
This project has received funding from th

Materials/Processes For the Turnable Turret (reduced scale prototype by FW)

1st Information day – 01/07/2021

Presenter: Rui Marques, INEGI

Content

- Filament Winding process overview
- WP2 contributes (Task 2.1):
 - turret considering Filament Winding (FW) manufacturing Process.
 - and physical tests such FVF, voids, density.
- WP5 (Task 5.1 and Task 5.2) contributes:
 - - filament winding process (FW) guidelines and constraints.
 - <u>Planned activities for coming months</u>: Design for manufacturing iterations.

• <u>Running and main achievements</u>: INEGI contributed to the matrix and fibre selection for the turnable

• <u>Planned activities for coming months:</u> FW Specimen Fabrication and Testing (bending 0^o and 90^o),

• <u>Running and main achievements</u>: Contributes for Geometry adaptation of the turnable turret housing

Related Fibregy tasks

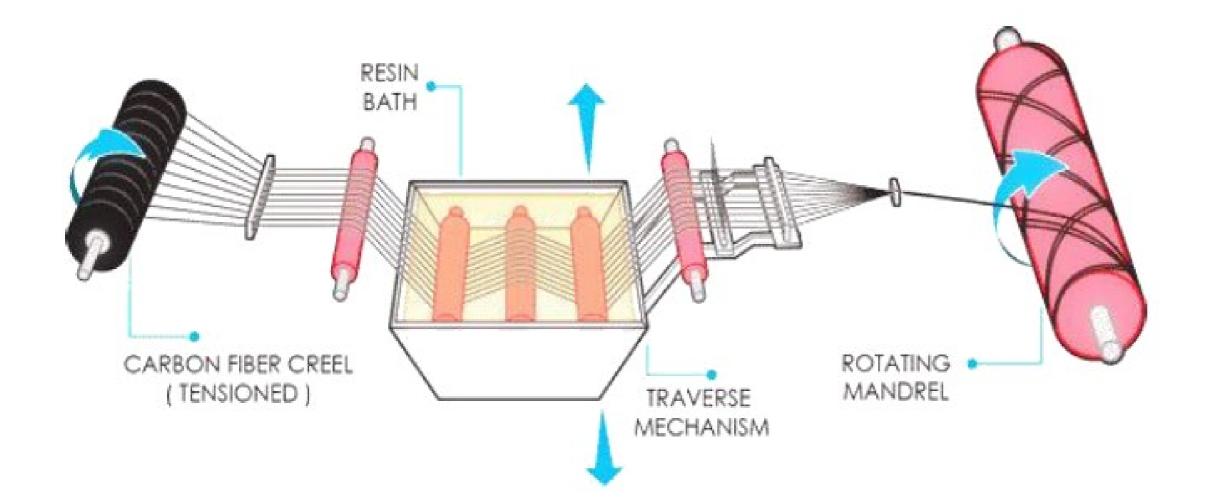
ENEROCEAN, TIDETEC, BV [M1 - M18]

- WP5. Optimized Production Procedures and Life Cycle Assessment Progress Report
 - (L), <u>INEGI</u>, IXBLUE, COMPASSIS, ENEROCEAN, BV, CIMNE, TSI **[M2 M20]**
 - turbine housing (TUCO (L), <u>INEGI</u>, IXBLUE, CORSO, CIMNE) (M2-M20)
 - IXBLUE, COMPASSIS, ENEROCEAN, TIDETEC, TSI, CIMNE) (M2-M20)
 - ENEROCEAN, TIDETEC, TSI, CIMNE, BV [M2 M10]

• WP2. Fibre-Based Materials, Coatings and Connection Solutions for OWTP Platforms – Progress Report • Task 2.1 - Material selection and characterization – ULIM (L), CIMNE, INEGI, CORSO-MAGENTA, IXBLUE, TUCO, TSI,

• Task 5.1 - Optimized manufacturing processes and building strategy for the W2Power and turnable turbine housing - TUCO

• Subtask 5.1.1: Analysis and qualification of manufacturing processes for the different components of the W2Power platform and turnable


• Subtask 5.1.2: Analysis of the modular building strategies for the W2Power platform and turnable turbine housing (TUCO (L), INEGI,

• Task 5.2 - Manufacturing and production processes of the OWTS demonstrators – IBLUE (L), INEGI, TUCO, COMPASSIS,

Filament winding manufacturing process (wet winding setup)

This process is primarily used for hollow, generally circular or oval sectioned components, such as pipes and tanks. Fibre tows are passed through a resin bath before being wound onto a mandrel in a variety of orientations, controlled by the fibre feeding mechanism, and rate of rotation of the mandrel.

https://iopscience.iop.org/article/10.1088/1757-899X/342/1/012029

https://www.gurit.com/-/media/Gurit/Datasheets/guide-to-composites.pdf

Material options

Resins: Any, e.g. epoxy, polyester, vinylester, phenolic.

Fibres: Any. The fibres are used straight from a creel and not woven or stitched into a fabric form.

