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Abstract: Finding relevant geospatial information is increasingly critical because of the growing
volume of geospatial data available within the emerging “Big Data” era. Users are expecting that
the availability of massive datasets will create more opportunities to uncover hidden information
and answer more complex queries. This is especially the case with routing and navigation services
where the ability to retrieve points of interest and landmarks make the routing service personalized,
precise, and relevant. In this paper, we propose a new geospatial information approach that enables
the retrieval of implicit information, i.e., geospatial entities that do not exist explicitly in the available
source. We present an information broker that uses a rule-based spatial reasoning algorithm to detect
topological relations. The information broker is embedded into a framework where annotations
and mappings between OpenStreetMap data attributes and external resources, such as taxonomies,
support the enrichment of queries to improve the ability of the system to retrieve information.
Our method is tested with two case studies that leads to enriching the completeness of OpenStreetMap
data with footway crossing points-of-interests as well as building entrances for routing and navigation
purposes. It is concluded that the proposed approach can uncover implicit entities and contribute to
extract required information from the existing datasets.

Keywords: data mining; OpenStreetMap; data quality enrichment; routing; crowdsourced geographic
information; VGI

1. Introduction

Sound decision-making in the geographical domain involves answering to complex queries,
which requires inferring facts from available geospatial data sources. Meanwhile, the amount of
available data has been rapidly growing, due, among other phenomena, to the increasing dissemination
of digital sensors, smart phones, crowdsourcing applications, and social media, etc. The phenomenon
of crowdsourcing in general and Volunteered Geographic Information (VGI), in particular, is a new
paradigm that could help to enrich the already existing frameworks in GIScience (e.g., routing services).
A well-known example is OpenStreetMap (OSM), which has now become an experimental platform
to study the VGI phenomena and demonstrate all of the opportunities of VGI (as a subset of open
geospatial data) for a plethora of applications, especially in urban studies [1,2]. With these new
promises, users are expecting that not only they will have access to large datasets, but more importantly,
they will be able to pose more complex queries and infer more information than ever. However,
the quality of VGI data is questionable [3–5] and methods need to be investigated and developed
for data enrichment [6]. Data completeness is one of the spatial data quality elements according
to ISO 19157 standard [7], which refers to the presence or lack of certain information in a dataset.
Based on the results of OSM data quality assessment in terms of data completeness, we found out
that there are missing objects (e.g., footway crossings), which are required for proper and efficient
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pedestrian/wheelchair routing and navigation [8–10]. Footway crossings are defined as perpendicular
sections of footway at a crossing point between two sidewalks tagged as separate way or between
the footway-road intersection nodes of a dual carriageway. Methods need to be developed in order to
enrich the quality of OSM data with regard to such information. The motivation of this study is to
prepare OSM data for the proper and efficient routing of people with restricted mobility (CAP4Access
European project: http://www.geog.uniheidelberg.de/gis/cap4access_en.html) [11].

For this issue, in this paper, we specifically focus on the problem of how to support topological
queries over features that are only implicitly defined. We present a geospatial rule-based reasoning
approach for inferring geospatial objects in OSM. More specifically, we focus on Open Street Map
as dataset and use access points to footways as a motivating example in the domain of routing and
navigation. Geospatial information retrieval is an integral part of routing and navigation services,
notably to help find the relevant landmarks and points of interests that should be displayed on the map
or used as destination points [12–14]. Several approaches for retrieving landmarks or points of interest
are able to process queries to retrieve entities that exist in the source, such as stadiums, hospitals,
and lakes, etc. [15]. However, existing approaches (see Section 2) still have difficulties to resolve
problems that require more details on geometries, topology and semantics. Notably, entities that are
not explicitly stored as instances in the database cannot be retrieved. For example, consider an OSM
user who wants to retrieve entry points of footways to plan for a hiking journey. While footways
are explicit entities in OSM database, entry points of footways are not. The approach presented in
our paper is based on the idea that spatial relations between explicit entities can reveal other implicit
entities. Therefore, appropriate modeling can help to support reasoning with these relations and
inferring the existence of implicit entities.

