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Abstract. As machine learning potentials for molecular dynamics (MD) simulations, 

Spectral Neighbor Analysis Potential (SNAP) and quadratic SNAP (qSNAP) were constructed 
for silicon (Si) and silicon carbide (SiC). The reproducibility of the basic material properties 
about perfect crystal, free surface and dislocation cores in Si and 3C-SiC was investigated. The 
coefficients of SNAP and qSNAP were optimized using liner regression to present energy and 
force obtained by DFT. In addition, hyperparameters (cutoff length and weights for 
optimization, here) were determined using genetic algorithm to reproduce elastic moduli 
obtained by DFT. Lattice constant and elastic moduli of Si crystal by MD using our SNAP or 
qSNAP agree well with the values of DFT, and they have higher accuracy than those by any 
empirical potential. Additionally, melting point and specific heat at constant pressure were 
calculated by MD correctly. Especially in qSNAP of Si, the surface energy of {100} and {111} 
planes and the reconstructed {100} surface structure were almost reproduced. For 3C-SiC, 
SNAP reproduces lattice constant and elastic moduli of DFT. Furthermore, edge dislocation 
cores were generated successfully. However, the potentials we constructed have insufficient 
reproducibility in the plastic region, so it is necessary to continue development. 
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1 INTRODUCTION  

Machine learning (ML) methods have been used in various fields along with the 
development of digital technology. For example, ML has achieved great results in medical and 
business fields. In atomistic simulations, ML is expected to be utilized for constructing 
interatomic potential. Interatomic potential is an essential part of molecular simulations such as 
molecular dynamics, where mathematical formulation (interatomic potential function) is 
configured based on some physical model. Therefore, interatomic potential function must be 
the basis of physical reliability of MD simulation, and is greatly involved in the reproducibility 
of simulation results. Generally, first, a functional form is determined, and secondly the 
parameters needed there are fitted so as to reproduce physical properties of the specified 
material. These procedures are cumbersome especially when the material is relatively unknown 
with less information of experimental or chemistry data. Theoretically, ab initio (first principle) 
calculations can be applied to obtain unknown properties of any material, but utilizing such 
method in every atomistic simulation will be too expensive to conduct. It is advantageous to 
construct in advance some function form together with parameters suitable for the specified 
material, and then to conduct MD simulations. In this context, ML potentials, which will be 
automatically constructed only by using ab initio data such as those from density functional 
theory (DFT) simulation, are supposed to be very hopeful. Such ML methods will have general 
function forms and a large number of parameters, and they can be made to reproduce results in 
DFT calculations. 
Although many types of ML potential have been devised (such as GAP(1), ANN(2)), we focused 
on Spectral Neighbor Analysis Potential (SNAP)(3). There is an attempt of calculating the lattice 
constant and elastic moduli of Si using SNAP and comparing them by other potentials. However, 
the reproducibility of the surface and dislocations has not been confirmed sufficiently. 
Therefore, we built from scratch ML potentials for Si and 3C-SiC (covalent bonding materials), 
and confirmed their reproducibility through MD calculations. 

 

2 METHODS 

2.1 Spectral Neighbor Analysis Potential (SNAP) 

SNAP is one of the ML potential types(3). In SNAP, the energy of each atom is expressed by 
a linear combination of invariant under rotation, which is called a bispectrum 𝑩  and is obtained 
directly from the atomic configuration and the atomic density around the atom 𝑖. The atomic 
energy is expressed as,  

𝐸 = 𝛽 + 𝛽 𝐵 = 𝛽 + 𝜷 ∙ 𝑩𝒊 , (1) 

𝐾 =
(𝐽 + 1) 𝐽 +

3
2

(𝐽 + 2)

3
, (2) 

where 𝛽  and 𝛽  are coefficients which are to be fitted to input data in ML process. 𝐽  is an 
adjustable parameter to determine how many components of bispectrum are summed up. 

There is an advanced type of SNAP which is called quadratic SNAP (qSNAP)(4). In qSNAP, 
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a many-body effect around each atom is considered like in embedded atom method (EAM) 
potential function. The expressions of qSNAP are,  

𝐸 = 𝜷 ∙ 𝑩𝒊 + 𝐹(𝜌 ), (3) 

𝜌 = 𝒂 ∙ 𝑩𝒊 , (4) 

where 𝐹(𝜌 ) represents the energy in embedding atom 𝑖 into the electron density contributed 
by its neighboring atoms. In EAM, 𝜌  is written simply as a sum of pairwise contributions, but 
in qSNAP it is written as a linear function of bispectrum components and the expression is a 
little complicated. 
 

2.1 Optimization 

For optimization process of ML potentials, we made use of a framework and source codes 
in an open software, Materials Virtual Lab(5). For actual calculations, we utilize DAKOTA 
software(6) as an optimization tool.  

