
Revista Internacionai de Métodos Numéricos para Cálculo y Diseño en Ingeniería. Vol. 7, S, 347-361( 1991) 

PRINCIPIOS VARIACIONALES PARAMETRIZADOS 
QUE ABARCAN ELASTICIDAD COMPRESIBLE 

E INCOMPRESIBLE 

CARLOS A. FELIPPA 

Dept. of Aerospace Engineering Sciences 
14 Center for Space Structures and Controls, 

University of Colorado, 
Boulder, Colorado 80309-0429, USA. 

RESUMEN 

Se presenta una familia de principios variacionales parametrizados, con cinco campos 
independientes, que pueden abarcar hiperelasticidad compresible e incompresible. Los 
campos independientes son tensiones medias (presiones) y desviadoras, deformaciones medias 
y desviadoras, y desplazamientos. Con una selección adecuada de los parámetros y de 
la descomposición de tensiones y desplazamientos, el funcional se reduce a los derivados 
previamente por Atluri-Reissner, Herrmann, y Franca. 

SUMMARY 

A parametrized five-field family of variacional principies that can accomodate both 
compressible and incompressible hyperelasticity is presented. The primary variables are mean 
and deviatoric stresses, mean and deviatoric strains, and displacements. Through appropriate 
selection of parameters and stress-strain splittings the functional specializes to those previously 
presented by Atluri-Reissner, Herrmann, and Franca. 

ECUACIONES FUNDAMENTALES 

Consideremos un cuerpo linear hiperelástico bajo cargas estáticas que ocupa el 
volumen V. El cuerpo es limitado por su superficie de frontera S, que se descompone en 
S : Sd U St. Desplazamientos se especifican en Sd mientras que tracciones se especifican 
en St. La normal unitaria exterior en S se denota por n G ni.  

Los tres campos de volumen desconocidos son los desplazamientos u u;, las 
deformaciones infinitesimales e E eij,  y las tensiones u r u;j. Los datos del problema 
son: las fuerzas de cuerpo b E bi en V ,  desplazamientos d E d; especificados en Sd, y 
tracciones de superficie f E ii especificadas en St. 

Las relaciones entre los campos de volumen son las ecuaciones de deformaciones- 
desplazamiento 
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las ecuaciones constitutivas 

y las ecuaciones de equilibrio 

en la que D* = - div denota el operator adjunto del gradiente simétrico D = 
I(V 2 + vT). 

El vector de tensiones con respecto a una dirección definida por el vector unitario 
v se llama a, = a.v,  ó a,; = aijvj. En la frontera S el vector de tensión se define como 
a, = a.n ó u,i = aijnj. Con esta notación, las condiciones de frontera en tracciones y 
desplazamientos se escriben 

NOTACION 

Campos Dependientes e Independientes 

En la investigación de métodos variacionales que sigue, se usan las convenciones 
náiacionales de Referencias1-e. Un campo variado independientemente se identifica con 
un guiño superimpuesto, por ejemplo ú. Un campo dependiente se identifica escribiendo 
el símbolo del campo independiente como índice superior (superscripto). Por ejemplo, si 
los desplazamientos u se hacen variar independientemente, los campos de deformaciones 
y tensiones derivados son 

Usando esta convención, símbolos sin guiños como u, e y a se reservan para campos 
exactos ó genéricos. 

Abreviación de Integrales 

Integrales de volumen y superficie pueden ser abreviadas poniendo paréntesis y 
corchetes, respectivamente, alrededor del integrando, con un índice que identifica el 
dominio. Por ejemplo: 

(6) 
Si f y g son funciones vectoriales y p y q funciones tensoriales, el producto interno 
sobre V se denota en la manera usual: 

y similarmente para integrales de superficie, en cuyo caso se usarán corchetes. 
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Para facilitar la construcción de expresiones variacionales matriciales, tensiones y 
deformacions se arreglarán como vectores columna de seis componentes construidos con 
las componentes de los tensores u;j y e;j siguiendo las convenciones usuales de mecánica 
estructural: 

Entonces (u,e)V = ( ~ ; j e ; j ) ~  = (uTe)V, etc. Similarmente, tensores constitutivos de 
cuarto orden como Eijkl se arreglan como matrices simétricas de orden 6 x 6 (resultando 
de la restricción al espacio de tensores tensión-deformación simétricos) en la forma 
usual. 