We have developed an information broker that uses the Semantic Query-Enhanced Web Rule
Language (SQWRL). This language enables to identify entities that verify conditions specified with
SWRL rules, which is the candidate rule language for the Semantic Web [16]. For example, in the case
of our study, this language enables to state that “if a footway intersects a street, then the intersection
between the footway and the street is an entry point for the footway” (Figure 1). However, this rule-based
reasoning needs to be coupled with semantics of geo-spatial objects. In order to support the inference
of such statements, we have implemented a spatial reasoning service based on an extended version
of the Vertical Plane Sweeping algorithm to identify topological relations between spatial entities.
In addition, we propose a framework where annotations and mappings between OSM data attributes
and external resources, such as lightweight taxonomies, support the enrichment of queries to improve
the ability of the system to retrieve information.
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Figure 1. An example of footway crossing and its entry points. Photo credit: OpenStreetMap Wiki.

Furthermore, this article addresses the challenge of enriching quality of OSM data in terms of data
completeness. We argue that the completeness of certain objects in OSM are low. There are missing
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objects that are required for wheelchair routing. The example is footway road crossings that are
currently not mapped in the OSM database, but could be implicitly derived through spatial reasoning
and analysis. Deriving this information leads to enriching the dataset with useful information, and thus
enhancing the quality of OSM for wheelchair/pedestrian routing systems.

The structure of the paper is as follows. Section 2 presents related studies regarding OSM data
quality enrichment, as well as selected methods of information retrieval and reasoning relevant to this
study. In Section 3, the methodology and the system architecture of our proposed approach as well as
spatial and semantic querying and reasoning algorithms are discussed. Section 4, shows the results of
our experiments with outlining the experiences achieved. Finally, we conclude our study in Section 5
and discuss some ideas for future work on this topic.

2. Related Studies

Nowadays, users can produce geographic information via a variety of Internet applications.
As a result, a “global digital commons of geographic knowledge” is created without having to rely
solely on “traditional” geospatial data production processes [17]. In 2007, Goodchild introduced the term
VGI to refer to the geographic information generated by users through Web 2.0 era applications [18].
VGI is often created out of the collaborative involvement of large communities of users in a common
project—for example, Open Street Map (OSM) or Wikimapia (http://wikimapia.org)—where individuals
can produce geographic information that emanates from their own local knowledge of a geographic
reality or to edit information provided by other individuals. In OSM, users can describe map
features—such as roads, water bodies, and points of interest—using “tags”, providing information
with more attributes that often goes beyond the detailed dataset that can be provided by traditional
geospatial data producers [19]. VGI datasets have been recently used in several studies in
various applications domains, such as urban population estimation [20], cycling and air pollution
exposure [21,22], three-dimensional (3D) GIS modeling of buildings [23], as well as routing and
navigation services [24,25], to name a few. Hence, the availability of VGI data appears as an opportunity
to improve various applications, including routing and navigation services. However, VGI data in
itself is of no great value unless we find a means of managing and analyzing this less conventional
data. As an example in our study, for the case of wheelchair routing and navigation, one would
need to extract and use information, such as sidewalks or footway crossings, in order to make
the most use of this dataset. However, such information are not explicitly mapped by the volunteers.
Hence, the research question raised is how to extract information and knowledge from this raw and
heterogeneous data?

Existing analytic techniques for extracting knowledge from data are being improved to be able to
deal with massive datasets. These techniques include SQL queries, data mining, statistical analysis,
clustering, natural language processing, text analytics, and artificial intelligence, to name a few [26].
Nevertheless, there is a general lack of semantics that would enable to process the existing data
intelligently. Without semantics, one cannot reason on raw data to infer higher level facts, and therefore,
to answer less obvious queries. Also, explicit semantics can help to filter data according to its meaning,
which is really necessary if we cannot afford the cost of processing huge volumes of data. This lack
of semantics notably affects VGI datasets [27–29]. The semantics of attributes of objects in OSM are
important in this study, since it helps to perform geographical associations between certain objects,
and thus, infer meaningful information.

Geospatial information retrieval aims at finding relevant geospatial information sets over distributed
and heterogeneous data sources. Geospatial data retrieval approaches include, on the one hand,
approaches that allow users to submit queries using their own vocabulary through a natural language
interface. Such an approach has been proposed, for example, by Zhang et al. [30]. On the other hand,
other geospatial data retrieval approaches enable the user to submit queries formulated only with
primitives defined in an ontology, i.e., a formal specification of a conceptualization [31]. While natural
language approaches allow users to submit more expressive queries than ontology-based approaches,
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natural language approaches are also restricted by the ambiguities of natural language, which may
refrain from retrieving the relevant datasets [32]. In this paper, since our aim is not to focus on
the resolution of ambiguities generated by natural language, we also adopt an ontology-based
approach, such as those discussed below.

