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RESUMEN

Se presenta una familia de principios variacionales parametrizados, con cinco campos
independientes, que pueden abarcar hiperelasticidad compresible e incompresible. Los
campos independientes son tensiones medias (presiones) y desviadoras, deformaciones medias
y desviadoras, y desplazamientos. Con una seleccién adecuada de los pardmetros y de
la descomposicién de tensiones y desplazamientos, el funcional se reduce a los derivados
previamente por Atluri-Reissner, Herrmann, y Franca.

SUMMARY

A parametrized five-field family of variacional principles that can accomodate both
compressible and incompressible hyperelasticity is presented. The primary variables are mean
and deviatoric stresses, mean and deviatoric strains, and displacements. Through appropriate
selection of parameters and stress-strain splittings the functional specializes to those previously
presented by Atluri-Reissner, Herrmann, and Franca.

ECUACIONES FUNDAMENTALES

Consideremos un cuerpo linear hipereldstico bajo cargas estdticas que ocupa el
volumen V. El cuerpo es limitado por su superficie de frontera §, que se descompone en
S :53US;. Desplazamientos se especifican en S4 mientras que tracciones se especifican
en S;. La normal unitaria exterior en S se denota por n =n

Los tres campos de volumen desconocidos son los desplazamientos u = wu;, las
deformaciones infinitesimales e = e;;, y las tensiones o = = 0i5. Los datos del problema

son: las fuerzas de Cuerpo b = b; en V, desplazamientos d=d; especificados en Sg, y
tracciones de superficie t = #; especificadas en S.

Las relaciones entre los campos de volumen son las ecuaciones de deformaciones-
desplazamiento

e= %(Vu + VTu) = Du 6 €ij = -li(u,'.j + u,-,,-) enV, (1)
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las ecuaciones constitutivas
c=Ee 6 0i; = Eijieere en'V, (2)
y las ecuaciones de equilibrio
—dive=D*¢=Db 6 oiji +b=0 enV, (3)

en la que D* = —div denota el operator adjunto del gradiente simétrico D =
;(V+VT).

El vector de tensiones con respecto a una direccién definida por el vector unitario
v se lama oy = 0.V, 6 0y; = 0i;v;. En la frontera § el vector de tensién se define como
on = 0.1 6 0y = a;;n;. Con esta notacidn, las condiciones de frontera en tracciones y
desplazamientos se escriben

on=t & oyn;=1; en S, y u=d 6 w,=4d; enSy. (4)

NOTACION

Campos Dependientes e Independientes

, En la investigacién de métodos variacionales que sigue, se usan las convenciones
notacionales de Referencias!~¢. Un campo variado independientemente se identifica con
un guifio superimpuesto, por ejemplo i1. Un campo dependiente se identifica escribiendo
el simbolo del campo independiente como indice superior (superscripto). Por ejemplo, si
los desplazamientos u se hacen variar independientemente, los campos de deformaciones
y tensiones derivados son

e =4Vv+VHa=Dd, o*=Ee"=EDi (5)
Usando esta convencidn, simbolos sin guifios como u, € y o se reservan para campos
exactos & genéricos.
Abreviaciéon de Integrales

Integrales de volumen y superficie pueden ser abreviadas poniendo paréntesis y
corchetes, respectivamente, alrededor del integrando, con un indice que identifica el
dominio. Por ejemplo: '

(5w & [ sav, 0% [ras, (s, ¥ [ gas,  Uls ¥ [ s4s

Sa St
(6)
Si f y g son funciones vectoriales y p y q funciones tensoriales, el producto interno
sobre V se denota en la manera usual:

e ef
(f.g)y & '/;/ figidV, (P, 9y E jv pijgi; AV, )

y similarmente para integrales de superficie, en cuyo caso se usaran corchetes.