Filament Winding process overview

Winding of typical geometries

Composite overwrapped pressure vessel (COPV) - Type III

Composite tube

Running and main achievements: Material selection for FW process

Criteria for resin selection to be used in filament winding:

- Long working times for the production of large composite structures (long gel time at 25°C or long pot life);
- Lower initial mix viscosity at 25°C (~1000mPa.s);
- Good shelf life and easy conditioning;
- Type of polymer and its applicability to filament winding;
- Curing profile using lower temperatures (<60°C);
- Synergies with infusion manufacturing process;
- One Thermoplastic and one thermoset.

w/slow hardenerEpoxy PRIME 27 w/ extra slow hardenertherEpoxy Ampreg 36 w/ slow hardenertherVinylester resin Crystic VE679-03PAtherVinylester resin Crystic VE673therPolyester resin Synolite 8488-G-2therVinylester resin Crestapol 1210 & 1210AtherPhenolic CELLOBOND 12027therEpoxy Litestone 2100Ether	rmoset 2h 40m rmoset 7h 20mir rmoset 3h 35m rmoset 80m rmoset 12m rmoset 45m rmoset 26m	24 months 24 months 24 months 6 months	200 180 276 250 2	18min @196ºC 78min	68.7 70 94	74.3 72 78 53	3.3 3.6 3.37 4.9	16h @50°C 16h @50°C 16h @50°C 16h @40°C	times between 15-30°C not recommended. Marine applications Demould time after 13h @20°C. FW specific. Marine applications
extra slow hardener ther Epoxy Ampreg 36 w/ slow hardener ther Vinylester resin ther Crystic VE679-03PA ther Crystic VE673 ther Crystic VE673 ther Synolite 8488-G-2 ther Synolite 8488-G-2 ther Vinylester resin ther Atlac 580 act ther Crestapol 1210 & ther 1210A ther Phenolic CELLOBOND ther 12027 Epoxy Litestone 2100E	rmoset 3h 35m rmoset 80m rmoset 12m rmoset 45m rmoset 26m	24 months	276 250	@196ºC		78	3.37	16h @50ºC	Demould time after 13h @20°C. FW specific. Marine applications
w/ slow hardener ther Vinylester resin ther Crystic VE679-03PA ther Vinylester resin ther Crystic VE673 ther Polyester resin ther Synolite 8488-G-2 ther Vinylester resin ther Atlac 580 act ther Crestapol 1210 & ther Phenolic CELLOBOND ther J2027 Epoxy Litestone 2100E	rmoset 80m rmoset 12m rmoset 45m rmoset 26m		250	@196ºC	94			-	
Crystic VE679-03PA ther Vinylester resin ther Crystic VE673 ther Synolite 8488-G-2 ther Vinylester resin ther Atlac 580 act ther 1210A ther Phenolic CELLOBOND ther J2027 ther Epoxy Litestone 2100E	rmoset 12m rmoset 45m rmoset 26m	6 months		@196ºC		53	4.9	165 @2090	
Crystic VE673 ther Polyester resin ther Synolite 8488-G-2 ther Vinylester resin ther Atlac 580 act ther Crestapol 1210 & ther 1210A ther J2027 ther Epoxy Litestone 2100E	rmoset 45m rmoset 26m	6 months		@196ºC				1011 @40*C	Demould time after 24h @20°C
Synolite 8488-G-2 ther Vinylester resin ther Atlac 580 act ther Crestapol 1210 & ther 1210A ther J2027 ther Epoxy Litestone 2100E	rmoset 26m		2	78min		75	3.5	3h @80ºC	Relativily low pot life. FW specific. Peek Temp. Demould time after 241 @20°C and then cure cycle
Atlac 580 act ther Crestapol 1210 & ther 1210A ther J2027 ther Epoxy Litestone 2100E				@65°C		70	3.8	16h @40ºC	Specifically suited for vacum assisted resin transfer moulding. Marine applications. Demould time after 24h @20°C
1210A ther Phenolic CELLOBOND ther J2027 Epoxy Litestone 2100E	rmoset 8.5m		~500	43min @155ºC		83	3.5	3h @100⁰C	FW and marine specific
J2027 ther Epoxy Litestone 2100E		>6 months	1.75 Poise	11.5m @153ºC	93	79	3.5		Post cure isn't needed. May be filled with a variety of fillers. For use in closed mould processes
Epoxy Litestone 2100E	rmoset ~15m	6 months @-18ºC or 2 months @RT	270			40	3.25		Marine and offshore specific. Not FW specific. Very low shelf life and lo time. Doesn't specify cure time
& 2102H the	rmoset 12h	24 months	600		120	53	2.8	2h @90°C + 4h@140°C	Filament winding and Oil, Gas and Chemical industry specific
Epoxy Litestone 2130E & 2131H ther	rmoset 48h		450		127.5	84	3	2h @90ºC + 4h @110ºC	Long pot life @RT. Superior fiber wet out and resin penetration. Excell combination of mechanical performance, thermal stability and moisturesistance. FW specific
Vinylester resin Vipel F010 ther	rmoset 47min	6months	130cps	1h47min @80°C	130	88	3.2	4h@82ºC	FW and corrosion, heat and chemicals specific
Vinylester resin Vipel F013-AAA-00 ther	rmoset 2h 53mir	7 months	350	3h28m @182ºC	111	88	3.2	2h @85%C	0.1% Cobalt 6% + 0.1% DMA + 0.1% 2, 4-P. FW and corrosion specific
Vinylester resin AME 6001 INF-135 ther	rmoset up to 4h	3 months	170		113	79	3.5	24h @90ºC	Premium marine resin infusion. great resistance to fatigue failure. low shrinkage. increased hydrolysis resistance. Recommended for infusion process
Infugreen 810 / 8822 ther	rmoset 3h	24 months	185	-	63	66	3		Epoxy resin is produce with about 38 % of carbon from plant origin and a lower environmental impact than standard Epoxy systems. This system has a very low viscosity at ambient temperature. The different hardeners allow the production of small to very large part
Infugreen 810 / 4771 ther	rmoset 12h - 22h	24 months	115 - 235	245	86	73	3.22	24 h @ 23ºC + 24 h @ 40 °C	 a lower equipmental impact then standard Ecosy systems. This system
Elium C595 E therm	noplastic 20h	6 months	500		110	66	3.17	2h @80ºC	UV cure. Relativily low shelf life. Recyclable. FW specific. Marine applications
Elium C191 O/SA therm	noplastic 300min	6 months	100	-		56	2.6	24h @ 23ºC / post cure 24h 60ºC	
Elium 188XO therm									