The Bremen University Semantic Translator for Enhanced Retrieval (BUSTER), proposed by [33],
is an early example of ontology-based information broker middleware for geospatial data retrieval.
This approach is representative of a category of retrieval approaches that have exploited Description
Logics (DL) ontologies, such as [34] and [35] for means of collaborative development and usage
of ontologies in GIScience domain [36]. Description Logics, which underlies the Ontology Web
Language (OWL), allows for representing classes of individuals (entities) and properties. They also
support subsumption reasoning, i.e., the automatic identification of sub-class relationships between
classes. In the BUSTER approach, each data source’s semantics is formalized with a DL ontology.
Each ontology is developed using a common vocabulary defined in a global ontology. The user can
select the query concept from one of the ontologies or specify a query with necessary conditions
(in term of properties and range of properties). The RACER and FaCT reasoning engines are used to
retrieve the concepts that are subsumed by the query concept.

While the global ontology makes the different ontologies comparable to each other, assuming
that local ontologies can be developed from a global ontology is not always feasible in an open and
dynamic environment where sources are developed independently. Lutz and Klein [32] proposed
a similar approach for the discovery and the retrieval of geographic information in Spatial Data
Infrastructures. Their approach is also based on semantic annotations of geographic feature types
with DL classes. The DL classes are compared with those that compose the user’s queries using
a DL subsumption reasoning engine. Similarly to the BUSTER system, this approach retrieves only
the classes that are subsumed by the classes in the query. This system does not allow for expressing
complex queries with conditions as in the SQWRL language. Pursuing the work of [32,37] used
the Semantic Web Rule Language (SWRL), a combination of OWL-DL with sublanguages of the Rule
Markup Language (RuleML), to answer users’ queries over several data sources in SDIs. In this paper,
we propose a geospatial data retrieval approach that builds on the foundations established in the latter
approach, using the SQWRL query language. While [37] assumed that the semantics is shared by all
requestors and providers (i.e., they use the same application ontology), in our approach, we do not
make this assumption and we rather address the issue of employing ontologies by proposing a query
enrichment approach based on a framework of semantic annotations and mappings among various
resources. In addition to this first contribution, we propose an SWRL-based information retrieval
approach that will enable the retrieval of implicit information, i.e., geospatial entities that do not
exist in the available source, but which existence can be inferred from existing data. The usability
of our approach for information retrieval is demonstrated in support of routing and navigation
services. Our study aims to show the implication and possibility of using semantics and ontologies
for the enrichment of OSM data completeness. Few studies have dealt with this topic and hence it
could be mentioned that this study is one of the first attempts to address such a possibility. It is worth
noting that another study [38] has also employed a rule-based reasoning approach to study OSM
data quality. The authors have studied the dynamic patterns of OSM bugs in order to analyze and
understand the reliability/quality of OSM database. In our study, however, we consider using rules
and topological associations not for the assessment but, in order to derive new information and further
enrich the quality of the dataset.

Furthermore, this study deals with learning from spatial relations between two or more objects.
There have been several studies on this topic. Touya et al. [39] present an ontology of spatial relations
and further show how spatial relations could be modeled for improving the consistency of datasets,
as well as support automated processes. In another study [40], semantics of data coupled with spatial
relation reasoning has been used to support and improve geo-positioning. For the OSM dataset,
Corcoran et al. [41] propose a high level conceptual model of spatial relations. Similarly, they provide
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a use-case of spatial relation “enters” that may exist between a road and a housing estate, which is
equivalent to highway = residential tag in OSM, and thus addressing the semantic/thematic accuracy
of OSM. Our study differs in such a way that we propose an approach that generates new objects
rather than deriving/inferring attributes of objects. Further details of our approach and its differences
are provided in Section 3.