PRINCIPIOS VARIACIONALES PARAMETRIZADOS 349

Vectores de Deformaciones y Tensiones

Para facilitar 1a construccién de expresiones variacionales matriciales, tensiones y
deformacions se arreglaran como vectores columna de seis componentes construidos con
las componentes de los tensores o;; y e;; siguiendo las convenciones usuales de mecanica
estructural:

o111 €11
022 €22
=173 , e={ 58} (8)
o12 2e12
023 2e23
031 2e3;

- Entonces (o, e)y = (oiei;)v = (¢Te)y, etc. Similarmente, tensores constitutivos de
cuarto orden como E;ji se arreglan como matrices simétricas de orden 6 X 6 (resultando
de la restriccién al espacio de tensores tensién-deformacién simétricos) en la forma
usual.

DESCOMPOSICION DE TENSIONES Y DEFORMACIONES

En el caso de materiales incompresibles, en los que divu = trVu = u;; =
0, la relacién tensién-deformacion (2) solamente vale en el espacio de tensores de
deformacién con traza nula, y la relacién inversa no existe. Para facilitar la inclusién
simultdnea de compresibidad e incompresibilidad en los principios variacionales, varias
descomposiciones generales de los campos de tensiones y deformaciones se estudian en
esta Seccién. Definamos presién p y condensacién volumétrica total 6 (la negativa de
la deformacién volumétrica) como :

p=—3tro=-3(o11 + 022 + 033)
6 =—tre= —(e11 + €22+ €33) = —divu.

(9)
En este trabajo se asume que el material is volumétricamente isétropo en el sentido
p = kd, (10)

donde k& > 0 es el médulo de compresién (un tercio del “bulk modulus” K). En el
limite de incompresibilidad, k£ — oc.

Descomposicién Parametrizada

Una familia de descomposiciones de los tensores de tensiones y deformaciones que
se consideran aqui es

ai; = 3(€)i; — €p bij, ei; = g(n)ij — 3196i;, (11)

donde §;; es el delta de Kronecker, y £ y 7 son escalares en el intervalo [0,1] que
determinan la descomposicién. Si § = 0, s(0);; = o;;, mientras que si £ = 1, s(1);;
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se reduce a las tensiones desviadoras convencionales s;; y se omitira el argumento £.
Si ¢ = 0, g(0);j = ei;, mientras que si n = 1, g(1);; se reduce a las deformaciones
desviadoras convencionales g;; y se omitira el argumento 7.

Usando la notacién matricial (8) para tensiones y deformaciones, la descomposicién
(11) se representa como

o =s({) - ¢{ph,  e=g(n)—nbh, (12)
donde h es el vector columna de orden 6:
h={1 110 0 0}. (13)

Note que hTh = 3, hT¢ = tro = —3p, hTe = tre = -0, hTs(¢) = trs(¢) =
~3(1 - €)p, h'g(n) = trg(n) = —(1 - n)f, y h's =hTg=0.

Condiciones en { y 7

Los parametros { y 7 no son independientes; se escogen de modo que s(&) y g(n)
estén conectados por una ecuacién constitutiva “desviadora” invertible

s(€) = Cg(n), 6 (&)ij = Cijie 9(Mkes (14)

donde la matriz C es finita y no singular. Se asume que esta condicién se verifica si
¢ = n = 1 para cualquier material. Para otros valores de £ y 7 la seleccién es posible
si el material es completamente isétropo pues entonces (2) puede escribirse (véase, por
ejemplo, Seccién 22 de Gurtin?)

0ij = 2pei; + derk, 6 o =2pe— Abh, (15)

donde g y A son los coeficientes de Lamé (p coincide con el médulo de corte G), de
modo que C = 2ul. Ademads u, A y k estdn conectados con el modulo de elasticidad E
y el coeficiente de Poisson v a través de las relaciones

_A1+v)  E A1-2) _E
b= T3y s k=T =k - N =gy
(16)
Substituyendo estas relaciones en (15) y (14) se obtiene la condicién
(1+v)é-(1-2v)n=23w. (17)

El par £ = n = 1 satisface esta condicién por cualquier v. Si v # 1, especificando
0 < £ < 16 n determina la otra; por ejemplo si n = 0, § = 3v/(1 + v). Si el material
es incompresible (v = }), £ = 1 independiente del valor de 7.
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Descomposicién Desviadora

La descomposicion desviadora convencional de los tensores de tensién y
deformacion se obtiene si se pone £ =5 =1:

o =8 —ph, e=g— 36h. (18)

Como se ha indicado previamente, esta seleccidén satisface la condicién (14) para
materiales is6tropos y anisétropos.