DESCOMPOSICION DE TENSIONES Y DEFORMACIONES 

En el caso de materiales incompresibles, en los que div u = tr Vu  = u;,; = 
O, la relación tensión-deformacion (2) solamente vale en el espacio de tensores de 
deformación con traza nula, y la relación inversa no existe. Para facilitar la inclusión 
simultánea de compresibidad e incompresibilidad en los principios variacionales, varias 
descomposiciones generales de los campos de tensiones y deformaciones se estudian en 
esta Sección. Definamos presión p y condensación volumétrica total 8 (la negativa de 
la deformación volumétrica) como 

1 1 P = - 5 t r u  = - ~ ( U I I  + u22 + 633) 

6 = - tr e = -(ell + e22 + e33) = - div u. (9) 

En este trabajo se asume que el material is volumétn'camente isótropo en el sentido 

donde k > O es el módulo de compresión (un tercio del "bu& modulus" K). En el 
límite de incompresibilidad, k + OO. 

Descomposición Parametrizada 

Una familia de descomposiciones de los tensores de tensiones y deformaciones que 
se consideran aquí es 

donde dij es el delta de Kronecker, y ( y 7 son escalares en el intervalo [O, 11 que 
determinan la descomposición. Si ( = O, ~ ( 0 ) ; ~  r u;j, mientras que si = 1, ~ ( 1 ) ; ~  
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se reduce a las tensiones desviadoras convencionales sij y se omitirá el argumento J. 
Si J = 0, g(0)ij E e,, mientras que si 7 = 1, g(l)ij se reduce a las deformaciones 
desviadoras convencionales g;j y se omitirá el argumento 7. 

, 

Usando la notación matricial(8) para tensiones y deformaciones, la descomposición 
(11) se representa como 

donde h es el vector columna de orden 6: 

Note que hTh  = 3, hTu = t r u  = -3p, hTe = t r e  = -9, hTs(J) = t r s ( J )  = 
-3(1- J)p, hTg(7) = t r g (7 )  = -(1- q)9, y hTs = hTg = 0. 

Condiciones e n  J y 7 

Los parámetros J y q no son independientes; se escogen de modo que S(() y g(7) 
estén conectados por una ecuación constitutiva "desviadora" invertible 

donde la matriz C es finita y no singular. Se asume que esta condición se verifica si 
( = 7 = 1 para cualquier material. Para otros valores de J y 7 la selección es posible 
si el material es completamente isótropo pues entonces (2) puede escribirse (véase, por 
ejemplo, Sección 22 de Gurtin7) 

donde p y X son los coeficientes de Lamé (p  coincide con el módulo de corte G), de 
modo que C = 2pI. Además p, X y k están conectados con el modulo de elasticidad E 
y el coeficiente de Poisson v a través de las relaciones 

. . 
Substituyendo estas relaciones en (15) y (14) se obtiene la condición 

El par ( = q = 1 satisface esta condición por cualquier v. Si v # 2,. especificando 
O 5 ( < 1 ó q determina la otra; por ejemplo si q = 0, ( = 3v/(1 + v). Si el material 
es incompresible (v = i ) ,  ( = 1 independiente del valor de q. 
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Descomposición Desviadora 

La descomposición desviadora convencional de los tensores de tensión y 
deformación se obtiene si se pone 6 = q = 1: 

Como se ha indicado previamente, esta selección satisface la condición (14) para 
materiales isótropos y anisótropos. 

Descomposición d e  Lamé 

La descomposición de Lamé para materiales isótropos -llamada así por su 
conexión intima con la relación constitutiva (15) que manifiesta los dos coeficientes 
de Lamé- se obtiene si q = O de modo que g = e. Entonces [ se escoge para que 
T = S(() = 2pe: 

3u 
u = C e  - [ph = 2pe - - ph = T -  qh. 

l + u  (19) 

En la literatura q = (p se llama la pseudo-presión en tanto que T = S(() = 2pe = Ce se 
llama la extra tensión, aunque un nombre mejor sería pseudo tensión desviadora. En 
el límite de incompresibilidad, pseudo presión q y extra tensión T se reducen a presión 
ordinariap y tensión desviadora S, respectivamente. Aunque la descomposición de Lamé 
puede en principio extenderse a materiales anisotrópicos, el parámetro ( se convierte en 
una matriz: 1 - (3k)-'C, lo que complica sustancialmente las derivaciones. Lo mismo 
sucede con (12) a menos que ( = q = 1. La conclusión general es que descomposiciones 
diferentes de (18) son de valor pequeño para comportamiento no isótropo. 

