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A hybrid method for short-term traffic congestion
forecasting using genetic algorithms and

cross-entropy
Pedro Lopez-Garcia, Enrique Onieva, Eneko Osaba, Antonio D. Masegosa, and Asier Perallos

Abstract—This paper presents a method of optimizing the
elements of a hierarchy of Fuzzy Rule-Based Systems (FRBSs).
It is a hybridization of a Genetic Algorithm (GA) and the
Cross Entropy (CE) method, named GACE. It is used to predict
congestion in a 9-km-long stretch of the I5 freeway in California,
with time horizons of 5, 15, and 30 minutes. A comparative
study of different levels of hybridization in GACE is made. These
range from a pure GA to a pure CE, passing through different
weights for each of the combined techniques. The results prove
that GACE is more accurate than GA or CE alone for predicting
short-term traffic congestion.

Index Terms—Intelligent Transportation Systems; Genetic Al-
gorithms; Cross Entropy; Hierarchical Fuzzy Rule-Based Sys-
tems; Traffic Congestion Prediction; Curse of Dimensionality;
Fuzzy Logic; Fuzzy Systems

I. INTRODUCTION

In today’s society, the number of vehicles in cities and
freeways is continually increasing. In the USA, for example,
there were 798 vehicles per 1000 persons in 2013. There
are many problems related with this increase, such as noise,
pollution, and traffic jams, which lead to time being wasted
in travel and productivity loss.

Therefore, traffic congestion detection is a fundamental
issue in the field of Intelligent Transportation Systems (ITSs).
Successful prediction could result in noise reduction (not only
in urban environments but also on freeways), energy savings
(resulting in a decrease of pollution), increased effectiveness
and performance of transport systems, and savings in public
infrastructure [1], [2].

Two of the most frequently used methods of traffic fore-
casting in the last decade are the Kalman Filter (KF) [3] and
the Autoregressive Integrated Moving Average (ARIMA) [4].
Both are regressive models that find patterns in order to predict
a value in the future. The use of these methods has been
extended to other fields. For example, ARIMA has been used
for water quality prediction [5], electrical demand forecasting
[6], and tourism demand forecasting[7]. KF has been used for
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air quality [8] and project duration forecasting [9]. In addition,
these two methods can be combined, as in [10].

In recent years, other alternatives have been developed.
In [11], Vehicle-to-Vehicle (V2V) communications have been
used in large-scale highway scenarios. In [12], different
machine-learning techniques are used to predict the average
speed on a given street and given routes to allow individual
cars to avoid traffic jams.

Another type of scheme is Time of Day (TOD). In [13],
for example, TOD control divides a day into several intervals
and tries to find optimal controls for each interval. SSoft
computing techniques such as the Support Vector Machine
(SVM), Neural Network (NN), Genetic Algorithm (GA), or
Fuzzy Rule- Based System (FRBS) have been used separately
[14], [15] and in combination [16], [17]. These methods have
been extensively used in traffic forecasting in the last decade.
For example, in [18], the authors proposed the use of Linear
Genetic Programming, NN, and Fuzzy Logic for estimating 5-
and 30-minute flow rates on a highway. A variant of ARIMA
is combined with SVM in [19] to forecast the time series
of traffic flow. In [20], statistical models such as the Support
Vector Regression Model are combined with a chaotic immune
algorithm to predict inter-urban traffic flow. Univariate and
multivariate NN and autoregressive time series models are
compared and used for short-term prediction of freeway speeds
in [21]. A detailed survey on short-term traffic forecasting can
be found in [22].

Among these techniques, SVMs may not perform well
when dealing with large numbers of variables because of the
choice of the appropriate kernel function for the practical
problem [23]. NNs obtain better results and have attracted
more attention. However, due to the local optimum problem
and their generalizability of NNs, their effectiveness is limited.
Besides, the result of an NN depends mainly on the network
training process and is affected by the large amount of high
quality data and the defined parameters [24].