Descomposicién de Lamé

La descomposicién de Lamé para materiales isétropos —llamada asi por su
conexién intima con la relacién constitutiva (15) que manifiesta los dos coeficientes
de Lamé— se obtiene si 7 = 0 de modo que g = e. Entonces £ se escoge para que

T = s(§) = 2pe:
a-:Ce—Eph=2pe——1-i_—Vph:‘r—qh. (19)

En la literatura ¢ = {p se llama la pseudo-presién en tanto que 7 = s(£) = 2ue = Ce se
llama la extra tensién, aunque un nombre mejor seria pseudo tensién desviadora. En
el limite de incompresibilidad, pseudo presién ¢ y extra tensién T se reducen a presién
ordinaria p y tensién desviadora s, respectivamente. Aunque la descomposicién de Lamé
puede en principio extenderse a materiales anisotrépicos, el pardmetro £ se convierte en
una matriz: I — (3k)~1C, lo que complica sustancialmente las derivaciones. Lo mismo
sucede con (12) a menos que £ = n = 1. La conclusién general es que descomposiciones
diferentes de (18) son de valor pequefio para comportamiento no isétropo.

LA ENERGIA DE DEFORMACION GENERALIZADA

Los principios variacionales de elasticidad lineal estudiados aqui toman la forma
general
II=U-P (20)

En esta forma U es la energia de deformacién generalizada, que caracteriza la energia
almacenada, y P es el potencial de esfuerzos (o potencial de solicitaciones), que
caracteriza todas las otras contribuciones. La forma convencional de P es

Pe= (b’u)V + [a,an]sd + [Evu]S.' (21)

Otras dos formas de P, que son de interés en formulaciones hibridas de elementos
finitos, llamadas P? y P! por “displacement-generalized” y “traction-generalized,”
respectivamente, se estudian en otros articulos!=3. Como P no estd afectado por el
comportamiento del material, la atencién se concentrard en U.

En un material compresible, 1a energia de deformacién generalizada estudiada por
Felippa y Militello*~® tiene la estructura parametrizada

U= %jn(&, e’ )y +712(5,8)y +i13(a,e")y + %jgz(a‘, &)y +J23(of,e")py+ %j33(o-“, )y,
(22)
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donde j;; hasta 733 son coeficientes numéricos. Los tres campos de variacién
independiente son las tensiones &, deformaciones € y desplazamientos . Siguiendo la
notacién explicada previamente, los campos derivados que aparecen en (22) se escriben

ot =Eé, o*=EDu, e =El5, e*=Du. (23)

Por ejemplo, la U del funcional de Hu-Washizu se obtiene poniendo j;2 = —1, j13 =1,
j22 = 1, otros cero, en (22):

Ung(o,é,0) = %(crc,é)v + %(c'r,e“ - &)y + %(O’u -o%€e%)y = %(oe,é)v + (7,€e" — €)y.
(24)
La ecuacién (22) puede escribirse en forma matricial como

T [ gul gl Gisl] (€
_ %/ {o‘} [ inal jzsl] { 3 } av. (25)
V lo® symm Fasl e
donde I denota la matriz identidad de orden 6. La matriz funcional-generadora

simétrica* ) i )
Juin iz Ji3
J; = [jlz J22 3'23] (26)
j13 J23 Ja3

caracteriza completamente (22) y por lo tanto, una vez seleccionado el potencial de

esfuerzos P, el funcional (20).T
Reemplazando (23) en (22), U puede expresarse como funcién de los campos

independientes:
T
} J12l J22E j23ED {

v=t/ {
v leDT jstTE j33DTED

que verifica la simetria de J3. Usando (27) la primera variacién de U se obtiene

juE™? J12l J13D

M Q

} dv, (27)