Running and main achievements: Material selection for FW process

Fibre selection criteria:

- Good mechanical properties (high strength, intermediate modulus); ۲
- Compatibility with selected resins; ۲
- Applicability to filament winding (Single-end roving availability). ۲

Glass Fibre

Product Information

Type of Fiber	E-Glass (ASTM D 578-05, Section 4.2.2)						
Type of Sizing	Silane						
Roving Tex, nominal (g/km)	275	300	600	900	1200	2400	4800
Roving Yield, nominal (yd/lb)	1800	1650	827	550	413	206	103
Average Fiber Diameter (μm)	14	14	15	15	17	17	24
Other Tex/Yield options are available upon request. Contact your NEG Account Manager.							

Product Information

Type of Fiber	E-Glass (ASTM D 578-05, Section 4.2.2)					
Type of Sizing	Silane			ane		
Roving Tex, nominal (g/km)	275	600	1200	1984	2400	4400
Roving Yield, nominal (yd/lb)	1800	827	413	250	206	113
Average Fiber Diameter (μm)	14	15	17	16	17 24	24
Other Tex/Yield options are available upon request. Contact your NEG Account Manager.						

MITSUBISHI CHEMICAL CARBON FIBER AND COMPOSITES

MUL FIBER TYPE mg/m MPa 235 2.1 1.82 **TR 50S** 12K 4900 800 TR 50S 6K 235 2.1 1.82 4900 400

Highest strength, standard modulus fiber available with excellent processing characteristics for filament winding and prepreg. This never twisted fiber is used in high tensile applications like pressure vessels, recreational, and industrial

FIBER PROPERTIES

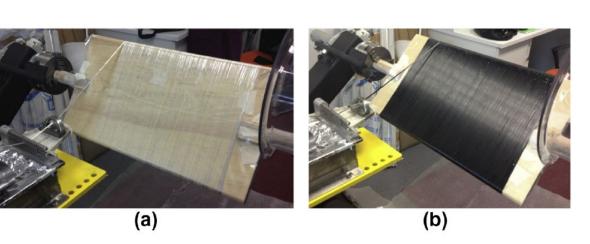
		English	Metric	Test Method
Tensile Strength		711 ksi	4,900 MPa	TY-030B-01
Tensile Modulus		33.4 Msi	230 GPa	TY-030B-01
Strain		2.1 %	2.1 %	TY-030B-01
Density		0.065 lbs/in ³	1.80 g/cm ³	TY-030B-02
Filament Diameter		2.8E-04 in.	7 µm	
Yield 6K		3,724 ft/lbs	400 g/1000m	TY-030B-03
12K		1,862 ft/lbs	800 g/1000m	TY-030B-03
24K		903 ft/lbs	1,650 g/1000m	TY-030B-03
Sizing Type	50C	1	.0 %	TY-030B-05
& Amount	60E	C	0.3 %	TY-030B-05
	FOE	C	0.7 %	TY-030B-05

Carbon Fibre

Never twisted Twist

Running and main achievements: Material selection for FW process

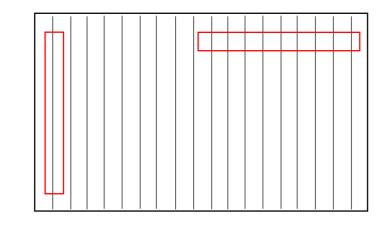
	Infusion (UL	IM)	Filament Winding (INEGI)				
Material	Preferred	Backup	Preferred	Backup	Backup		
Thermoplastic	Elium 188XO	-	Elium 191 O/SA with PMEK (Butanox M50 or Trigonox 249)	Elium C 595 E with Perkadox as thermal initiator (Polimerization 2h 80ºC)	Elium C 595 E with Perkadox 16 and Speedcure BPO (UV initiator)		
Thermoset	SR Infugreen 810	-	SR Infugreen 810 + 4470, 4471 or 4472	SR Infugreen 810 + 8822	-		
Glass Fibre	Hybon 2026	Hybon 2002	Hybon 2026 (2400 tex)	Hybon 2002 (2400tex)	_		
Carbon Fibre	MRC TR50S 1.2k (12k)	-	T700 SC 24K (1650tex) FOE	Mitsubishi TR50S 12K (800 tex) or 15K (1000 tex)	_		