The research presented in this paper is motivated by the
intention of predicting short-term congestion on a 9-km long
stretch of freeway. To do that, the congestion is predicted not
only at one point on the road but along the whole section,
offering a new approach to this kind of problem. For this
purpose, the use of a Hierarchical Fuzzy Rule-Based System
(HFRBS) for the prediction of traffic jams on a freeway is
proposed. To optimize the parameters concerning each of
the units in the hierarchy, a Cross Entropy (CE) algorithm
is combined with a generational GA. The combination of
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techniques is common in recent years [16], [21]. Although
GAs are used in this kind of problem, the hybridization of this
technique with others and its application to the optimization of
FRBSs and their hierarchies is the main novelty of this study.
Also, results obtained by HFRBS are easier to treat by the
operator due to the linguistic information they provide.

The rest of this paper is structured as follows. Section II
explains the different methods used in this paper. A wide view
of the behaviour of the proposal and operators used is pre-
sented in Section III. Section IV contains the experimentation
and the analysis of the results. Finally, Section V presents the
conclusions and further research.

II. PRELIMINARIES

Since the proposal is based on hybridization between GA
and CE, both methods are described in Sections II-A and II-B
respectively. In addition, Section II-C presents some of the
basics of fuzzy logic in general, and HFRBS in particular.

A. Genetic Algorithms

GAs are search heuristics that mimic the process of natural
selection. Since their appearance in the 1970s in Holland [25],
their adaptability to hard problems has led GAs to appear in
the literature both on their own [26], [27], and in combination
with different techniques, in order to solve a wide variety of
problems [28]–[30].

In its classical version, a GA maintains a population of
candidate solutions, or individuals. Four procedures (selection,
crossover, mutation, and replacement) are applied iteratively
to this population.

GAs have been used in many cases to learn or to tune
different components of FRBSs. In [31], a GA is used to
obtain the best rule base possible for a controller for vehicle
management at intersections. In [32], a wide explanation of
GAs used for optimizing different parts of FRBSs is given.

Algorithm 1 is an example of a GA structure where
Pcrossover and Pmutation are the crossover probability and
mutation probability, respectively.

Data: Popsize, Pcrossover, Pmutation, Tmax

Result: Best individual found
1 t← 0
2 P0 ← Initialize Population
3 Evaluate P0

4 while t < Tmax do
5 Parents← Select parents from Pt

6 Offspring ← Crossover(Parents, Pcrossover)
7 Offspring ← Mutate(Offspring,Pmutation)
8 Evaluate Offspring
9 Pt+1 ← Replacement process with actual Population

Pt and Offspring
10 t← t+ 1
11 end

Algorithm 1: Pseudocode of workflow followed by the GA.

B. Cross Entropy

The CE method was proposed by Rubinstein in 1997 [33]. It
was created as an adaptive method for rare-event probabilities
and combinatorial optimization.

CE has three main phases:
1) Generation of Samplesnum random samples obeying a

normal distribution with mean and variance of x and σ,
respectively.

2) Selection of the Samplesselected best samples from the
set generated in the previous phase.

3) Updating of the x and σ values according to the fitness
obtained by the best of the samples.

CE can be applied to estimation or optimization problems
[34] and can be used in different fields. In [35], CE tunes
fuzzy control systems for a drilling process. Another case
is presented in [36], where CE is used for decision making,
determining the optimal weights of attributes.

As the algorithm proceeds, x values are located at the points
with the best results and σ become smaller until both are
focused on the area of the best solutions found in the domain.
CE counts with a parameter, Learnrate. This parameter is
used to update the means and variances during the execution
of the algorithm with the means and variances of the new
selected samples. Algorithm 2 presents the whole process. It
is important to note that the algorithm is presented for a one-
dimensional problem; in the case of more dimensions, x and
σ must be vectors and each of their dimensions should be
treated separately.

Data: Samplesnum, Updatesamples, Learnrate, Tmax

Result: Best individual found
1 x← Initialize Means
2 σ ← Initialize Variances
3 t← 0
4 while t < Tmax do
5 Samples← Generate Samplesnum Samples under

N(x,σ)
6 Evaluate Samples
7 Samplesselected ← Select the Updatesamples best

from Samples
8 x← (1− Learnrate) · x+ Learnrate·

Mean(Samplesselected)
9 σ ← (1− Learnrate) · σ + Learnrate·

Variance(Samplesselected)
10 t← t+ 1
11 end

Algorithm 2: Pseudocode of workflow followed by the CE.