LA ENERGIA D E  DEFORMACION GENERALIZADA 

Los principios variacionales de elasticidad lineal estudiados aquí toman la forma 
general 

11 = U - P. (20) 

En esta forma U es la energía de deformación generalizada, que caracteriza la energía 
almacenada, y P es el potencial de esfuerzos (o potencial de solicitaciones), que 
caracteriza todas las otras contribuciones. La forma convencional de P es 

Otras dos formas de P, que son de interés en formulaciones híbridas de elementos 
finitos, llamadas pd y Pt por "displacement-generalized" y "traction-generalized," 
respectivamente, se estudian en otros articulosl-3. Como P no está afectado por el 
comportamiento del material, la atención se concentrará en U. 

En un material compresible, la energía de deformación generalizada estudiada por 
Felippa y M i l i t e l l ~ ~ - ~  tiene la estructura parametrizada 
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donde j l l  hasta jJ3 son coeficientes numéricos. Los tres campos de variación 
independiente son las tensiones ú, deformaciones é y desplazamientos 6. Siguiendo la 
notación explicada previamente, los campos derivados que aparecen en (22) se escriben 

U' = E&, uU = EDÚ, e" = E-lú, eU = DÚ. (23) 

Por ejemplo, la U del funcional de Hu-Washizu se obtiene poniendo j12 = -1, j13 = 1, 
j22 = 1, otros cero, en (22): 

UH(ü, é, ú) = )(uC, é)V + ) (ú, eU - é)v + )(uU - uC, e")v = +(ue, é)V + (5 ,  eU - é)v. 
(24) 

La ecuación (22) puede escribirse en forma matricial como 

j l1I  j12I j13I 

j221 2 { j } dv. (25) 
symm j33I 

donde 1 denota la matriz identidad de orden 6. La matriz funcional-generadora 
simétrica* 

j l l  j 1 2  j13 

J 3  = i" (26) 
313 323 333 

caracteriza completamente (22) y por lo tanto, una vez seleccionado el potencial de 
esfuerzos P, el funcional (20).t- 

Reemplazando (23) en (22)) U puede expresarse como función de los campos 
independientes: 

que verifica la simetría de J 3 .  Usando (27) la primera variación de U se obtiene 

SU = (Ae, ~ 7 8 ) ~  + (Au, 6é)V - ( div a', bú)v + [un, SÚ]S) (28) 

donde 

Los dos términos Últimos en (28) se combinan con contribuciones de la variación del 
potencial de esfuerzos. Por ejemplo, si P es el potencial de esfuerzos (21)) la variación 
completa de liC = U - PC es 

Slic = (Ae, + (Au, - ( div d + b, 6ú)v + [U; - i ,  6úIs, - [Ú - d. 6únISd. (30) 

* Para justificar la simetría notese, por ejemplo, que j13 (8, e') = j13 (Ü, e") + f j13  (ee, U") etc. 

t El índice de J identifica el naimero de parámetms independientes ó libres, como se muestra más adelante. 
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El uso de pd Ó Pt no modifica los términos volumétricos. En consecuencia las 
ecuaciones de Euler asociadas con las integrales de volumen son 

independientemente del potencial de esfuerzos. 
Para forzar la consistencia de las ecuaciones de Euler con las ecuaciones de campo 

(1-3) se debe verificar Ae = 0, Au = O y u' = u si los campos de tensiones y 
deformaciones asumidos se reducen a los exactos. En consecuencia 

Resulta de aquí que el número máximo de parámetros independientes que definen 
los elementos de J3 es 6 - 3 = 3 como anticipado. La especialización de este funcional 
general a formas convencionales y parametrizadas ha sido estudiada por Felippa y 
Milit e l l ~ ~ - ~ .  

FORMA DESCOMPUESTA DE LA ENERGIA 
DE DEFORMACION GENERALIZADA 

La expresión (22) de U falla si el material es incompresible. Para construir 
formas parametrizadas que acomodan incompresibilidad, la energía de deformación 
generalizada se aumenta con campos iridependientes adicionales, uno de los cuales debe 
ser la presión. Hay varias formas de proceder para arribar al objetivo indicado. En 
esta Sección el punto de partida es la descomposición desviadora convencional (18); el 
uso de la descomposición de Lamé (19) se considera más adelante. 