3. Methodology

In order to deliver a geospatial reasoning approach that enables the retrieval of implicit
information, i.e., geospatial entities that do not exist explicitly in the available source, we have
developed an information broker that uses a rule-based spatial reasoning algorithm to detect
topological relations. The information broker is embedded into a framework where annotations
and mappings between OSM data attributes and external resources, such as taxonomies, support
the enrichment of queries to improve the ability of the system to retrieve information. The system
architecture is designed around the information broker, which is a mediator between the available
geospatial data sources and the user who is seeking for information (Figure 2). Through the user interface,
the user can specify a SQWRL query. The SQWRL query is processed with the Jess Rule Engine [42].
The matchmaking services produce the semantic mappings necessary to compare the query with
the sources’ description. This system is based on principles of standard architectures for the retrieval
of data or services, such as proposed by Vögele et al. [33] and Klien et al. [43]. However, the first
contribution of the proposed approach with respect to existing work is to enhance the information
broker with SQWRL to support the retrieval of implicit information. Through OWL and SQWRL
rules, it is possible to specify relations between entities that will allow for the inferring of the existence
of implicit entities. In order to retrieve implicit entities, we introduce a spatial reasoning service.
The inference of implicit entities is based not only on semantics but also on spatial relations between
existing entities stored in the data source. Therefore, the spatial reasoning service implements a spatial
algorithm for identifying spatial overlap and adjacency of vector data, namely, the Vertical Plane
Sweep technique. Please note that the architecture presented in Figure 2 is a conceptual architecture
and not the exact architecture implemented in this study. However, an adopted simpler version of it is
used for our experiments presented in Section 4.
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In addition, in comparison to existing approaches, we do not assume that all of the sources are
described according to the same application ontology or that the sources use a static terminology.
Although this assumption facilitates retrieval, it is not realistic in the context where available sources
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describe different application domains. It is not also realistic in the context of VGI, where heterogeneous
terminology is likely to be used. In order to address the issue of heterogeneous ontologies,
as a second contribution, we introduce a query enrichment approach. In the following, we introduce
the semantic annotations that support the query enrichment approach, presented in Section 3.2.
The spatial reasoning is presented in Section 3.3.

3.1. Semantic Annotations

Semantic annotations are defined by Klien [44] as explicit correspondences (mappings) between
the components (classes, attributes, relations, values, etc.) of the data schema of a source and
the components (classes, properties, etc.) of an ontology. We also consider that semantic annotations
include correspondences between components of an application-specific ontology and components of
a more general reference ontology. Semantic annotations enable reasoning with the semantics without
altering the local data schemas of sources or application ontology. In this approach, we choose to
store semantic annotations in a separate source, since the method allows for using a controlled
ontology (either domain or reference). A semantic annotation is formed by a pair of unique
identifiers of components from a local source and an application ontology. This association means that
the ontology component is the formal representation of the semantics of the local sources component.
Because semantic annotations are used to infer which sources contains elements that match a SQWRL
query, semantics annotations are formalized with OWL.

3.2. Semantic Querying

The principle of query enrichment is to expand the elements of the query (which are ontology
components or values) with other elements that use a different terminology but have the same
meaning. This approach is based on methods for information retrieval described by Boghal et al. [45],
as techniques using “corpus-independent knowledge models”, in comparison with approaches that
apply knowledge extraction techniques to a set of documents to enrich a query. In the ideal case,
the equivalence of meaning is established through a system of semantic annotations and semantic
mappings among various resources (Figure 3). Please note that Figure 3 shows the conceptual mapping
of concepts between various sources and is not necessarily implemented in this study. However,
the general concept is valid and is adopted in our study.
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The resources are situated at three levels, i.e., local sources, applications ontologies, and global
resources. Application ontologies include domain ontologies (describing a knowledge domain, such as
ecology, health, etc.) and task ontologies (designed to support the execution of some activity, such as
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land use management, disaster planning, etc.). Global resources include reference ontologies, which are
domain- and application-independent ontologies, and Linked Data. Linked Data is a Web of data
coming from different sources, linked through Re-source Description Framework (RDF) predicates [46].

Semantic mappings link components from the same level, while semantic annotations link
components from different levels. Components of local sources’ data schemas are linked to components
of applications ontologies through schema-to-application ontology annotations (ScA annotations,
stored in the ScA Annotation Knowledge Base (KB)) (Figure 3). Components of application ontologies
are linked to components of reference ontologies through application-to-reference annotations
(ApR annotations, stored in the ApR Annotation Knowledge Base). Data from local sources can
be linked to URIs on Linked Data through so-called DaL annotations (stored in the DaL Annotation
Knowledge Base) (Figure 3).

Semantic mappings between ontologies, ScA and ApR annotations support the enrichment of
the ontology components that compose queries (classes and properties), while DaL annotations support
the enrichment of the values that compose queries. The query enrichment algorithm (Algorithm 1),
uses mappings and annotations to retrieve elements that can be substituted to components of the query.
In this way, a query can be substituted by a set of equivalent queries that use equivalent terms
of different ontologies. The enrichment can be horizontal, i.e., a component of a query (which is
a component of an application ontology) is replaced with a component of another application ontology,
if a semantic mapping that links these components exists. The enrichment is vertical when a component
of a query is replaced with a component of a reference ontology, as identified through an ApR
annotation. The semantic mappings, which are stored in knowledge bases, can be established manually
or through a semantic matchmaking service. For example, Bakillah and Mostafavi [47] have provided
a semantic mapping system that can help to support this matching task.