C. Fuzzy Logic

Fuzzy logic, introduced by Zadeh in 1965 [37], allows
uncertain information to be processed by using simple IF–
THEN rules. There are many applications that use Fuzzy Logic
[38]. In traffic problems, such as [39], fuzzy logic has often
been adopted since it allows the information and decisions
involved to be described by this kind of rule.
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One of the most frequently used kinds of fuzzy systems
is the FRBS. FRBSs are used in different kinds of real-
world problems like energy management [40], remote health
monitoring [41], and weather prediction [42].

A variant of the basic FRBS is the Hierarchical FRBS
(HFRBS) [43] which is made up of several FRBSs, joined
to each other in such a way that the output of one of them is
the input of another. Thanks to their structure, these systems
are useful for the improvement of the accuracy–interpretability
balance in problems with a large number of variables, reducing
the number of rules needed to process them, for example to
find a possible solution to the curse of dimensionality problem
[44]. Depending on the way the systems are structured [44],
three different types of HFRBS can be found:

1) Serial HFRBS: The output of an FRBS is the input of
the next one.

2) Parallel HFRBS: The structure is organized as layers.
Outputs from the first layer are used as inputs of the
second layer of the FRBSs, and so on.

3) Hybrid HFRBS: A combination of the previous cases.
This paper is focused on Parallel HFRBS (PHFRBS). With

this organization, all the variables to be considered can be
processed at the same time and with similar relevance. These
PHFRBSs are applied with a constraint: each FRBS is re-
stricted to two inputs. Therefore, if there are an odd number
of variables, the last one will be one of the inputs of the last
FRBS. Figure 1 shows the obtained hierarchies for three and
four variables. In a formal way, a PHFRBS codified in this way
to work with X input variables needs X − 1 single FRBSs.

Besides, in this paper, the Takagi-Sugeno-Kang (TSK) type
of FRBS is used. It employs trapezoids for codification of
inputs and constant singletons for the outputs. For inference,
the minimum T-norm has been used. TSK systems allow
fast calculation of the output of the system. On the other
hand, since the congestion levels considered in this work are
consecutive (Sec. IV-A), non-discrete output values can be
used.

Fig. 1. Parallel HFRBS structured for three (a) and four (b) variables

Several authors of this paper have previously published
works based on HFRBS and congestion prediction. In [16], a
study using HFRBS in a similar way to this work is performed.
The differences are that the authors use only a GA for the
optimization of the systems and it is structured in a serial
way.

III. GENETIC ALGORITHM WITH CROSS ENTROPY: GACE

In this paper, a PHFRBS optimized with a hybrid GA
and CE method (GACE) is used to forecast short-term traffic
congestion. On the one hand, the use of a PHFRBS helps

with the problem of dimensionality. On the other hand, GACE
improves the selection of variables for each system and the
calculation of rules and fuzzy labels. The explanation of the
algorithm is extended in the present section.

A. Chromosome Structure and Fitness Calculation

First of all, to be able to explain several aspects of the
algorithm and calculate the values from the chromosome in
later sections, its structure is introduced here. The chromosome
codifies the three parts of the PHFRBS:

1) Hierarchy: This defines the subset of variables selected
to be processed by the PHFRBS, as well as the order in
which they are included in the system.

2) Membership Functions (MFs): Codify the location of
the labels used to encode each of the input variables for
each FRBS in the hierarchy.

3) Rule Bases (RB): These codify the positions of the
singletons used as consequents of the rule bases of the
FRBSs in the hierarchy.

