scheme of the NARX is reported in Figure 2, where the
two adopted configurations are illustrated: an open-loop configuration (a), often indicated also
as the series–parallel (SP) mode, that is adopted during the training procedure, and a closed-loop
configuration (b), or equivalently the parallel (P) mode, that is the final architecture adopted for the
estimation when the network is deployed on the vehicle for the real-time execution.

The output of the regression is defined as

y(n) = ϕ
[
y(n− 1), y(n− 2), . . . , y

(
n− dy

)
; x(n− 1), x(n− 2), . . . , x(n− dx)

]
(1)

where y(n) ∈ R and x(n) ∈ R denote the output (state of charge) and inputs (current, voltage, and
temperature) of the NARX model at the discrete timestep n, respectively, dx and dy are the input and
output memory delays used in the model, respectively, and ϕ is the function, generally non-linear,
represented by the ANN. During the regression computation, the next value of the dependent output
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signal y(n) is regressed on the previous dy values of the output signal and previous dx values of the
independent (exogenous) input signal. In the open-loop configuration, the output regressor is

y(n) = ϕ
[
y(n− 1), y(n− 2), . . . , y

(
n− dy

)
; x(n− 1), x(n− 2), . . . , x(n− dx)

]
(2)

A supervised training procedure is conducted using the measured output as the target.
This approach allows for enriching the information to be processed by the network and permits
using a common static backpropagation algorithm, the Levenberg–Marquardt in this case, for the
training process, since the resulting network has a purely feedforward architecture.Energies 2020, 13, x FOR PEER REVIEW 5 of 13 
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Figure 2. Nonlinear autoregressive neural network with exogenous input (NARX) architecture.
(a) Series–parallel (SP) mode (open-loop configuration) adopted during the training. (b) Parallel
(P) mode (closed-loop configuration) adopted for the estimation when the network is deployed.
HAF: hidden activation function. OAF: output activation function. w: weight. b: bias.

In the first second of computation, the value of the algorithm output is not stable and is
unpredictable. Therefore, if this value is fed back and provided as input to the ANN, it generates an
estimation divergence over time. To avoid the occurrence of this irremediable condition, during the
first second of estimation the feedback of the estimated SOC is replaced by the last estimation value
(SOCINIT in Figure 2b) recorded on a non-volatile memory at the previous shut down of the vehicle.
After 1 second, when the output has become stable, the SOC input of the network switches from the
previously recorded value to the real feedback of the estimation so that the regular operation of the
algorithm can start.

Referring to Figure 2b and indicating with n = n0 the time instant when the feedback signal
switches from SOCINIT to the estimated output, the characteristic equations of the model are written as

y(n) = ϕ[SOCINIT; x(n− 1, x(n− 2), . . . , x(n− dx))], n < n0 (3)

and
y(n) = ϕ

[
y(n− 1), y(n− 2), . . . , y

(
n− dy

)
; x(n− 1), x(n− 2), . . . , x(n− dx)

]
, n ≥ n0 (4)

The four networks have the same size in terms of layers, neurons, and delays and adopts the
same activation functions. All these parameters have been designed with a trial and error approach
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aimed to maximize the estimation accuracy and avoid the risk of overfitting. Specifically, each network
has one layer with eight neurons, the delays dx and dy are equal to two, the activation function in the
hidden layer (HAF) and output layer (OAF) are the hyperbolic tangent and linear functions respectively,
and the training function is the Levenberg–Marquardt function.

During the design phase, the training precision is evaluated by computing the mean square error
(MSE) that reached a value of 1 × 10−13 as indicated in the small box embedded in Figure 3, and the
estimation accuracy is measured with the maximum relative error (MRE), that is computed as

MRE [%] = max
1<i<n

(∣∣∣∣∣∣SOCexp(i) − SOCest(i)

SOCexp,max = 1

∣∣∣∣∣∣
)
× 100 (5)
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Figure 3. Comparison performance between the estimation (dashed line) and expected values (solid
line) of the SOC in the case of an SOH = 100%. The obtained maximum relative error (MRE) is equal
to 0.35%. The small box in the bottom left indicates the trend of the mean square error during the
training phase.