Una energía de deformación generalizada "aumentadan$ Ud. se construye como 
función de los cinco campos independientes O , g, ú, 9 y 8. Utilizando (25) como un 
"esqueleto" se postula la forma cuadrática siguiente: 

en la que los campos derivados son 

gU = (D - i h  div)ú = D,ú, g8 = c-'s, OP = k - l p  , Bu=-divú,  

59 = C i ,  su = Cg" = CDgú, pe = -8, pU = kBU = -k div ú. (34) 

Los índices de U se refieren al "deviatoric split" 



354 C.A. FELIPPA 

La matriz núcleo de la forma cuadrática ( 3 3 )  es ahora 21 x 21 y está caracterizada por 
los 36 coeficientes j .  A diferencia del tratamiento del caso compresible, las condiciones 
de simetría en estos coeficientes no se especifican ab initio. Substituyendo ( 3 4 )  en 
( 3 3 ) ,  Ud# puede escribirse como función de los cinco campos independientes en la forma 
cuadrática 

j l t D g  + jl6 hdiv j14 k - l  h j15 h 
j23CDg + j 2 6 C h  div j 2 4 k - l C h  j25Ch 

~ $ c ( j 3 3 ~ ,  + j36 h div ) j34k-' D : c ~ +  h5~$ch+ 
+ k  grad (j63 h T D g  4- j66 div ) + j64 grad +js5k  grad 

j43 h T D g  + j.16 div j44k-l j45 
j 5 3 k h T ~ ,  + js6k div j54 j55k 

donde grad = div = { ¿3/axl ¿3/¿3x2 ¿3/¿3x3 lT cuando se aplica a una función 
escalar. La matriz núcleo en ( 3 5 )  debe ser simétrica, un requisito que implica las 
condiciones de simetría 

Si estas condiciones se imponen en ( 3 3 )  la matriz núcleo se convierte en 

que está completamente caracterizada por la matriz funcional-generadora simétrica7 

7 Recordemos que el índice de J indica el número de parámetros libres. 
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La matriz núcleo de ( 3 5 )  es 

1 j12I j13Dg - j16h div j14kc1 h j15h - 
j22c j23CDg - j 2 6 C h  div j 24k -1Ch  j15Ch 

j33D;cDg + j66k grad div ) j 3 4 k - l ~ T ~ h  j 3 5 ~ ; ~ h  
- j 3 6 ( ~ ; ~ h  div + p a d  h T ~ ~ g )  - j46 grad -j56k grad 

j44k-1 j45 
. symm jssk - 

La primera variación de ( 3 5 )  es 
( 3 9 )  

bud ,  = ( A g ,  6S), + ( A s ,  6 g ) ,  - ( div u', + (A$, @)v + ( AP, + [u;, bÜls ,  ( 4 0 )  

donde 

A p  = hT(j15S + j25sg + j35sU) + j45P + j55p6 + j56pU = j45p + j55p6 + j56pU. 

(41 )  
donde B = (1  - $hhT)ch, y las simplificaciones en u', A6  y A p  resultan de 
h T s  = hTsg = hTsu  = O pues el tensor de tensiones desviadoras tiene traza nula. 
Usando nuevamente el argumento de consistencia y notando que componentes medias 
y desviadoras pueden variar independientemente, se obtienen las condiciones 

Como consecuencia de estas nueve condiciones de vínculo, el número máximo de 
parámetros libres que define los coeficientes de la matriz (38 )  es 21 - 9 = 12 como se 
ha previsto. 

S I M P L I F I C A C I O N E S  

La derivación de una familia de funcionales con 12 "grados de libertad" para 
construir métodos de aproximación como elementos finitos deja la selección demasiado 
abierta. En la ausencia de información al contrario, parece prudente reducir el número 



C.A. FELIPPA 

sometida a la restricción que las sumas de filas (y de columnas, pues la matriz es 
simétrica) sean O, 0, 1, 0, O y 1, respectivamente. Esta forma simplificada exhibe seis 
parámetros libres. 

La cuestión siguiente es como incluir incompresibilidad exacta, en cuyo caso k + OO. 