Algorithm 1. Query Enrichment Algorithm

Enrich (query q): List <query>
1: Declare and initialize a list of queries equivalent_Query
2: Add q to equivalent_Query
3: For all elements el of q
4: If el is an ontology component
5: Access Application Mapping KB
6: For all mappings m where el is a participant
7: Get the relation r stated by m
8: If r == equal
9: Create a copy q’ of q
10: Get el’, the appl. onto. component linked to el through r
11: Replace el with el’ and direct sub-concepts of el’ in q’
12: Add q’ to equivalent_Query
13: Access ApR Annotation KB
14: For all ApR annotations a where el is a participant
15: Get el’, the reference onto. component linked to el through a
16: For all ApR annotations a’ where el’ is a participant
17: Get all appl. onto. components c linked to el’ through a’
18: For all appl. onto. components c linked to el’ through a’
19: Create a copy q’ of q
20: Replace el with c and direct sub-concept of c in q’
21: Add q’ to equivalent_Query
22: If el is a value
23: Access DaL Annotation KB
24: For all DaL annotations a where el is a participant
25: Get el’, the name of the Linked Data component linked to el through a
26: Create a copy q’ of q
27: Replace el with el’ in q’
28: Add q’ to equivalent_Query
29: Return equivalent_Query
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3.3. Spatial Reasoning

Implicit geospatial entities can be identified from spatial relations between two other explicit entities.
For example, if we have two polygons representing two States, we can infer that the intersection line is
the “border”. In order to reveal the existence of such implicit entities, two conditions must be fulfilled:
(1) the implicit entity is semantically modeled according to the relation between two (or more) other
entities; and, (2) a spatial reasoning algorithm can compute spatial relations between entities. Condition 1
can be fulfilled by modeling the relations with OWL and SQWRL. An example is provided in the case
study of Section 5. As for condition 2, we employ the Vertical Plane Sweeping technique presented in [48].

The Vertical Plane Sweeping technique applies to vector data where polygons are represented by
their edges. Therefore, it is suitable for the OSM dataset where entities are formed by edges and points.
The Vertical Plane Sweeping technique enables to find the polygon that represents the overlapping
regions between two polygons. Basically, in order to find this overlapping region, the algorithm first
find the intersection points of the two polygons using the intersection algorithm described in [49].
Then, in order to subdivide the edges of the polygons at intersecting points, it is supposed that
the plane is swept with a vertical line. Every time the sweep line reaches an edge, this edge is added at
the top of a dynamic list of edges. It was demonstrated that the two following statements are true:
(1) the list is amended only when the sweep line reaches the endpoint of an edge or the intersection of
two edges; and, (2) only edges that are adjacent in the list can intersect in space. From then, the edges
that form the overlapping region can be identified. In this paper, finding the overlapping region
is useful to identify spatial relation between two entities but we also need to be able to identify
adjacency or “quasi-adjacency”. Indeed, due to a possible lack of positional accuracy, it is possible
that two entities that have no common coordinates in the database can still overlap in the reality.
For example, if a footway’s endpoint is almost adjacent to a road in the database (lets say at one
meter distance), it is likely that in the reality the footway can be accessed from the road, and in fact,
they intersect. Therefore, we extend the algorithm to include this case of “quasi-adjacency”.

The following algorithm (Algorithm 2) is the algorithm presented in [48] extended with procedure
to detect quasi-adjacency. Q is the list of endpoints that form the edges of both polygons. Event is used
to represent intersection of sweep line with the endpoint of an edge (and correspond to coordinates).
The variable S represents the dynamic list of edges generated as the vertical line sweeps the plane.
If the result of the Vertical Plane Sweeping algorithm is no overlap (list of intersection edges is empty),
the minimal distance between the two polygons is computed. If the minimal distance is less than
a selected threshold, we consider the polygons to be quasi-adjacent. In these conditions, we also
consider that there is an intersection point between the two entities.
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Algorithm 2. Extended Vertical Plane Sweeping