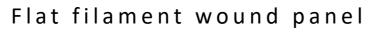

Planned activities for coming months

FW Specimen Fabrication and Testing:

- Selection of 2 combinations (Fibre/matrix); ۲
- Bending $[0^{\circ}]_{x}$ and $[90^{\circ}]_{x}$. •

Physical tests:


FVF, voids, density. •



Illustrative image of flat panel winding (hoop winding)

~0° Specimen

~90° Specimen

Material performance / selection (task 2.1)						
Description	Partner	Samples				
Production of test samples of a same composite to evaluate the	ULIM /	Infusion - RTM				
effect of the production method	INEGI	Filament winding / Tape placement				
Morphological and mechanical characterization of the samples.	ULIM /	Characterization (voids, fibre volume, etc.)				
	INEGI	Bending 0º / 90º				

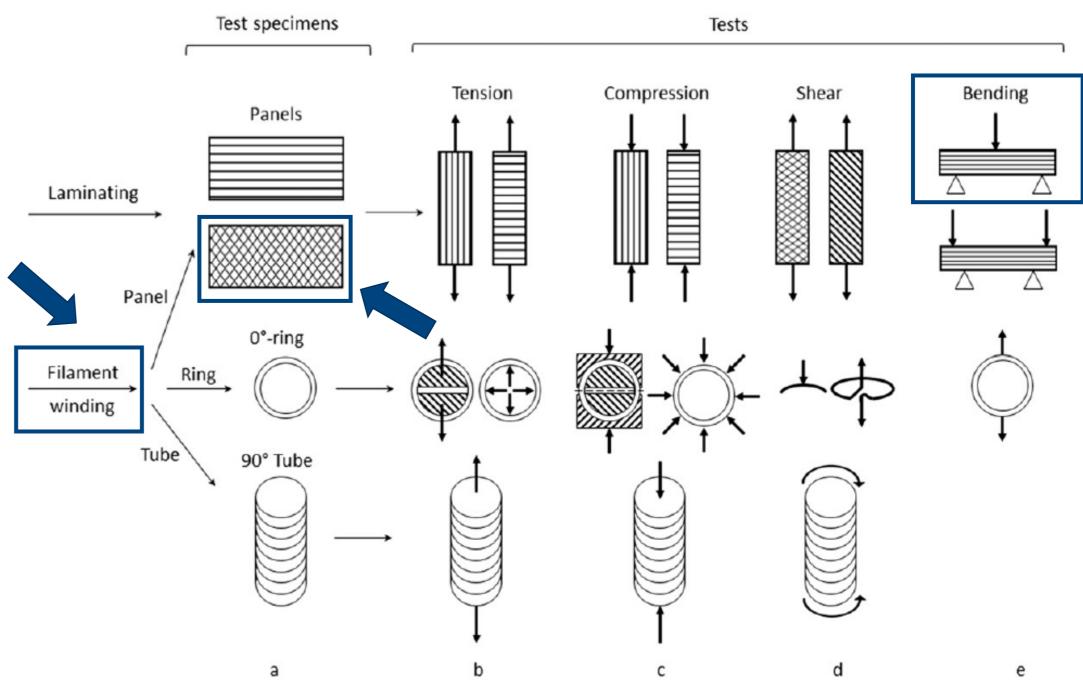
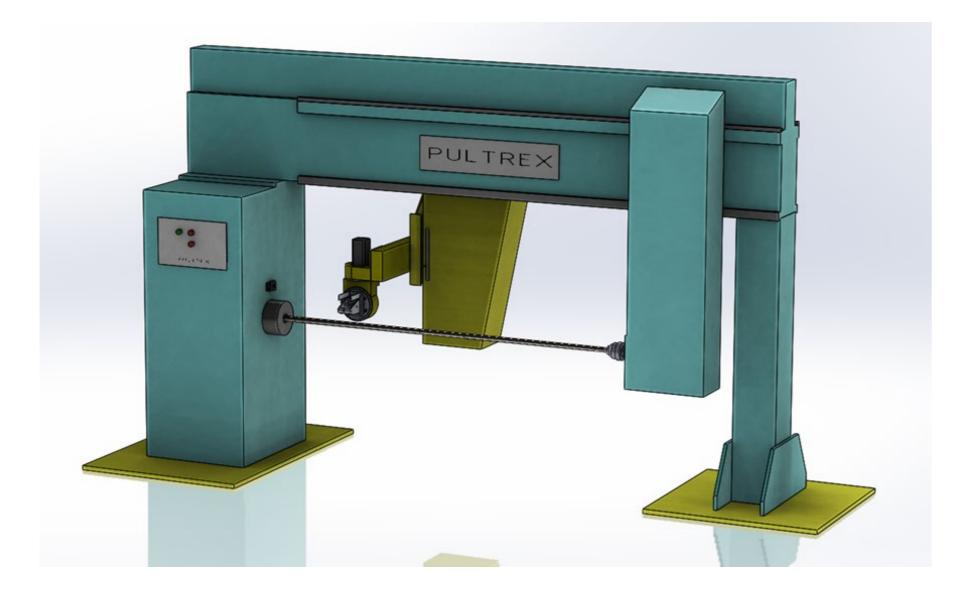
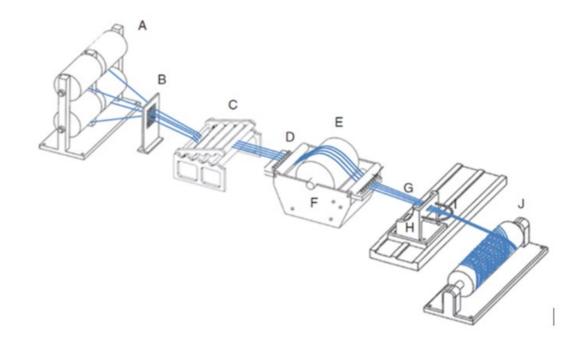