El estudio de la matriz (39) revela que los únicos coeficientes que afectan los términos 
multiplicados por k son jS5 y j66 .  Una solución posible sería tomar jS5 = j k 5 / k  y 
js6 = j i 6 / k ,  y fijando j i5 y j&. Una solución más simple es anular ambos coeficientes, 
lo que reduce (43) a 

de parámetros libres anulando los coeficientes que acoplan las variables medias y 
desviadoras: 

donde w es un parámetro libre que determina el 3 x 3 menor principal inferior. El número 
de parametros libres se reduce a cuatro, uno más que en elasticidad compresible. De 
aquí emerge la siguiente regla práctica: cualquier principio de elasticidad compresible 
caracterizado por los coeficientes (26) puede extenderse para incluir incompresibilidad 
modificando U en la forma siguiente: 

J 6  = 

(1) Reemplace u y e por S y g ,  respectivamente. (En realidad, solamente la primera 
modificacion es necesaria, pues sTg = sTe, etc.) 

(11) Añade términos de presión y deformación volumétrica caracterizados por el 3 x 3 
menor principal inferior en (44). Si w es cero la deformación volumétrica desaparece 
como campo independiente, y los términos adicionales se reducen a 

En el límite de incompresibilidad exacta, sólo sobrevive el término -@ div u. 

9 1 1  j12  j13  0 O O - 
j12 j22 j23  O O . O 
j13  j32 j33 0 O 0 
0 0 0 j44 j45 j46 
0 0 0 j45 ~ S S  j s6  - 0 0 0 j46 j56 j 6 6 -  

(43) 
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DESCOMPOSICION D E  LAME 

La consideración de la descomposición de Lamé (19) es de interés por razones 
históricas, pues el primer principio variacional mixto abarcando elasticidad compresible 
e incompresible construido por Herrmanns fué basado en esa descomposición. Podemos 
nuevamente empezar postulando una forma cuadrática para la energía de deformación 
generalizada§ UL, 

donde los coeficientes e's toman el lugar de los j's, y los nuevos términos son 

+= U - qh, re = Cé, T = CDu, eT = c-'+, 
t = 3 v / ( l +  U),  Q = tp, q9 = txe, qU = -(A divü, oq = q / ~ .  

(47) 

Procediendo en la misma forma que en el caso de la descomposición desviadora, se 
deducen relaciones similares a (35)-(40)) con S, g,  p, k y D, reemplazadas por T, e ,  q, 
X y D ,  respectivamente. Pero ahora h T r  no es automáticamente cero y por lo tanto 
las ecuaciones correspondientes a (41) retienen más términos: 

La consistencia con las ecuaciones de campo provee doce condiciones: 

e l l  + e12 + e13 = o, e14 + e15 + e l ,  = o, e,, + e,, + e,, = o, 
e 2 4  + e 2 5  + e26 = o, e13 + e23 + e33 = 1, e34 + e35 + e36 = o, 
e16 + e26 + e36 = o, e,, + e,, + e,, = 1, e,, + e,, + e,, = o, 

(49) 

e44 + e45 + e46 = o, e,,  + e 2 5  + e35 = o, e45 + e55 + e56 = o. 

5 Los índices de U S; refieren ni "Lamé splitting" 
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Estas restricciones dejan 21 - 12 = 9 parámetros independientes en la matriz 
funcional-generadora simétrica 

Si las submatrices j,, y j,,, m = 1,2,3, n = 4,5,6 de esta matriz se anulan como 
en (43), L9 se reduce a L6, en la que las condiciones en los coeficientes no nulos son 
idénticas a las enunciadas para J6. 

El tratamiento de la descomposición más general (12) con 97 # O no causa 
dificultades especiales. Sin embargo, como descomposiciones diferentes de (18) no 
acomodan naturalmente materiales anisótropos, este caso no será investigado con más 
detalle. 

ESPECIALIZACIONES 

El principio variacional más sencillo (en el sentido de tener la matriz J más rala) 
que abarca elasticidad compresible e incompresible se obtiene especializando (44) a 

Esta selección deja solamente desplazamientos y presiones como variables 
independientes y provee el funcional 

1 u 
( )  = ( S  , g U v  - + div ú) = :(su, e")v - (2 + divú) , (52) 

v v 

que puede considerarse como una modificación del funcional de energía potencial 
mínima. Para la utilización práctica es importante observar que gu puede reemplazarse 
con e" en el primera integral pues el tensor 3; tiene traza nula. En el límite 
incompresible Up se reduce a +(su, eu)v - (P, div Ú)v. 