= D Qe

(=]

donde
Ae = ji1€° +7128+713€%, Ao = j125+j220°+j230", o' = j135+j230°+izzo™. (29)

Los dos términos tltimos en (28) se combinan con contribuciones de la variacién del
potencial de esfuerzos. Por ejemplo, si P es el potencial de esfuerzos (21), la variacién
completa de II° = U — P€ es

STI° = (Ae, 66)y + (Ao, &)y — (div o' +b, 8d)y + [0 — §, 8i1)g, — [ —d, §54]5,. (30)

* Para justificar la simetria notese, por ¢jemplo, que jj3 (6’, e“) v= %—ju (o",e‘) vt %jm (e"’, a") v etc.

t El indice de J identifica el niimero de parametros independientes ¢ libres, como se muestra més adelante.
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El uso de P4 6 P! no modifica los términos volumétricos. En consecuencia las
ecuaciones de Euler asociadas con las integrales de volumen son

Ae =0, Ac =0, dive'+b =0, (31)

independientemente del potencial de esfuerzos.

Para forzar la consistencia de las ecuaciones de Euler con las ecuaciones de campo
(1-3) se debe verificar Ae = 0, Ac = 0 y o' = o si los campos de tensiones y
deformaciones asumidos se reducen a los exactos. En consecuencia

Ju+ijiz+j13=0,
Ji2 + ja2 + j23 = 0, (32)
Jiz+jaa+jaa=1.

Resulta de aqui que el nimero maximo de parimetros independientes que definen
los elementos de J3 es 6 — 3 = 3 como anticipado. La especializacién de este funcional
general a formas convencionales y parametrizadas ha sido estudiada por Felippa y
Militello?~®.

FORMA DESCOMPUESTA DE LA ENERGIA
DE DEFORMACION GENERALIZADA

La expresién (22) de U falla si el material es incompresible. Para construir
formas parametrizadas que acomodan incompresibilidad, la energia de deformacién
generalizada se aumenta con campos independientes adicionales, uno de los cuales debe
ser la presién. Hay varias formas de proceder para arribar al objetivo indicado. En
esta Seccién el punto de partida es la descomposicién desviadora convencional (18); el
uso de la descomposicién de Lamé (19) se considera mds adelante.

Una energia de deformacién generalizada “aumentada”} U4, se construye como
funcién de los cinco campos independientes § , g, @, # y §. Utilizando (25) como un
“esqueleto” se postula la forma cuadritica siguiente:

&

§ VT 1l il jisl  jish jish jigh g

s9 Jul  ja2oI  jasl  jash  jash  jah g
* a1l a2l jasl  jash  jssh jsgh| ) g*
vw=%[ {51 | e 411 Jsh s dv, (33
72 p juhT johT GhT G Gas jae 67  (33)
Po jslhT jsth jsshT Jsa Jss Jse 6
p* jerhT  jeshT  jeshT  jeu  jes  Jjes 6

en la que los campos derivados son

g*=(D-3hdiv)i=D,a, g’=C7'5, ®#=k"'p 6*=-divy,

~ u u ~ § 1 u u o~ (34)
s =Cg, s*=Cg"=CD,ua, p =k, p*=k0"=—-kdiva.