1: Insert the endpoints of the edges of polygons into list of endpoints Q
2: while (! Q.empty ()) {
3: event = Q.top ();
4: Q.pop ();
5: if (event.left_endpoint ()) {
6: pos = S.insert (event);
7: event.setInsideOtherPolygonFlag (S.prev (pos));
8: possibleInter (pos, S.next (pos));
9: possibleInter (pos, S.prev (pos));
10: } else { // the event is a right endpoint
11: pos = S.find (*event.other);
12: next = S.next (pos);
13: prev = S.prev (pos);
14: if (event.insideOtherPolygon ()) Intersection.add (event.segment ());
15: if (! event.insideOtherPolygon ()) Union.add (event.segment ());
16: S.erase (pos);
17: possibleInter (prev, next);
18: }
19: }
20: If Intersection.empty()==true { //the polygons are not overlapping
21: minimalDistance = GetMinimalDistance(Q);
22: If minimalDistance <= DistanceThreshold {
23: quasiAdjacent(Q) = true;
24: }
25: }

4. Experiment, Results and Discussion

In order to show the possibility of employing ontologies for OSM data reasoning and enrichment,
we have implemented and tested our proposed methodology with two case studies. It is important to note
that this study does not deal with addressing the issue of heterogeneous ontologies, and the architectures
provided in Figures 2 and 3 are proposed as a general solution for this issue. As a first case study,
consider a user with impaired mobility who wants to plan some travel using OSM. The user wants
to easily find the entry points of footway in a given area. Unfortunately, footways are represented as
segments, but footway entry points are not explicitly identified in OSM. This is illustrated on Figure 4,
where footways are represented with dotted lines. It is difficult to visually tell where the entry points
of footways are. There could be entry points at the intersection of the footway and Langgewan Str.,
at the intersection of the footway and Furtwängler Str., etc. However, the user cannot be sure, since there
could be a bridge, or any type of barrier at the apparent intersection point that could make the footway
inaccessible at that point. Most routing and navigation maps would not be able to identify entry points
of footways (among other similar difficulties) and we cannot assume that they are easy to detect by just
looking at the map. We demonstrate how our proposed methodology can help to resolve this problem.
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To start with, the entity “footway entry point” and its relations with other types of entities in
OSM have to be modeled to support the reasoning process. For this scenario, we have developed
the OWL ontology model, as illustrated on Figure 5. The model contains two types of entities: entities
that exist in OSM (identified with prefix: OSM), as provided by the recommended terminology for
tags (http://wiki.openstreetmap.org/wiki/Map_Features), and entities that were added to support
the reasoning process. These added entities are:

• “footway entry point”, the feature the user is looking for;
• “intersection point”, which represent the coordinates of the intersection between two entities,

such as a footway and a road;
• “Access area”, which represents any OSM entity from which footways can be accessed,

for example, a park, a garden, steps, etc. For the sake of simplicity of the figure, only some
entities are represented here, but more entities were taken into account;

• “Obstacle”, which represents any OSM entity that can be an obstacle to accessing a footway.
Similarly, only some entities are represented here, but more entities were taken into account.
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In addition to entities, relations were created to support the reasoning. Access areas and obstacles
can have intersection points with each other. The identification of these intersection points is the first
step towards finding entry points of footways. In addition, the distance between intersection points
is explicitly modeled and will be useful, as explained below, to discard intersections points that will
not be considered as footway entry points. First, we assume that the user can select a buffer zone
(denoted as Z1, representing a shapefile) that represents the area of interest. This buffer can be set to
any value depending on the case study, and is applied to layers that provide the data that needs to be
queried (e.g., road network). The user’s query for retrieving footway entry points is formulated as
a SQWRL query:

Query: FootwayEntryPoint(?P)∧SelectedBufferZone(Z1)∧Inside(?P,Z1)
→sqwrl:select(?P).

We assume that, while “footway” is OSM’s recommended term, because VGI is intrinsically
heterogeneous, other similar terms could have been used to refer to the same category of entities.
Therefore, the query statement FootwayEntryPoint(?P) is enriched as follows with WordNet entries
retrieved from semantic annotations (Φ implication symbol is employed for enrichment):

Enrichment: FootwayEntryPoint(?P) Φ(FootwayEntryPoint Φ Path Φ Way Φ Hiking)(?P).

Using the relation “Has entry point”, the following query is generated and processed to retrieve
all of the footways that overlap or are adjacent with the buffer zone Z1 with the extended vertical
sweeping algorithm:

Query: Footway (?F)∧SelectedBufferZone(Z1)∧Overlap(?F,Z1)→sqwrl:select(?F).

Then, for each retrieved footway, we need to find their intersection(s) with access areas to find
potential entry points. However, it would be costly in terms of processing to check the intersection
between footways and all entities considered as access areas in the buffer zone Z1. Therefore, for each
retrieved footway in Z1, we generate the minimal buffer zone that includes the segments forming
the footway. Let Z2 be a minimal buffer zone. This operation results in the generation of a series of
statements of the following form, which are stored as semantic annotations:

Statement: FeatureBufferZone(Z2).