La especialización 
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reduce UD, - P al funcional de cinco campos presentado por Atluri y Reissnerg (en ese 
artículo p y 8 se definen como los negativos de las campos utilizados aquí.) Obsérvese 
que como los dos menores principales de orden 3 en JAR tienen la estructura numérica 
del principio Hu-Washizu de elasticidad compresible, el uso de la receta (24) da 

UA, = UH(I, g, ú) + U ~ ( p h ,  Bh, eUh) = $(e glV + (í, gU -g)V + $(pe, O)V +$(eu 
(54) 

en donde gU y g pueden reemplazarse por eu y 6,  respectivamente. Como js5 # 0, 
este funcional no acomoda incompresibilidad exacta. Esta desventaja puede corregirse 
fácilmente, sin embargo, usando el procedimiento explicado previamente. 

Finalmente, la especialización de (50) a 

reduce el funcional UL, - P a los presentadas por ~errmann' y Francalo, 
respectivamente; que son identificadas por UH - P y UF - P en lo que sigue. 

El funcional de Herrmann, que como se ha notado tiene importancia histórica, 
contiene dos campos independientes: desplazamientos u y pseudo presión q. Su 
funcional U es 

Los dos menores principales de orden 3 en LF tienen la estructura numérica de 
los funcionales de energía potencial mínima y tensión-desplazamiento-Reissner en 
elasticidad compresible, respectivamente. 

El funcional de Franca contiene cuatro campos independientes: extra tensión T, 

deformaciones totales e, desplazamientos u y pseudo presión q. Su funcional U es 

Los dos menores principales de orden 3 en LF tienen la estructura numérica 
de los funcionales de Hu-Washizu y tensión-desplazamiento-Reissner en elasticidad 
compresible, respectivamente. 
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CONCLUSIONES 

Los funcionales parametrizados presentados aquí extienden los funcionales 
presentadbs por Felippa y Militel10~-~ para acomodar incompresibilidad. La extensión 
conduce a funcionales con un gran número de parámetros libres. Este fenómeno 
promueve una examinación de si las ventajas de la formulación parametrizada 
compensan el notable incremento de posibilidades, con el consecuente riesgo de 
confusión. 

En el lado pósitivo, la formulación de principios variacionales parametrizados 
ofrece ventajas conceptuales y prácticas. En el contexto conceptual el método es 
intelectualmente satisfactorio en el sentido que todas (o al menos un conjunto) las 
formas variacionales posibles se obtienen de una vez. Esto se contrasta a la derivación 
caso-por-caso que solamente puede dar "puntos" en el espacio infinito de funcionales 
posibles. La ventaja práctica más importante en el contexto de aplicación a elementos 
finitos, es que los coeficientes de las matrices generadoras pueden mantenerse libres 
hasta el nivel de elementos, y usarse para mejorar la aproximación númerical-6. 

Pero un encuentro brusco con 12 parámetros libres como en (38) puede causar 
confusión y efectivamente anular los beneficios de generalidad. Las simplificaciones 
subsiguientes que conducen a (43) y (44) parecen razonables desde el punto de 
vista de aplicaciones numéricas pues (1) el número de parámetros libres es reducido 
significantemente mientras que se retiene flexibilidad en el "peso" de los campos 
independientes, y (2) todos los funcionales específicos de importancia aparecen como 
casos especiales. 

Finalmente, la simplicidad y generalidad de los funcionales basadas en la 
descomposición desviadora (18) debe notarse. Es dificil entender por qué la literatura 
de elementos finitos está todavía preocupada con la descomposición de Lamé y 
los funcionales asociados. No sólo es esa descomposición artificial para materiales 
anisotrópicos, pero nótese que funcionales asociados como (56) y (57) degeneran si 
X = 0, que ocurre si u = O. Con este valor de u, ( = O, q se anula idénticamente, y 
términos de tipo 010, que requieren tratamiento especial, aparecen en U. Visto que un 
valor cero del coeficiente de Poisson es físicamente posible, la pretensión de generalidad 
de aplicación, aún con restricción a comportamiento isótropo, se debilita seriamente. 
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