! Los indices de U sc reficren al “deviatoric split”
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La matriz micleo de la forma cuadritica (33) es ahora 21 x 21 y estd caracterizada por
los 36 coeficientes j. A diferencia del tratamiento del caso compresible, las condiciones
de simetria en estos coeficientes no se especifican ab initio. Substituyendo (34) en
(33), U4, puede escribirse como funcién de los cinco campos independientes en la forma
cuadritica

s\T o uC™? J12l
g jnl 722C
Vs = 1 / @} DT+ jerkgradhTC™! 3, DTC + jesk grad hT
v p jahTCc™! jaz hT
§) | jsikhTC™1 jsakhT
j15Dg + s h div j1ak~Th jsh 1 . (35)
723CD, + j26Ch div jak~1Ch 725Ch i
D7 C(jssDg + jsshdiv)  jssk'DTCh+  j3DICht g oV
+k grad (jes hTD, + jgs div) +jes grad +jesk grad _ '
jashTD, + jee div Jaak™? Jas g
jsskhT Dy + jsek div Js4 Jssk ]

donde-grad = divT = {8/8z; 8/0z, 0/dz3}T cuando se aplica a una funcién
escalar. La matriz nicleo en (35) debe ser simétrica, un requisito que implica las

condiciones de simetria

Jmn = Jnm, m=1,2,3 n=1,2,3 Jmn = Jnm, m=4,5,6 n=4,56 (36)
Jmnl = Jamk™1C, m=4,5,6 n=1,23.
Si estas condiciones se imponen en (33) la matriz nicleo se convierte en
Jul J121 J1al jish jish  jighT
J121 J221 Ja3l Jash  jash jigh
13l 7321 Jasl Jash  jash  jsgh (37)
j14k~'ChT  jyk~1ChT j34k—1ChZ’: jas  Jas  Gas |’
jisk1ChT sk 'ChT  jask 'ChT  jis  jss  jse
Lj16k"1ChT 6k~ 1ChT sk 'ChT  js6  js¢  Jos

que esta completamente caracterizada por la matriz funcional-generadora simétrica¥

Ju Jjiz 513 Jua J1is Jie
Jiz J22 Ja3 Jaa J25  J26
Iy = J:13 .7:23 ]:33 J:34 ]:35 J:ss (38)
J1a  J24 J34 Jaa J4as  J4e
Jis Ja2s J3s  Jas Jss  Jse
Jie J26 J3e Jae Js6 Jee

T Recordemos que el indice de J indica el nimero de pardmetros libres.
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La matriz nicleo de (35) es

[711C™1 1ol j13Dg — jighdiv j1sk"th J1sh
J22C J23CDy — j26Chdiv jzak~1Ch J25Ch
j33sDTCD, + jeskgrad div)  jsask 'DICh  j;DICh
——j36(D§Ch div + gradhTCD,) —js,grad —jsekgrad
Jask™? J45

L symm Jssk J
(39)

La primera variacién de (35) es
6Ud‘ = (Ag, 6§)V + (AS, 6g)V - ( div ‘Tla 5ﬁ)V + (Aoa 6ﬁ)V + (Ap, 6§)V + [a‘L, 61-1]5’ (40)
donde

Ag = j118* + j128 + j138" + h(j146” + 156 + j168),
As = j128 + j2257 + jazs* + Ch(j246” + jasb + j2cb™),
o' = j138 + j238% + jaas® + B(ja46” + jas0 + jsef*)
+ hhT (5168 + jaes® + jz65*) — h(jsep + jsep’ + jecr™)
= j138 + j2387 + jags® + B(jaa6” + jasb + jae6™) — h(Gaep + jsep’® + jecp),
A8 = hTk (5145 + j2as? + jaas™) + jaab® + jash + js6™ = jaab® + jash + jseb*,
Ap = hT(j1s8 + joss® + jass®) + jash + jssp® + jsep” = jash + Jssp’ + jsep™
donde B = (I — 1hhT)Ch, y las simplificaciones en o/, A8 y Ap resultan(gg
h%Ts = hTs9 = hTs* = 0 pues el tensor de tensiones desviadoras tiene traza nula.

Usando nuevamente el argumento de consistencia y notando que componentes medias
y desviadoras pueden variar independientemente, se obtienen las condiciones

Jutiz+iis=0, Jutist+ie=0, Jiz+Jin+tjse=0,
JeatJes+Jee =0, Jia+js+iszs=1,  Jaa+jss+ie=0, (42)
JaetJise +Jee =1,  jaa+jas+3Jae =0,  jas + Jss + Jse = 0.