This parameter reached the value of 0.35% as indicated in Figure 3, where the comparison between
the estimation (dashed line) and the expected value (solid line) of the state of charge is reported in
the case of a new battery (SOH = 100%). This plot wants to represent an indication of the training
evaluation during the design phase.

The time length of the training dataset for the four regression ANNs is 13 h.
A more detailed description of the overall method results is reported in the final section of

the paper.

2.2. SOH Estimation

The degradation of the battery is estimated with an algorithm reproducing a pattern recognition
classifier with an ANN. Since the algorithm is proposed for the automotive sector, the method considers
20% as the maximum admitted capacity fading. Therefore, the considered life cycle of the battery
ranges from an SOH of 100% when the battery is new to an SOH of 80% when the battery has to be
considered exhausted. The proposed solution aims at quantifying the degradation suffered by the
battery by identifying the five different levels of ageing which correspond to the five classes provided
as an output by the classification algorithm. The first class covers the interval of ageing below the level
of 80% (assumed as the threshold of the maximum degradation of the battery) of the SOH. The other
four classes are equally distributed between 80% and 100% with four intervals of 5%, a percentage that
is considered as consistent with the reasonable level of accuracy that can be reached when dealing
with the problem of the SOH estimation.
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As in the case of the SOC network design, the proposed algorithm for the SOH estimation
exploits a preliminary experimental characterization phase conducted on the battery in a laboratory
environment. The obtained results are used to build the training dataset to be adopted for the learning
phase of the neural classifier. Specifically, the data of interest are recorded in a specific battery load
condition corresponding to a mean request of 12 Ah in an interval of time of 120 s. This condition
was selected because it can be detected quite frequently during a common driving cycle of an electric
or hybrid vehicle. Afterwards, the network is trained with the dataset corresponding to this specific
operating condition obtained at different values of temperature. Therefore, when the algorithm is
deployed on the vehicle, it is called to estimate the level of ageing whenever the same condition is
detected during the real driving cycle. This implies that when driving the vehicle, consecutive buffers
of 120 s are analyzed back-to-back by a control logic that is implemented in the “Triggering load
detection” block in Figure 1. As soon as the specific load condition of interest (mean capacity request
of 12 Ah in 120 s) is detected, the classifier is triggered and provides the SOH classification as an
output. Therefore, the estimation rate is not continuous over time, but it is produced in a discrete
and not time deterministic way, only in correspondence with the detection of the predefined known
load condition. The output of the estimator is kept equal to the last SOH estimation if the triggering
condition is not occurring.

Figure 4 reports a part of the ANN training dataset obtained by the preliminary experimental
characterization conducted on the battery. Subplot “a)” illustrates the behaviour of the degradation of
the battery as a function of the number of discharging cycles at different values of temperature [33].
The discharging is conducted with the predefined load above-mentioned. Subplot “b)” reports the
coupling effects between the SOH, capacity, SOC, and battery voltage. In this test, the temperature
is set to 25 ◦C and the variation of the capacity is motivated by the difference in the time needed to
discharge the battery at the different levels of ageing.

The time length of the training dataset covering all the considered levels of ageing is equal to
916 h obtained from 27,494 buffers with a duration of 120 s.

The SOH classifier works on discrete inputs, the so-called predictors, that are extracted in the
“Feature extraction” block in Figure 1 from the time histories of the following signals: current, voltage,
temperature, SOC, and energy. The latter is obtained from the “Energy computation” block in Figure 1
and is defined as

E =

∫ t0+tb

t0

v(t)i(t)dt (6)

where t0 is the initial time of the buffer and tb is the time length of the processed buffer that is set equal
to 120 s.

The list of the extracted predictors is state of charge variation (-) (∆SOC), voltage variation (V)
(∆V), requested energy (Wh) (E), and mean temperature (◦C) (T).