In this paper, these parts are called Chierarchy, Clabels

and Crules, respectively. Chierarchy consists of a permutation
vector in which a value i in the position j denotes that the
ith variable is inserted in the PHFRBS in the jth position.
In addition, an ending character (denoted by 0), determines
from which point of the vector no more variables are used.
Therefore, the size of the permutation is Nvariables + 1. The
number of modules (Nmodules) is related to Nvariables, due
to the fact that the maximum of Nmodules is Nvariables − 1.
Figure 1 proves this assertion.
Clabel is composed of two real valued matrices in the

[−1, 1] interval, named MF1 and MF2, that codify the
location of the MFs for the first and second input variables
of each of the single FRBSs, respectively. In a formal way,
Clabel is formed by two Nmodules ·Nlabels matrices. Therefore:

Clabel = MFi(j, k) ∀i ∈ {1, 2} (1)
∀j ∈ {1 . . . Nmodules}, ∀k ∈ {1 . . . Nlabels}

where each value denotes the kth MF used to codify the ith
input of the jth FRBS in the hierarchy.

In addition, the lateral tuning technique designed in [45] for
MF codification has been used. Originally, the values of the
MFs are normalized to lie within the interval [−1, 1]. First,
lateral tuning calculates the different equal-longitude divisions
based on the number of labels used by the problem. After
that, the method calculates the positions of the MFs in these
divisions and converts them into a [min, max] codification.
Figure 2 shows how the codification works in a four-label
structure. The equal-longitude divisions have been drawn in
grey. On the other hand, final codification has been displayed
in green. Xi values, previously normalized in a [−1, 1]
interval, are converted and placed in green divisions. Their
final positions are marked as red circles.
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Fig. 2. Lateral tuning codification for an example with four MFs. Rangei
denotes the interval [−1, 1] in which each Xi (’high’ point of Labeli) can
be located.

Finally, Crules is presented as a real valued matrix within
the interval [0, 1] (Rules). The RB of each single FRBS has
a size of Nlabels

2.

Crules = Rulesi(j) ∀i ∈ {1 . . . Nmodules}, j ∈ {1 . . . N2
labels}

(2)
where each value denotes the consequent of the jth rule of
the RB of the ith FRBS in the hierarchy.

As an example, Figure 3 presents a codification of a
PHFRBS with six variables. As can be seen, Chierarchy deter-
mines the order in which the variables enter into the hierarchy,
as well as the variables to be excluded (by means of the use
of the ending character). On the other hand, the MFs and RB
of the ith FRBS in the hierarchy are denoted by MF1(i,m),
MF2(i,m) and Rulesi(r), where m ∈ {1, . . . Nlabels} and
r ∈ {1, . . . N2

labels}.

Fig. 3. Example of codification for a PHFRBS to process up to six input
variables.

It is important to note that since the Clabel and Crule

are limited, respectively, to lying within [−1, 1] and [0, 1],
all the implemented operators must take values within the
corresponding intervals.

For the fitness function, the mean absolute error (MAE)
[46] is calculated. This value takes the difference between the
obtained and expected values and divides it by the number of
samples. Equation 3 presents its calculation.

MAE =
1

n

n∑
i=1

|Yi − Yi| (3)

where n is the number of instances, Y is the predicted value
and Y is the expected one.

B. GACE: Genetic Algorithm and Cross Entropy

GACE is designed with the idea of taking advantage of the
exploration ability of a GA and the exploitation ability of a CE
in a given optimization problem, with the aim of optimizing
the inputs, labels, and rules of a PHFRBS.

For this purpose, first, the initialization of the PHFRBSs
constituting the initial population is done. In each iteration,
the population of solutions (POPt) is divided into two sub-
populations, GApop and CEpop, with GAsize and CEsize

individuals, respectively. GApop is chosen by a selection
method and used for applying the GA operators, while CEpop

is formed by the CEsize best individuals in the population
POPt and used in the CE part of the algorithm. Both GAsize

and CEsize are chosen by the user, and their sum equals
POPsize.

Once both populations have been chosen, each is used in a
different way:
• GApop: GA operators are applied to this population to

generate GAsize new individuals. The specifications of
the operators used are given in detail in Section III-C.

• CEpop: In this case, the CE algorithm is applied to the
individuals of the population. First, x and σ are updated
by employing Algorithm 2 (lines 7 and 8). Then, CEsize

individuals are randomly generated, obeying a normal
distribution, using x and σ. Section III-D presents the
implementation of this process in detail.

