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Abstract. This paper presents a noise evaluation system based on acoustic wave theory. This paper
utilizes two methods – the finite element method and the boundary element method using a fast multipole
method, and compares the numerical results of the benchmark problem. In addition, we show the results
using the analytical model of the complex shape based on standard specifications of noise barriers and
discuss the difference of the numerical results and auralization results between the two methods.

1 INTRODUCTION

Noise is one of the seven major types of pollution in Japan, and it has the highest number of complaints
according to the results of a survey released by the Ministry of Internal Affairs and Communications in
December 2021. Especially in urban areas, the evaluation of noise has been an urgent issue in the
planning and designing of various constructions, such as roads, railways, and airports. In recent years,
numerical simulation has been widely used based on geometric sound theory and wave sound theory as
a noise evaluation method.

We have developed a sound field analysis method using the time-domain fast multipole boundary
element method [1]. However, the boundary element method has a problem in that the material of the
computational model is not considered strictly. Therefore, we aim to consider structure-borne sound
transmission inside the computational model using the finite element method [2].

In this study, we show comparisons of the finite element method and the fast multipole boundary
element method as a preliminary step of the purpose. At first, we perform benchmark analysis using a
spherical wave because we verify the validity of the finite element analysis. Second, we perform acoustic
analysis around sound barrier analysis that has complex shapes, and compare comparisons regarding
visualization, qualitatively, and calculation costs.
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2 NUMERICAL ANALYISIS METHOD

2.1 Governing equation and conditional expression

For the governing equation, the 3D unsteady wave equation is employed.

∂2u
∂t2 (xxx, t) = c2 ∂2u

∂x2 (xxx, t) in D, (1)

where xxx is the 3D spatial coordinate, D is the analysis domain, c is the sound speed, and u is the sound
pressure. The following bounday conditions are employed.
Radiation condition：

u(xxx, t) = uin(xxx, t), |xxx| → ∞, t > 0, (2)

Dirichlet boundary condition：

u(xxx, t) = û(xxx, t) on ∂Du, (3)

Neumann boundary condition：
∂u
∂n

(xxx, t) =− ρ
Zn

∂u
∂t

(xxx, t) on ∂Du′ (4)

where ∂Du, ∂Du′ is each Dirichlet boundary condition, Neumann boundary condition. û is the existing
sound pressure, n is the outward normal vector from the analysis domain, rho is the density, and Zn is
the normal acoustic impedance. This analysis assumes the incident wave is the orthogonal incident to
the boundary plane.

∂u
∂n

(xxx, t) =−cosθ
c

1− γ
1+ γ

∂u
∂t

(xxx, t) on ∂Du′ (5)

where γ is the reflection coefficient. When γ is 1, the Neumann boundary condition is a perfect reflection,
when γ is between 0 to 1, it is a random reflection, when γ is 1, it is a transmission condition[3]. Also,
the initial conditions which are silent on the first step are the following.

u(xxx, t) = 0 in D, (6)

∂u
∂t

(xxx, t) = 0 in D, (7)

2.2 Finite element method

The standard Galerkin’s method is employed for equation (1). The following weak form is obtained.∫
D

u∗
∂2u
∂t2 dΩ+ c2

∫
D

∂u∗

∂xi

∂u
∂xi

dΩ = c2
∫

∂Du′
u∗

∂u
∂n

dΓ, (8)
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Figure 1: Computational model of benchmark problem

where xi is the 3D spatial coordinate, u∗ is the weight function of u. The subscript ”e” indicates that the
calculation is for each element. We use tetrahedral first-order elements for the spatial discretization for
equation (8) to derive the following finite element equation.

Me
∂2u
∂t2 +Keu = Fe (9)

where Me is the mass matrix, Ke is the diffusion matrix, Fe is the boundary integral term. Each matrix
could be as follows the integral.

Me =
∫

D
Ne

αNe
βdΩ, Ke =

∫
D

∂Ne
α

∂x

∂Ne
β

∂x
dΩ, Fe =

∫
∂Du′

Ne
αNe

β
∂u
∂n

dΓ, (10)

where Ne
α and Ne

β are each shape function of tetrahedral first-order elements. The discretization equation
of the entire domain is derived by assembling the finite element equations obtained for each element.

The finite difference method is employed for the discretization in time.

2.3 Boundary element method

The boundary integrational equation can be derived from equations (1), (2), (6) and (7) as follows.

1
2

u(xxx, t) =
∫ t

0

∫
∂D

G(xxx− yyy, t − s)
∂u
∂n

(yyy,s)dΓds

−
∫ t

0

∫
∂D

∂G
∂n

(xxx− yyy, t − s)u(yyy,s)dΓds+uin(xxx, t), (11)

where G is the fundamental solution of the unsteady 3D wave equation.