Como consecuencia de estas nueve condiciones de vinculo, el niimero méximo de

parametros libres que define los coeficientes de la matriz (38) es 21 — 9 = 12 como se
ha previsto.

SIMPLIFICACIONES

La derivacién de una familia de funcionales con 12 “grados de libertad” para
construir métodos de aproximacién como elementos finitos deja la seleccién demasiado
abierta. En la ausencia de informacién al contrario, parece prudente reducir el nimero



356

C.A. FELIPPA

de parimetros libres anulando los coeficientes que acoplan las variables medias y

desviadoras:
Ju jiz i1z 0 0 0
Jiz j22 js O O O
_|jis js2 jaa O 0 O
Te=1%" "0 "o Jaa Jas  Jas (43)
0 0 0 js Jss Jse
0 0 O js Jss Jes

sometida a la restriccién que las sumas de filas (y de columnas, pues la matriz es
simétrica) sean 0, 0, 1, 0, 0 y 1, respectivamente. Esta forma simplificada exhibe seis
parametros libres.

La cuestién siguiente es como incluir incompresibilidad ezacta, en cuyo caso k — co.
El estudio de la matriz (39) revela que los tinicos coeficientes que afectan los términos
multiplicados por k son jss ¥y jes. Una solucién posible seria tomar jss = jiz/k ¥y
jes = jée/k, y fijando ji; y jée. Una solucién mas simple es anular ambos coeficientes,
lo que reduce (43) a

"j11 Jiz Jis 0 0 0 1
Ji2 J22 Jo3 0 0 0
_|js Jaz2 Jas 0 0 0
=1 0 0 w-1 -w 1-w (44)
0 0 0 —-w 0 w
L 0 0 0 1-w w 0

donde w es un parametro libre que determina el 3x3 menor principal inferior. El numero
de parametros libres se reduce a cuatro, uno mas que en elasticidad compresible. De
aqui emerge la siguiente regla prictica: cualquier principio de elasticidad compresible
caracterizado por los coeficientes (26) puede extenderse para incluir incompresibilidad
modificando U en la forma siguiente:

(I) Reemplace o y e por s y g, respectivamente. (En realidad, solamente la primera
modificacion es necesaria, pues s’ g = sTe, etc.)

(II) Aiade términos de presién y deformacién volumétrica caracterizados por el 3 x 3
menor principal inferior en (44). Si w es cero la deformacién volumétrica desaparece
como campo independiente, y los términos adicionales se reducen a

132

15,0~ 0y +36% 07y = - [ (B 4 paiva)av. (45)

En el limite de incompresibilidad exacta, s6lo sobrevive el término —p div u.
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DESCOMPOSICION DE LAME

La consideracion de la descomposicién de Lamé (19) es de interés por razones
histdricas, pues el primer principio variacional mixto abarcando elasticidad compresible
e incompresible construido por Herrmann® fué basado en esa descomposicién. Podemos
nuevamente empezar postulando una forma cuadritica para la energia de deformacién

genera.lizada§ Urs

T an llzl llsl ll4h llsh fleh e’

1 ™ £311 l321 l33I [34}1 l35h : £36h e
Ure =2 /V q LahT  LohT  LshT Ly by Ly 67 dv, (46)

¢° £:hT  £,hT  bgshT by, s 56 6

q* LehT  LeohT  €gshT  fey Lo Los 6

donde los coeficientes £’s toman el lugar de los j’s, y los nuevos términos son
7=o0—¢h, 7* = Cé, 7™ = CDu, e =C 15 (47)
E=3v/(1+v), §=¢5, =€\, ¢*=-€rdiva, 67=g/A

Procediendo en la misma forma que en el caso de la descomposicién desviadora, se
deducen relaciones similares a (35)—(40), con s, g, p, k y D, reemplazadas por T, e, g,
Ay D, respectivamente. Pero ahora hT+ no es automaticamente cero y por lo tanto
las ecuaciones correspondientes a (41) retienen mds términos:

Ae = £11€7 + £128 + £ize® + h(£1487 + £150 + £166"),
AT = g7 + €327 + Lyar™ + Ch(€2487 + £550 + £366%),
o' = Li37 + £a37° + €337 + Ch({3467 + L350 + £366")
+ hhT (£167 + £267° + £367) — h(usp + Lsep” + Leep"),
AG = hTAT (L7 4 £o47° + L347™) + L4407 + Ly50 + L466%,
Aq = hT (Ls7+ bas7® + Las7™) + Lasd + Lssq’ + Lseq™.

(48)

La consistencia con las ecuaciones de campo provee doce condiciones:

1+ b2+ 43 =0,
L34+ €35 + £36 = 0,
lig + €6 + €36 = 0,
lyg + Lgs + Lyg = 0,

lig + b5 + be = 0,
l13 + £a3 4 £33 = 1,
lyg + €56 + Lo = 1,
b5 + Las + L35 = 0,

§ Los indices de U se refieren al “Lamé splitting”.

£12 + Loz + £23 = 0,
{34 + €35 + €36 = 0,
lig+ Lag + L34 =0,
L4s + Lss + €56 = 0.

(49)
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Estas restricciones dejan 21 — 12 = 9 pardmetros independientes en la matriz
funcional-generadora simétrica

"l b2 bLs bhe bs b
iz L2z laz lag l2s L26
Lig Lz L33 l3q L35 L3
Lg = . 50
? by Loy L3y lag s L (50)
Ls L5 L35 Llas Uss Use
L Lig €26 36 las U6 Leed

Si las submatrices jmn ¥ Jnm, m = 1,2,3, n = 4,5,6 de esta matriz se anulan como
en (43), Lg se reduce a Lg, en la que las condiciones en los coeficientes no nulos son
idénticas a las enunciadas para Jg.

El tratamiento de la descomposicién mds general (12) con n # 0 no causa
dificultades especiales. Sin embargo, como descomposiciones diferentes de (18) no
acomodan naturalmente materiales anisétropos, este caso no sera investigado con maés

detalle.
ESPECIALIZACIONES

El principio variacional mas sencillo (en el sentido de tener la matriz J maés rala)
que abarca elasticidad compresible e incompresible se obtiene especializando (44) a

000 O 0O
000 O 0O
001 0 00
IP=10 00 -1 0 1 (51)
000 O 00O
000 1 00

Esta seleccién deja solamente desplazamientos y presiones como variables
independientes y provee el funcional

=2

Up(, ) = L(s*, &)y — (ﬁ,ﬂ + div ﬁ)v = 1s* &)y — (g—k +ﬁdivﬁ) . (52)
\ 4

que puede considerarse como una modificacién del funcional de energia potencial
minima. Para la utilizacién préactica es importante observar que g* puede reemplazarse
u

con e* en el primera integral pues el tensor sj; tiene traza nula. En el limite

incompresible Up se reduce a 1(s*,e%)y — (§, divi)y.
La especializacién

0 -1 1 0 0 0
1 1.0 0 0 0
1 0 0 0 0 0
Jar=143 9 0 0 -11 (53)
0 0 0 -1 1 0
O 0 0 1 0 0
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reduce Up, — P al funcional de cinco campos presentado por Atluri y Reissner® (en ese
articulo p y 6 se definen como los negativos de las campos utilizados aqui.) Obsérvese
que como los dos menores principales de orden 3 en J 4g tienen la estructura numeérica
del principio Hu-Washizu de elasticidad compresible, el uso de la receta (24) da

Uar = Un(8, 8, 0)+ Un(ph,6h,6*h) = 3(s°, 8)y + (5, 8" - &)y + 3 (o, )y +13(0“—5)V),
(54
en donde g* y g pueden reemplazarse por e* y &, respectivamente. Como jgs # 0,
este funcional no acomoda incompresibilidad exacta. Esta desventaja puede corregirse
facilmente, sin embargo, usando el procedimiento explicado previamente.
Finalmente, la especializacién de (50) a