The architecture of the classifier is illustrated in Figure 5. The training phase of the neural classifier
is performed exploiting the scaled conjugate gradient (SCG) backpropagation training function [27].
This algorithm is designed to minimize the cost function including the difference between the estimated
and expected outputs. This approach gives a good performance over a large number of pattern
recognition problems that may include numerous parameters and guarantees a low performance
degradation while reducing the training error. Additionally, this function is characterized by a relatively
low computational cost and memory requirements [21], and its ability to provide well-separated classes
in data mining and classification problems has been proven in many research works [34].
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classification. HAF: hidden activation function. OAF: output activation function. w: weight. b: bias.

The classifier is composed of one input, two hidden and one output layer. As in the case of the
SOC network design, the number and size of the hidden layers is defined heuristically, by means
of a trial and error procedure. Specifically, the hidden layers consist of ten neurons each, HAF is a
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hyperbolic tangent sigmoid, and OAF is a normalized exponential function. The performance of the
training process is evaluated by means of the cross-entropy cost function, that at the end of the training
process is equal to 1 × 10−3, after around 3000 training epochs.

3. Results and Discussion

The validation of the method is conducted in two separate phases: (a) an analysis of the
performance of the SOH identifier and (b) an evaluation of the accuracy of the overall SOC estimation
that includes the ageing classification.

3.1. SOH Classification

As is described above, the classification algorithm is called to identify the class of degradation only
when a specific load condition is detected during the driving operations. To evaluate the effectiveness of
the method, a profile corresponding to the specific charging/discharging profile was created artificially
to have an exhaustive number of occurrences in the different operating conditions to test.

The profile is reported in Figure 6, where it has a duration of 5000 s and includes 42 different
consecutive buffers with the time length of 120 s and a mean capacity request of 12 Ah. The profile
was cycled until reaching a total duration of 50 h, to sweep the range of the SOC of the battery,
corresponding to 1500 buffers of 120 s, for each class of ageing. The resulting timeseries was
provided to the LUT representing the battery. This LUT was tuned after the preliminary laboratory
experimental characterization and allows for extracting the predictors provided to the classifier in the
five ageing conditions.

Energies 2020, 13, x FOR PEER REVIEW 9 of 13 

 

training process is evaluated by means of the cross-entropy cost function, that at the end of the 
training process is equal to 10e-4, after around 3000 training epochs. 

3. Results and Discussion 

The validation of the method is conducted in two separate phases: (a) an analysis of the 
performance of the SOH identifier and (b) an evaluation of the accuracy of the overall SOC estimation 
that includes the ageing classification. 

3.1. SOH Classification 

As is described above, the classification algorithm is called to identify the class of degradation 
only when a specific load condition is detected during the driving operations. To evaluate the 
effectiveness of the method, a profile corresponding to the specific charging/discharging profile was 
created artificially to have an exhaustive number of occurrences in the different operating conditions 
to test.  

The profile is reported in Figure 6, where it has a duration of 5000 s and includes 42 different 
consecutive buffers with the time length of 120 s and a mean capacity request of 12 Ah. The profile 
was cycled until reaching a total duration of 50 h, to sweep the range of the SOC of the battery, 
corresponding to 1500 buffers of 120 s, for each class of ageing. The resulting timeseries was provided 
to the LUT representing the battery. This LUT was tuned after the preliminary laboratory 
experimental characterization and allows for extracting the predictors provided to the classifier in 
the five ageing conditions.  

 
Figure 6. Current profile created to validate the SOH classifier. The profile is replicated until reaching 
the total duration of 50 h and a number of buffers of 1500 for each class of ageing. 

The resulting validation dataset is therefore composed of 7500 different buffers with a time 
length of 120 s each. The resulting profile represents the different operating conditions at different 
degradation levels and is given as an input to the classifier. 