Fig. 7 Test specimens and test techniques for fiber-reinforced composites. Reproduced from Peters, S.T., 2011. Chapter 8: Static mechanical tests for filament-wound composites. In: Peters, S.T. (Ed.), Composite Filament Winding, first ed. Materials Park, OH: ASM International pp. 95–114; Tarnopol'skii, Y.M., Kulakov. V.L., 1988. Handbook of Composites, second ed. London: Chapman and Hall.

ш

INEGI Machine and its components


Main Characteristics:

- 6 independent axis
- Parts with diameter up to 600mm
- Parts with length up to 2000 3000mm

Components:

A) Rovings; B) Guiding system; C) Tension system; D) Pin guides; E) Impregnation roll; F) Resin Bath; G) Impregnated filaments; H) Deposition carriage; I) Deposition head/eye J) Mandrel mount

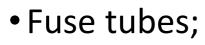
 Running and main achievements: Filament winding advantages and disadvantages

Main Advantages:

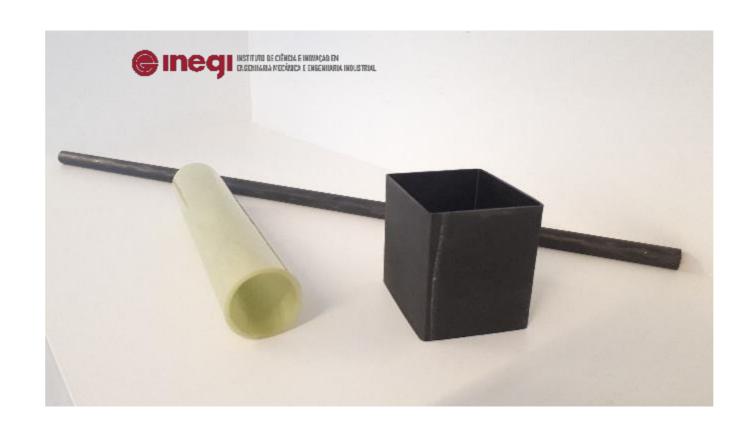
- This can be a very fast and therefore economic method of laying material down;
- Resin content can be controlled by metering the resin onto each fibre tow through nips or dies;
- Fibre cost is minimised since there is no secondary process to convert fibre into fabric prior to use;
- Structural properties of laminates can be very good since straight fibres can be laid in a complex pattern to match the applied loads.

Main Disadvantages:

- The process is limited to convex shaped components;
- Fibre cannot easily be laid exactly along the length of a component;
- Mandrel costs for large components can be high;
- The external surface of the component is unmoulded, and therefore cosmetically unattractive;
- Low viscosity resins usually need to be used with their attendant lower mechanical, health and safety properties.


Running and main achievements: FW typical applications

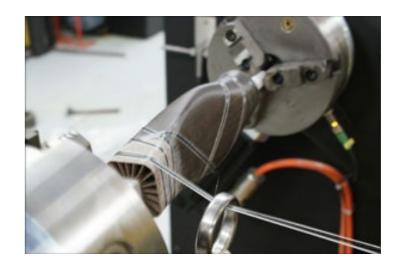
Typical applications:

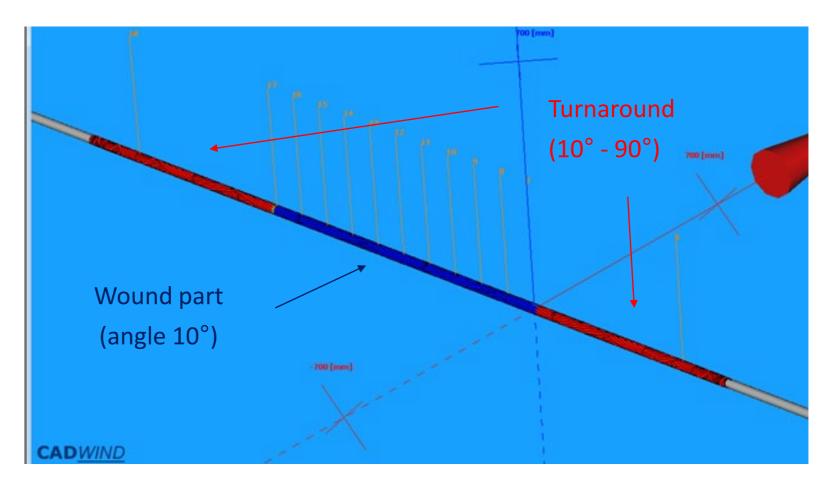

- Chemical storage tanks;
- Pipelines;
- Gas cylinders;
- Fire-fighters breathing tanks.

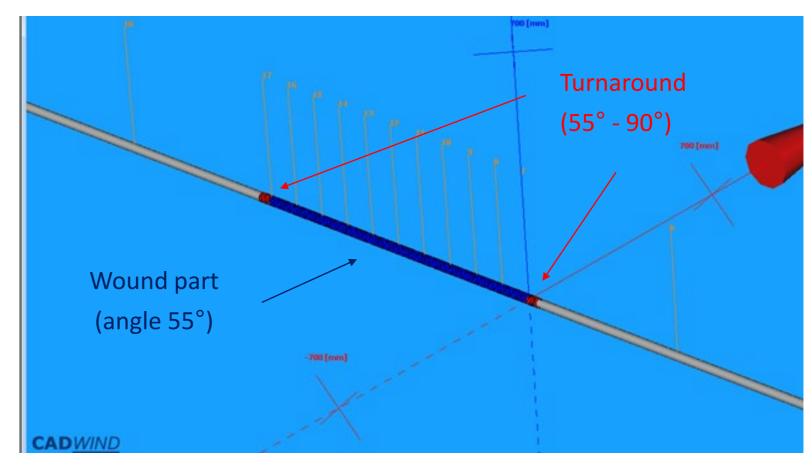
Other Applications

- Rocket motor casings;
- Rocket launch tubes;
- Connecting rods;
- Bottles;
- Golf sticks;
- Shafts;
- Pressure rollers;
- Bushings;
- Bearings;
- Driveshafts;
- Oil field tubing;
- Cryogenics;
- Telescopic poles;
- Tool handles;

- Hot sticks (non-conducting poles);
- Conduits;
- Fuselage;
- Bicycle frames and handle bars;
- Baseball/softball bats;
- Hockey sticks;
- Fishing rods;
- Ski poles;
- •Oars;
- Tubes;
- Missile casings;
- Lamp posts;
- Wind turbine blades.



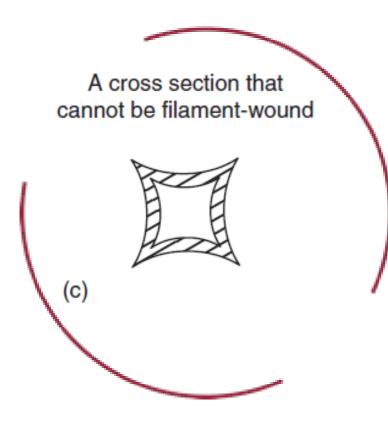


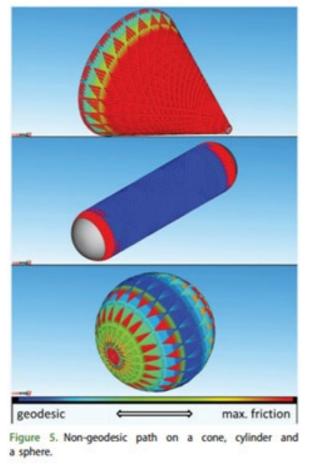


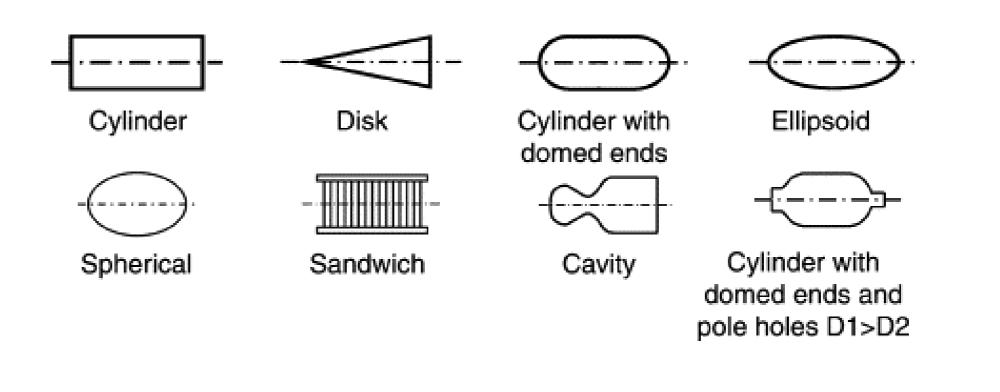
- Running and main achievements: Main process parameters
- Fibre Tension;
- Bandwidth;
- Material/Surface friction coefficient;
- Fibre angle;
- Layup;
- Winding time between layers;
- Fibre overlap;
- Winding pattern;
- Production time;
- Resin viscosity;
- Resin formulation.