In the present study, two crystalline materials, monoatomic silicon (Si) and cubic silicon-
carbide (3C-SiC) are focused on. Training data for Si are made by VASP(7) which is one of ab 
initio simulation packages. Those data contain results of self-consistent field (scf) calculation 
of the crystal structure which is strained or with reconstructed surfaces. It also includes results 
of ab initio MD performed in room (standard) or high temperature. It is effective to augment 
input by many atomic configurations in finite temperature which are provided by ab initio MD. 
After all, the number of training data used for Si system becomes 214. Training data for 3C-
SiC are made by QuantumEspresso (QE)(8) instead, which is also one of ab initio simulation 
packages. Those data contain results of scf calculation for the structure which is strained and 
results of ab initio MD in room (standard) or high temperature. Unfortunately, for SiC, any ab 
initio result as for free surfaces is not included. After all, the number of training data used for 
3C-SiC is 700. We recognize the amount of training data used here are sufficient to construct 
the SNAP or qSNAP potential(9).  

In constructing the SNAP potential, we optimized SNAP coefficient with liner regression 
for reproducing energy and force by DFT. On the other hand, hyperparameters (cutoff length, 
and weights for optimization, here) were judged to be optimized by genetic algorithm (GA) 
when the minimum error in elastic moduli was obtained. 

 

3 RESULTS 

3.1 Calculating properties in Si crystal 

By using SNAP and qSNAP constructed for Si by us, we calculated lattice constant 𝑎  (for 
the cubic lattice of diamond structure) and elastic moduli (𝐶 , 𝐶 , 𝐶 ) as shown in Table 1. 
The deviations of our calculated values from those of VASP are also written with parentheses 
in the table. The values by “Analytical Bond-Order Potential (ABOP)(10)” which is an empirical 
potential are also included for comparison. It is realized that SNAP reproduces VASP and 
ABOP up to almost the same level. In the case of qSNAP, it has higher accuracy than SNAP 
and ABOP, especially for elastic moduli.  
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Table 1: Material constants for Si obtained by ab initio and potentials 

  
unit DFT  

(VASP) ABOP(10) SNAP qSNAP 
  

Lattice constant 𝑎  Å 5.469 5.429 (0.73%) 5.434 (0.64%) 5.518 (0.9%) 

Elastic 
moduli 

𝐶  
GPa 

156 169.3 (8.5%) 134.6 (14%) 153.3 (1.7%) 
𝐶  65 64.14 (1.3%) 73.49 (13%) 65.65 (1.0%) 
𝐶  76 60.14 (21%) 93.87 (1.2%) 73.69 (3.0%) 

Bulk modulus GPa 95 99.21(4.4%) 93.87 (1.2%) 94.87 (0.14%) 
 
As dynamic properties, calculated specific heat at constant pressure 𝐶  and melting point 𝑇   

are considered and the results are shown in Table 2. These calculated values were obtained by 
heating MD simulations under NPT-ensemble. In estimating 𝐶 , the linear relation between 
total energy and temperature could be assumed. The melting points could be detected by sudden 
and large change of system volume under constant pressure, so inevitably the moment of 
melting become a little ambiguous. These simulations were performed with a periodic structure 
of perfect crystal of Si, and therefore the calculated melting point is expected to be higher than 
the experimental value. For ABOP, extraordinarily high melting point was estimated, but, for 
SNAP and qSNAP, calculated values are in the range of the experiment and seem more correct. 

 

Table 2: Results of heating calculations 

  unit Experiment(11) ABOP SNAP qSNAP 
Specific heat 
at constant 

pressure 
𝐶  × 10  J/K 5.52 5.20 5.00 5.19 

Melting point 𝑇  K 1410 
3000 ~ 
4200 

1400 ~ 
2100 

1700 ~ 
2400 

 

3.2 Reproducibility for the structure of Si {100} surface  

For the structures with free surface, {100} or {111} plane, we calculated surface energy 𝛾 , 
𝛾  and their atomic configuration in the surface. Calculated surface energies are shown in 
Table 3, and visualized atomic structures of the surface {100} are shown in Figure 1. For the 
surface {111}, the surface energy is calculated correctly by all potentials. For the surface {100}, 
qSNAP reproduced the surface energy of VASP well. Besides, since atoms on the top surface 
form dimer structures, qSNAP could almost reproduce surface reconstruction. To the contrary, 
ABOP (empirical one) couldn’t exhibit any surface reconstruction, because it is formulated 
with angular dependency of bonds and therefore it does not present specialized bonding state 
at the surface.  
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Table 3: Surface energies in Si 

 unit Experiment(12),(13) VASP SNAP qSNAP ABOP 
𝛾  

J/m2 2.13 1.28 0.9877 1.329 1.909 
𝛾  1.24 1.15 1.285 1.088 0.9963 

 