The tool adopted to evaluate the accuracy of the SOH estimation is the confusion matrix reported 
in Figure 7. The classified and actual ageing condition instances are reported in the rows and 
columns, respectively. The values contained in the main diagonal cells indicate the correct 
classifications, whereas the off-diagonal cells report the number of the misclassifications. The overall 
obtained estimation accuracy is equal to 2.4%, which is equal to the number of misclassifications (178 
buffers) over the total number of tested occurrences (7500 buffers). This result is aligned with the 
expected accuracy. 

Figure 6. Current profile created to validate the SOH classifier. The profile is replicated until reaching
the total duration of 50 h and a number of buffers of 1500 for each class of ageing.

The resulting validation dataset is therefore composed of 7500 different buffers with a time length
of 120 s each. The resulting profile represents the different operating conditions at different degradation
levels and is given as an input to the classifier.

The tool adopted to evaluate the accuracy of the SOH estimation is the confusion matrix reported
in Figure 7. The classified and actual ageing condition instances are reported in the rows and columns,
respectively. The values contained in the main diagonal cells indicate the correct classifications, whereas
the off-diagonal cells report the number of the misclassifications. The overall obtained estimation
accuracy is equal to 2.4%, which is equal to the number of misclassifications (178 buffers) over the total
number of tested occurrences (7500 buffers). This result is aligned with the expected accuracy.
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Figure 7. Evaluation of the SOH classification performance. Confusion matrix obtained for the ANN
trained with the scaled conjugate gradient (SCG) algorithm. The cell in the grey background indicates
the overall accuracy of the method.

3.2. SOC Estimation

The second part of the validation is dedicated to the evaluation of the accuracy of the SOC
estimation. To this end, the profiles illustrated in Figure 8 have been adopted as validation timeseries.
The subplot “a)” reports the current profile, and the subplot “b)” illustrates the behavior of the battery
terminal voltage at different levels of ageing. The voltage is only an occurrence of the many possibilities
that are associated to a class of degradation. The plots in the right part of the figure are zoomed-in areas
with a time length of 2000 s. When providing these timeseries to the SOC estimation block (dashed box
in Figure 1), the regression ANNs will provide four different outputs. The one corresponding to
the correct ageing level of the battery is then selected according to the output of the SOH classifier
(dotted box in Figure 1).
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The results obtained in the five ageing levels are illustrated in Figure 9, where for each SOH
class, the estimated SOC, on the blue line, is compared with the expected value, on the red line.
The expected value is the one obtained from the preliminary experimental characterization conducted
in the laboratory. The estimation error is reported in the lower subplot for each case. The accuracy of the
estimation is demonstrated by the error that is limited to a maximum value of 3%. The results obtained
for the class of ageing going from 0% to 80% (subplot “e”) demonstrate that the algorithm keeps being
valid also under the threshold of 80%. The reported test has been conducted at a temperature of around
25 ◦C. A more exhaustive validation of the method should be conducted in a climatic test chamber to
evaluate the accuracy of the estimation at different environmental conditions.
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Figure 9. SOC estimation at different degradation levels. Red line: expected value. Blue line: estimation.
Error indicates the difference between the estimated and expected values. (a): ageing class 1 (SOH:
95 ÷ 100%); (b): ageing class 2 (SOH: 90 ÷ 95%); (c): ageing class 3 (SOH: 85 ÷ 90%); (d): ageing class 4
(SOH: 80 ÷ 85%); (e): ageing class 5 (SOH: 0 ÷ 80%).
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4. Conclusions

This paper presented a method for the combined estimation of the state of charge and state of
health of batteries with artificial intelligence. The technique is valid at the cell, module, and pack levels
and is suitable for adoption in the automotive sector in the case of hybrid and full electric vehicles.
The design procedure of the algorithm and specifically the training phase of the artificial neural
networks were presented. The method was demonstrated to be effective in terms of the estimation
accuracy when tested on real driving cycles extracted from the acquisition on-board of an electric
vehicle. The estimation error of the combined method is around 3%. The good potential and the
promising results encourage the adoption of the proposed method for deployment in a vehicle battery
management system for a real-time battery monitoring.
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