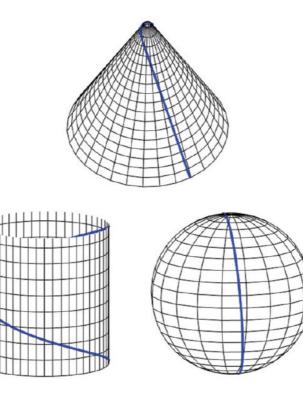
Winding angle 10° - Longer turnaround

Winding angle 55° - Short turnaround

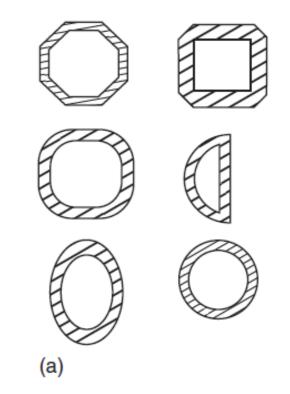





• Running and main achievements: Possible winding geometries


Possible winding forms:

- Cylinder;
- Disk;
- Cylinder with domed ends;
- Ellipsoid;
- •Spherical;
- •Sandwich;
- Cavity (some limitations);
- •Cylinder with domed ends and pole holes D1>D2.



Various cylindrical cross sections that can be filament-wound

(b)

https://www.sciencedirect.com/science/article/pii/B9780857090676500079

Running and main achievements: Filament winding guidelines

- It is limited to producing closed and convex structures. It is not suitable for making open structures such as bathtubs. In some applications, filament winding is used to make open structures such as leaf springs, where the filament wound laminate is cut into two halves and then compression molded.
- •Not all fiber angles are easily produced during the filament winding process. In general, a geodesic path is preferred for fiber stability. Low fiber angles (0 to 15°) are not easily produced.
- The maximum fiber volume fraction attainable during this process is only 60%.
- During the filament winding process, it is difficult to obtain uniform fiber distribution and resin content throughout the thickness of the laminate (thickness/fibre buildup on sections that have less surface area).
- •Mandrels must have a constant cross section or a slight slope in other to be removed from the wound part.

Mandrels cannot be removed easily on the shapes below, they have to be disassembled, breakable or collapsible.

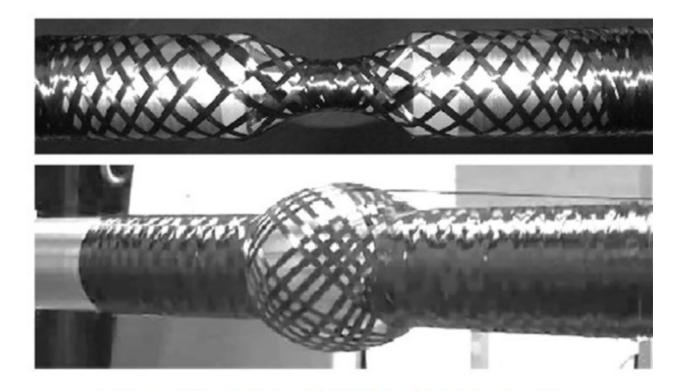
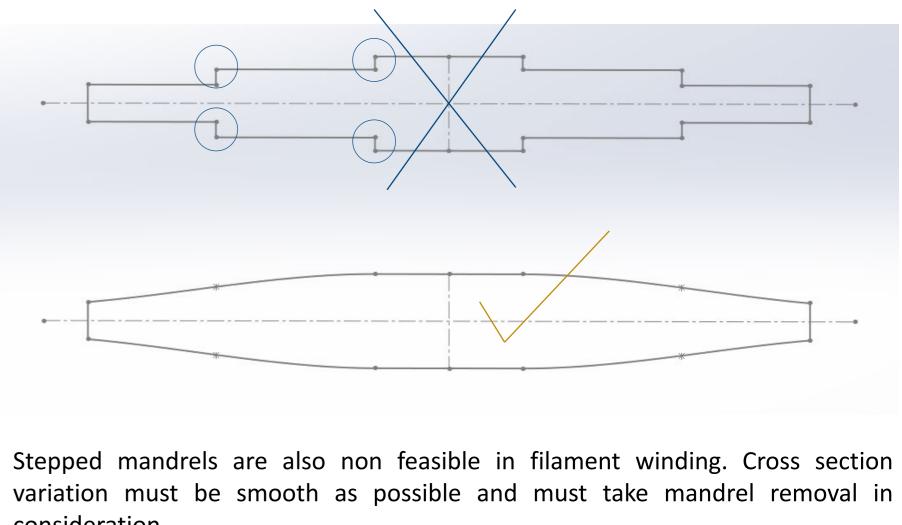



Fig. 11. Filament-wound convex and concave geometry.

consideration.