The next step is to retrieve all instances of access areas that overlap with the minimal buffer zone
Z2 (for each minimal buffer zone computed):

Query: AccessArea(?a) ∧ FeatureBufferZone(Z2) ∧ Overlap(?a, Z2)→sqwrl:select(?a).

In fact, this query is rewritten with the help of the “is-a” relation in the ontology model to be able
to process it against OSM data:

Query: [publicTransport Φ park Φ garden Φ steps Φ road Φ . . . ](?a) ∧ FeatureBufferZone(Z2) ∧
Overlap(?a, Z2)→sqwrl:select(?a).

Furthermore, the elements of the query are semantically enriched to include similar terms.
Then, the extended vertical sweeping algorithm is used to identify the intersection points between
a footway and the access areas that were detected within its minimal buffer zone. As a result, a set of
statements of the following form are generated as semantic annotations:

Statement: IntersectionPoint(I)

Statement: HasIntersectionPoint(F, I)

These intersection points between a footway and an access area are only potential points of
entry to footways. In some cases, some could not be entry points because at the same place, or very
close, there is an obstacle that refrains from accessing the footway. Therefore, the following query
is generated:
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Query: IntersectionPoint(I?) ∧ Footway(?F) ∧ HasIntersectionPoint(?F, ?I) ∧ Φ
[IntersectionPoint(Q?) ∧ Footway(?F) ∧ HasIntersectionPoint(?F, ?Q) ∧ Obstacle(?o) ∧
HasIntersectionPoint(?o, ?Q) ∧ DistanceLessThanThreshold(?Q, ?I)]→FootwayEntryPoint(?I)

It adds a clause that says that an intersection point I of footway F is considered as an entry point
of this footway only if there exists no other intersection point Q between the footway and an entity
of the category “obstacle” that lies within a distance of less than a given threshold from I. In the case
of the above query, we have considered a threshold of 5 m to take into account the lack of accuracy
of positioning of features in OSM. This allows for discarding intersection points where there is no
access in reality. In Figure 6, as a result of this query, we can see the entry points that were identified
(in green) and the intersection points that were discarded (in red) following this principle.Sensors 2017, 17, 2498  12 of 18 
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Figure 6. Query results identifying the entry points of footways. Identified entry points (in green) and
discarded intersection points (in red).

As another similar example where spatial relations enable the retrieval of implicit spatial entities
in OSM we employ our approach to derive entry points of buildings in OSM. Building entry points are
defined as the intersection point between paths and building footprints. Although this assumption
might not always be true, but the authors believe that in most of the cases this could be the real
situation. They are necessary in order to provide the possibility of suggesting efficient navigation
guides by the routing services, especially in the case of integrating outdoor and indoor navigation.
In this regard, it is clear that entry points of buildings are missing in OSM database. In order to
identify implicit entry points, a spatial relation between buildings and “paths” was exploited, i.e.,
when building and path intersect it was inferred that entries exist at this intersection point. The OWL
ontology model for this relation is identified in Figure 7. In this case, the access area can be paths or
steps. Figure 11 shows an example of the results of the query for building entry points.
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Figure 7. OWL ontology model of spatial relations between buildings and access areas (paths or steps).

Furthermore, we have implemented and tested our method for a district in Heidelberg
(area containing 228 road segments and 87 buildings), and have evaluated the results of the footway
intersections and building entrances with visual checking in fieldwork. Figures 8–11 show screenshots
of the experiment and development stage in Java OpenStreetMap (JOSM) Editor. JOSM is the most
commonly used OSM editor. It is a free, open source and stand-alone desktop application that allows
contributors to create, edit, or delete data from OSM. Figure 8 depicts the properties page for a selected
random building with 8 tags and 0 memberships. On the right-hand side panel, details of the relations
such as the boundaries as well as the associated street are also extracted and shown. Figure 9 shows
the usage of the plugin for semantic enrichment and annotation. Moreover, Figure 10 shows the dialog
box for deriving (and if needed, editing) the Enriched SQWRL query to derive building entrances,
and finally in Figure 11 the result of executing the query and deriving the building entry nodes
is shown.
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For evaluating the results, we have performed the experiments for a district in Heidelberg and
have visited the field for ground-truthing the results. For the footway intersection points, in terms of
completeness, there were only 9 out of 217 excessive nodes, which were caused by some topological
inconsistencies of OSM data for the area. Moreover, we found eight footway intersection points that
were not discovered by our algorithm. The main reason for this was the incompleteness of footway
data in OSM for that specific area. Since our approach analyzes the footprints as well as road data
in OSM, missing this data for an area would logically lead to lack of functionality in our approach.
In terms of positional accuracy, it reaches an approximate average accuracy of half a meter (0.47 m) as
compared to ground truth, in which part of this inaccuracy could have also been propagated through
the errors of the original OSM dataset itself. This level of accuracy is acceptable given the fact that
the dataset would later be used by a routing and navigation service that provides instructions prior to
traveling, and not necessarily at the exact time of travel. In the latter case, however, one can still argue
that the level of accuracy of the results are acceptable. For the second case scenario, in a total amount
of 87 buildings (with 92 entrances), the algorithm was not able to predict entrances of 5 buildings
where the building footprints were lacking. The average positional accuracy of entrances for the other
82 buildings were less than 1 m.