G(xxx− yyy, t − s) =
δ
(
(t − s)− |xxx−yyy|

c

)
4π |xxx− yyy|

(12)

where δ is delta function. We obtain u at any inside point in the domain using u at boundary points which
obtained by equation (11)

u(xxx, t) =
∫ t

0

∫
∂D

G(xxx− yyy, t − s)
∂u
∂n

(yyy,s)dΓds

−
∫ t

0

∫
∂D

∂G
∂n

(xxx− yyy, t − s)u(yyy,s)dΓds+uin(xxx, t), (13)
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t=0.015[s] t=0.025[s]

Figure 2: Comparison of sound pressure distribution

Figure 3: Comparison of sound pressure at the sound receiving point

3 EXAMPLE OF NUMERICAL ANALYSIS

3.1 Benchmark analysis

・Numerical conditions
To verify the validity of the acoustic analysis program using the finite element method, a benchmark

analysis is performed using the analysis model shown in Fig.1, and compared with the exact solution and
the fast multipole boundary element method. Spherical waves from the upper surface of the model and
checked the reflection at the lower surface and the effect of sound absorption at the absorption boundary
given to the measurement surface. In this analysis, the boundary condition of the lower surface is an
impedance boundary condition with a reflectance of 0.5. We set ∆x to 0.05m, ∆t to 0.01ms, and the
incident wave used is the 250Hz cos wave.

・Numerical results
Fig.2 qualitatively confirm that sound is reflected at the lower surface and absorbed at the absorption

boundary. Fig. 3 compares the sound pressure obtained at the sound receiving point with the exact
solution. Both analysis results were nearly equal to the exact solution, and relative errors of the maximum
values of direct sound and reflection sound in finite element analysis were 0.0098[%], 0.0534[%], and
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Figure 4: Computational model (mushroom
type)

Figure 5: Computational model (Y-shaped
type)

Figure 6: pseudo impulse of Lubich

they in boundary element analysis were 0.0055[%], 0.1157[%]. The finite element method delayed the
reach of maximum sound pressure 6.0e-4[s], 4.0e-4[s], however, the boundary element method did not
delay because the boundary element method has the fundamental solution.

3.2 Sound barrier analysis

・Numerical conditions
Fig.4 and Fig.5 shows the analysis model. The computation was performed on three type models,

vertical, mushroom type, and Y-shaped sound wall. The model has the elements length of 0.022m,
and the time discretization width of analysis is 0.0667ms. Boundary conditions were analyzed in two
ways: perfect reflection and 0.5 reflectances. We apply the absorbing boundary condition to the incident
boundary surface in the finite element method. The incident wave used the pseudo impulse of Lubich
[4] [5]. Fig.6 shows the time history and frequency response of the pseudo-impulse response generated

5



Kazushi Fukazawa, Hitoshi Yoshikawa and Kazuo Kashiyama

Figure 7: Comparison of sound pressure distribution around a vertical wall (t = 0.0217[s])

Figure 8: Comparison of sound pressure distribution around a mushroom type wall (t = 0.0217[s])

by the (14). This impulse has a feature that has a constant frequency until a certain section and decays
sharply at higher frequencies. This feature means that it prevents from occurring analysis errors by high
frequency. The constant frequency response range can be changed by the parameter change in (14).
Here, r and ∆t are assumed to be r = 1.8m, and ∆t = 0.0667ms respectively, the analysis range is until
1000Hz.

u(∆t)∼=
R−n

L

L−1

∑
L=0

( 1
4πr

e−
s
c r
)

e(−2πi nl
L ) (14)

To compare the finite element method and the fast multipole boundary element method, analyses were
integrated with the element length and the sound barriers. We used ”CrayXC40” which is a super com-
puter system and is possessed by Kyoto university in Japan. This super computer system has 68cores
and 90GB of memory in a node. These analyses used 16nodes(1088cores) and performed the parallel
calculation.
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Figure 9: Comparison of sound pressure distribution around a Y-shaped wall (t = 0.0217[s])

Table 1: Comparison of CPU time and memory required

・Numerical results
We found analysis result of the finite element method occurs the direct sound and reflected sound

followed by numerical vibrations. Fig.7 - Fig.9 shows a comparison of the finite element method and
the fast multipole boundary element method for visualization results by types. From the computatinal
results, The Y-shaped sound wall can reduce sound pressure a little more than other types. Also, the
visualization of the finite element method shows more sound bands than the visualization of the fast
multipole boundary element method, and the sound pressure value was higher than that of the fast mul-
tipole boundary element method because the sound was not fully absorbed at the absorbing boundary.

A comparison of analysis costs is shown in Table.1. The table shows that the finite element method
requires less analysis time and computer memory than the boundary element method.

・Auralization
We convoluted the real source sound to the impulse response. Where, the real source sound is the

pile-driving sound(Fig.10). Also, the results of aulralization projected onto a VR system. The VR device
: Holostage and experience is shown in Fig.11, Fig.12. Fig.13 and Fig.14 compare the analysis results
with the measured value observed by the VR system. Both results can be confirmed to be in good agree-
ment. Some of the deviations in Fig.14 are thought to be influenced by the background noise in the VR
system.
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Figure 10: Real sound source (pile-driving machine noise)

We will show at the time of the presentation about auralization results of other sound barrier results
and those of the finite element analysis.

4 CONCLUSIONS

In this paper, noise evaluation systems based on finite element method and the fast multipole boundary
element method have been presented. The impulse response analysis has been usefully introduced to
realize the efficient numerical simulation. The presents methods have been applied to the benchmark
problem and the sound field analysis around the sound insulation wall with complicated shape. The
noise evaluation system has been also developed for the use of immersive VR device. The computed
results are good agreement with the observed results in VR space.
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Figure 11: VR system Figure 12: Scene of auralization in VR space

Figure 13: Comparison of sound pressure level(no sound wall)

Figure 14: Comparison of sound pressure level(vertical sound wall)
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