0 0 0 0 0 07 r0 -1 1 0 0 07
0 00 0 0O -1 1 0 0 0 O
|00 1 0 00O ~]l/1 0 0 0 0 O
Li=looo 101" Y=|o o o0 -10 10 ©%
0 00 0 0O 0 0 0 0 0O
[0 0 0 1 0 Ol L0 0 0 1 0 0.
reduce el funcional Uz, — P a los presentadas por Herrmann® y Francal®,

respectivamente; que son identificadas por Uy — P y Ur — P en lo que sigue.

El funcional de Herrmann, que como se ha notado tiene importancia histérica,
contiene dos campos independientes: desplazamientos u y pseudo presién ¢q. Su
funcional U es

~2

Un(@,§) = 3(™,e*)y - (3—,\ + §div 1'1) (56)
14

Los dos menores principales de orden 3 en Ly tienen la estructura numérica de
los funcionales de energia potencial minima y tensién-desplazamiento-Reissner en
elasticidad compresible, respectivamente.

El funcional de Franca contiene cuatro campos independientes: extra tension 7,
deformaciones totales e, desplazamientos u y pseudo presién ¢. Su funcional U es

=2
Ur(7,8,14,§) = %(‘re,é)v + (F,e" — &)y — (;—A + ¢div 1'1) (57)
1 4

Los dos menores principales de orden 3 en Ly tienen la estructura numérica
de los funcionales de Hu-Washizu y tensién-desplazamiento-Reissner en elasticidad
compresible, respectivamente.
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CONCLUSIONES

Los funcionales parametrizados presentados aqui extienden los funcionales
presentados por Felippa y Militello*~¢ para acomodar incompresibilidad. La extensién
conduce a funcionales con un gran mimero de parametros libres. Este fenémeno
promueve una examinacién de si las ventajas de la formulacién parametrizada
compensan el notable incremento de posibilidades, con el consecuente riesgo de
confusién. .

En el lado positivo, la formulacién de principios variacionales parametrizados
ofrece ventajas conceptuales y préacticas. En el contexto conceptual el método es
intelectualmente satisfactorio en el sentido que todas (o al menos un conjunto) las
formas variacionales posibles se obtienen de una vez. Esto se contrasta a la derivacién
caso-por-caso que solamente puede dar “puntos” en el espacio infinito de funcionales
posibles. La ventaja practica mds importante en el contexto de aplicacién a elementos
finitos, es que los coeficientes de las matrices generadoras pueden mantenerse libres
hasta el nivel de elementos, y usarse para mejorar la aproximacién nimerica® ~¢.

Pero un encuentro brusco con 12 pardmetros libres como en (38) puede causar
confusién y efectivamente anular los beneficios de generalidad. Las simplificaciones
subsiguientes que conducen a (43) y (44) parecen razonables desde el punto de
vista de aplicaciones numéricas pues (1) el nimero de parametros libres es reducido
significantemente mientras que se retiene flexibilidad en el “peso” de los campos
independientes, y {2) todos los funcionales especificos de importancia aparecen como
casos especiales.

Finalmente, la simplicidad y generalidad de los funcionales basadas en la
descomposicién desviadora (18) debe notarse. Es dificil entender por qué la literatura
de elementos finitos estd todavia preocupada con la descomposicién de Lamé y
los funcionales asociados. No sdlo es esa descomposicién artificial para materiales
anisotrépicos, pero nétese que funcionales asociados como (56) y (57) degeneran si
A = 0, que ocurre si » = 0. Con este valor de v, £ = 0, ¢ se anula idénticamente, y
términos de tipo 0/0, que requieren tratamiento especial, aparecen en U. Visto que un
valor cero del coeficiente de Poisson es fisicamente posible, la pretensién de generalidad
de aplicacién, aiin con restriccién a comportamiento isétropo, se debilita seriamente.
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