 
Figure 1: Structure of surface {100} obtained by qSNAP 

 

 
Figure 2: Structure of surface {100} obtained by ABOP (Blue-colored atoms have all of its first and second nearest 
neighbors positioned on cubic diamond lattice sites. Light blue-colored atoms are the first neighbor of atoms that 
were classified as cubic diamond. Its four neighbors are positioned on lattice sites, but at least one of its second 
nearest neighbors is not. Green-colored atoms are the second nearest neighbor of atoms that were classified as 
cubic diamond. The atom itself is positioned on a lattice site, but at least one of its neighbors is missing or is not 
positioned on a lattice site.) 

dimer 
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3.3 Calculating properties in 3C-SiC 

For 3C-SiC crystal, likewise Si, we calculated lattice constant and elastic moduli as shown 
in Table 4. The deviations of the values obtained by SNAP from those by QE are written with 
parentheses. “Vashishta potential” is another empirical potential for comparison in addition to 
ABOP. SNAP reproduces material properties calculated with QE well, and has the same degree 
of precision as empirical potentials. 

 

Table 4: Material constants for 3C-SiC obtained by ab initio and potentials 

 unit DFT 
(QE) ABOP Vashishta 

potential SNAP 

Lattice constant 𝑎  Å 4.358 4.359 
(0.022%) 

4.358 
(0%) 

4.365 
(0.16%) 

Elastic moduli 

𝐶  

GPa 

388.1 382 
(1.6%) 

390 
(0.49%) 

349.2 
(10%) 

𝐶  131.8 145 
(10%) 

142.6 
(8.2%) 

133.2 
(1.1%) 

𝐶  243.5 240 
(1.4%) 

191.0 
(22%) 

234.4 
(3.7%) 

Bulk modulus GPa 216.8 224 
(3.3%) 

225.2 
(3.9%) 

205.3 
(5.3%) 

 

3.4 The stability of dislocation cores in 3C-SiC by SNAP 

We checked the stability of edge dislocations in 3C-SiC crystal under shear deformation. The 

calculation model has dislocation dipole whose Burgers vectors 𝒃  are [1,1, 2]𝑎  and 

− [1,1, 2]𝑎   as shown in Figure 3. Then, shear strain (𝜀  component as shown Figure 3) was 

applied to the calculated model by deforming the whole cell with a constant strain rate. The 
moving direction of dislocation cores are supposed to be in ±𝑥 direction in this shearing. The 
calculation conditions are summarized in Table 5.  
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Figure 3: A crystal model including dislocation after deleting atom plane 

Table 5: calculate condition in shear deformation 

 units  
the number of atoms - 20448 

cell size（𝑥, 𝑦, 𝑧） nm 12.70，1.222，13.47 
temperature T K 300 

Boundary condition - periodic（𝑥, 𝑦, 𝑧） 
strain rate  1/s 5.0 × 10  

strain type，direction - pure shear, 𝑥𝑧 
time increment ∆𝑡 Fs 1.0 
simulation time Ps 10.0 

 
The appearances just after relaxation of dislocation cores and at some moment in shear 

deformation using SNAP are shown in Figure 4. In those pictures, blue-colored atoms are in 
perfect crystal (of zinc-blende structure) and white atoms are around lattice defects including 
dislocation cores. Stress-strain diagram obtained from shear calculation is shown in Figure 5. 
In ABOP and Vashishta potential, the dislocation core was moving in response to shear 
deformation. In using SNAP, the crystal structure collapsed from the position of dislocation 
cores before they started to move. However, elastic modulus 𝐶  estimated from the graph of 
Figure 5 agrees well with the value calculated by ab initio method (by QE). Therefore, as for 
SNAP, the elastic response can be reproduced well in general, but the plastic region is not 
sufficiently reproduced at the present construction. This is because training data for 3C-SiC 
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doesn’t contain DFT data concerning plastic region. So, in ML process, adding other data such 
as for stacking defects is supposed to improve the reproducibility in plastic deformation. 
 

 

           (a) dislocation cores generated after relaxation                  (b) the structure 3% strain applied (upper half) 

Figure 4: Generated dislocation cores and structure after shearing in SNAP 

 

 

Figure 5: stress-strain diagram obtained from shearing calculation 
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4 CONCLUSIONS 

In this study, we attempted constructing ML potentials for covalent bonding materials. 
- SNAP and qSNAP can reproduce basic properties of Si. Besides, the dimer structure 

in the free surface of Si {100} plane, which has not been predicted by empirical 
potentials, is successfully obtained by qSNAP. 

- The SNAP we built from scratch for 3C-SiC can reproduce lattice constant and elastic 
moduli. Although the dislocation behavior has not sufficiently been reproduced yet, 
the improvement is expected by adding other data on stacking defects. 
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