Our experiment illustrates how useful it can be to employ spatial relations to infer the existence
of implicit geospatial entities during information retrieval. It also shows that while semantics of
crowdsourced data such as in OSM can be poor, semantic approaches can be employed to infer
more information from data already available. This is especially useful assuming that it would
not be realistic to expect OSM contributors to provide more detailed semantics. More detailed and
explicit entities would also have as a result to increase the volume of data, which would be more
costly to process. In contrast, in the proposed approach, a routing and navigation application could
avoid being overloaded by huge volumes of data, but when additional information not available
in the database is required (e.g., footway intersections), it can be inferred from existing data on
a case-by-case basis (based on the user’s interest), provided that an ontological model of the implicit
entities (as in Figures 5 and 7) exists. It is important to note that employing semantics and ontologies
for this task provides the possibility of further improving this system by making it smarter, in terms of
using heterogeneous ontologies, integrating it with other data sources that could help in the enrichment
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of the data quality, etc. While this issue is not addressed in this study, nevertheless the idea of using
ontologies provides such functionality as compared to simple analysis on single data sources (relational,
object-relational databases).

5. Conclusions and Future Work

This study aimed to show the relevancy and applicability of using semantic technology and spatial
reasoning for OSM data enrichment. We have addressed the issue of retrieving implicit geospatial
information from VGI sources, namely Open Street Map. We argued that research should be conducted
to improve the ability of geospatial information retrieval techniques to retrieve implicit information
that can be extracted from existing data. Following this idea, we proposed a geospatial information
retrieval approach that uses the OWL and SQWRL language to model implicit entities based on spatial
relations between existing entities. We have included this approach into an information broker that uses
a set of semantic annotations to reason with semantics of data, whether explicit or implicit. The case
study presented and the results with a scenario useful for routing and navigation service, in particular,
shows the potential of this approach to answer different types of queries for information retrieval.
Therefore, more semantics is not contradicting with the paradigm of Big Data, because it allows to keep
datasets less voluminous by avoiding the generation of all entities as explicit instances in the database.
Finally, it is concluded that this approach heavily relies on data availability (building footprints, road
network data). The approach cannot be used in areas that miss the required data. However, this is
a logical due to the fact that our approach is an intrinsic approach that relies on the existing data itself,
and other sources of geo-data are not used in our method.

Nevertheless, in future work, we still aim to further investigate how Big Data technologies can
help to make this approach applicable to massive datasets. For example, the ability to deal with
massive datasets is supported by underlying technologies, such as Google’s MapReduce Big Data
processing framework and its open-source implementation, Hadoop, which is now considered by
some as a de facto standard in industry and academia. With MapReduce, data mining algorithms
such as clustering, frequent pattern mining, classifiers, and graph analysis can be parallelized to be
able to deal with massive datasets. In future work, we aim to explore how such technologies can
improve our approach in terms of processing cost. In addition, we also plan to demonstrate that data
from different sources can be merged to process queries on implicit entities. Among other examples,
the picture portal Flickr can be used [50,51] to identify entities that are not explicit in the main dataset.
Last but not the least, further studies regarding extending the modelling of spatial relations and
the spatial reasoning services seem to be crucial. As another point for future research, it is believed
that implementing semantic add-ins in JOSM that connects to OSM ontology [27] or other ontology
resources would help highly in improving/controlling the quality of OpenStreetMap. This could be
done in such a way to improve the existing tagging services [52,53] with ontologies and recommender
systems. Therefore, we aim to apply our method on a bigger study area (city or country level) later
when the method is concrete.
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