Planned activities for coming months: design for manufacturing iterations

Geometry presented on initial proposal

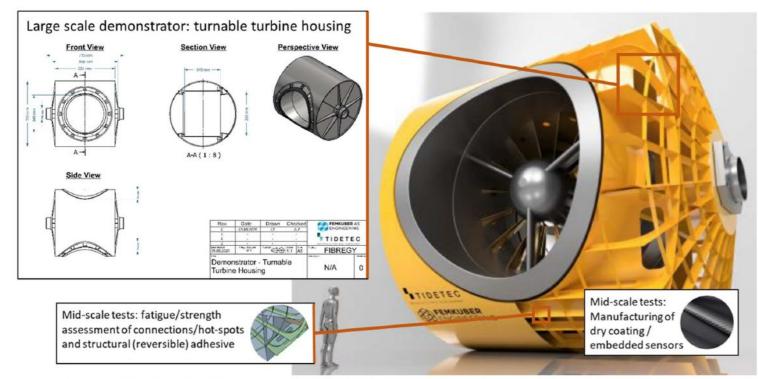
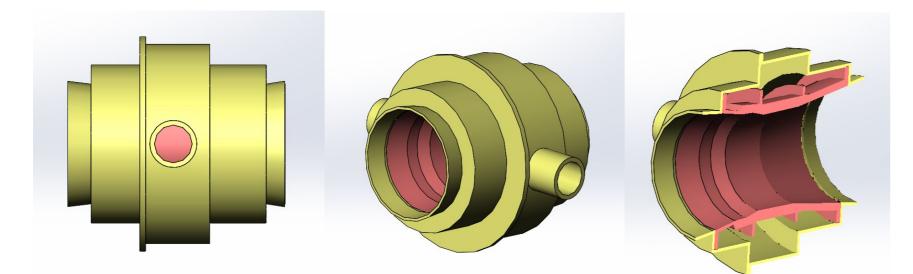
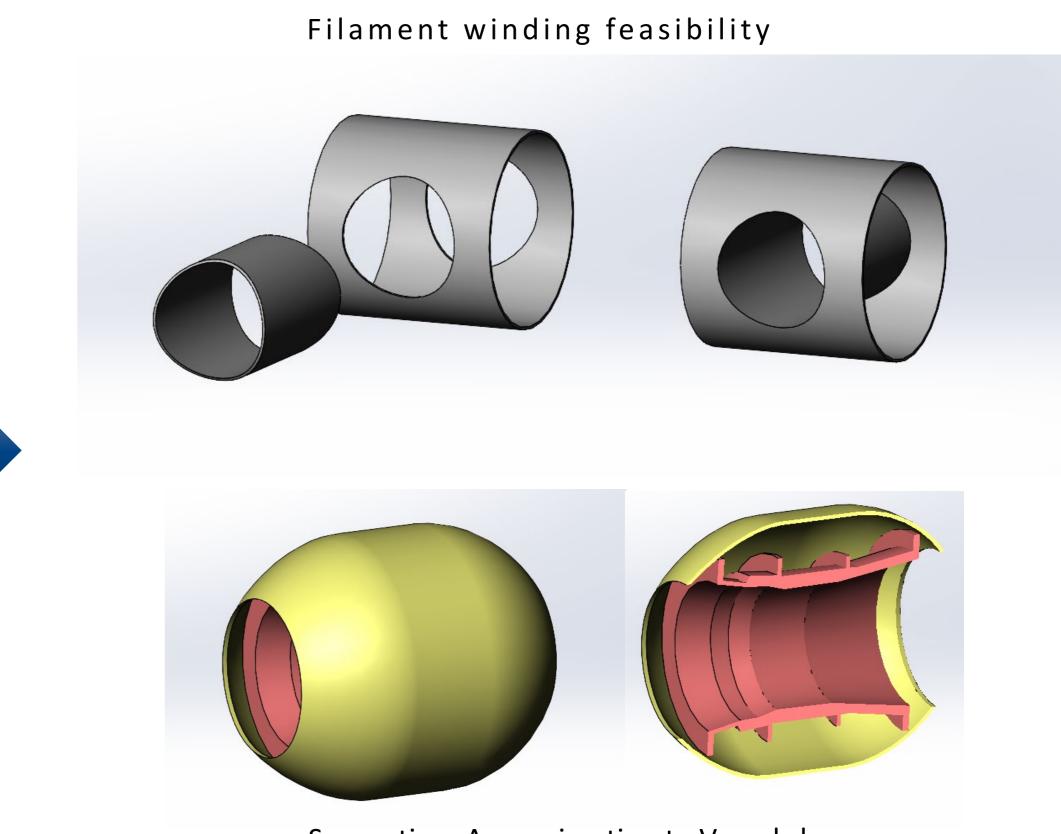




Figure 3. Medium-large scale validation and demonstration activities related to the turnable tidal turbine.

Latest geometry

Parts with such instantaneous cross section variation are not feasible through filament winding (example: stepped cylinder)

Suggestion: Approximation to Vessel shape (might have to be cut in two halves for easier access to the inside)

Thank you!

INSTITUTE OF SCIENCE AND INNOVATION IN MECHANICAL AND INDUSTRIAL ENGINEERING

www.inegi.pt

U. PORTO