A new population is formed of the individuals generated
by the last two operations. It contains GAsize individuals
resulting from GA operators and CEsize individuals from
the CE method. This new population replaces the old one.
Therefore, GACE is a generational algorithm. Figure 4 shows
the described working.

It is important to note that for the optimization of a
PHFRBS, two different codifications are used in the same
individual: permutation for Chierarchy and real-valued for
Clabel and Crules. For this reason, specific operators are
used to work with the corresponding codifications. They are
explained in detail in Sections III-C and III-D.

C. Genetic Algorithm Operators

In this section, explanations of the different operators used
in the GA part are presented.

Binary tournament [47] is used as the selection algorithm.
It chooses two random individuals in the population. The
winner of the tournament is the fittest individual. The process



5

Fig. 4. Steps of GACE algorithm: A population POPt is divided into two
sub-populations GApop and CEpop. After applying the operators, GAsize

and CEsize individuals form the new population POPt+1 and replace the
old one.

is repeated as often as desired. With this method, GAsize

individuals are taken.
Although the label and rules parts of our individuals are

real valued matrices, the hierarchy part is a permutation. So,
two crossover and mutation operators are needed.

For the permutation part, a variant of the order crossover has
been chosen [48], where only one point is selected to perform
the operation. This function randomly chooses a cutpoint c.
The content of each parent from the first position to c is
preserved in the offspring. The rest of the offspring are sorted
according to the parent from which the first segment is not
inherited. The decision to use only one point is imposed
in order to keep the first variables in their positions in
the offspring Chierarchy since they have more possibility of
entering into the PHFRBS (since they would be before the
ending character). Figure 5 provides an example. Considering
two parents (P1 and P2), the offspring are formed in the first
instance by {2, 3, 4} and {4, 5, 2} (light boxes). Then, starting
from the cut point c, values are chosen in the order fixed by
the other parent. For each parent, values placed before the
cut point are not taken into account in the offspring of the
other parent. These values are marked with X’s in their boxes.
Therefore, the sequence for O1 is {1, 6, 5} and the sequence
for O2 is {6, 1, 3}. These sequences are placed after the cut
point c in their corresponding children.

For the real part of the individuals (label and rules), BLX-α
[49] crossover is adopted. Given two parents A = (a1...am)
and B = (b1...bm) for each i, BLX-α crossover creates two
offspring by generating random values in the interval presented

Fig. 5. Variant of the order crossover used in the present work. First, the cut
point is chosen. After that, the order is selected, and finally the new individuals
are created.

TABLE I
INITIALIZATION VALUES FOR EACH OF THE PARTS IN x AND σ.

Individual x0 σ0
Chierarchy 0.5 ·Nvariables 0.5 ·Nvariables

Clabels 0 1
Crules 0.5 0.5

in Equation 4, with α ∈ [0, 1]. This crossover is chosen by
the authors because of its good synergy between exploration
and explotation of the individual [50].

[min(ai, bi)− α|ai − bi|, max(ai, bi) + α|ai − bi|] (4)

For mutation operators, the distinction between hierarchy,
labels and rules is also made. For the hierarchy, a swap
mutation operator [51] is applied: two random positions in the
permutation are exchanged for each other. For labels and rules,
a BGA mutation [52] is used. Given A = (a1 . . . am), the
BGA operator returns ai, calculated as presented in Equation
5. The movements performed by this operator are small,
supposing a small change in the individual. This is the reason
for the choice of this operator.

a′i = ai ± β
15∑
k=0

(αk2−k) (5)

where β defines the mutation range. The sign (+ or -) is chosen
with probability 0.5, and αk ∈ {0, 0.33, 0.66, 1} is randomly
generated with p(αk = {0, 0.33, 0.66, 1}) = 1

4 .

D. Cross Entropy Operators

As mentioned before, two individuals, one representing the
average x and another representing the variance σ, must be
kept by CE. These individuals have the same structure as a
normal individual (Figure 3), but they have to be initialized in
such a way that generating new samples from them (in the first
iteration) is equivalent to randomly generating individuals. For
this purpose, the initialization of each of the parts is carried
out as presented in Table I. These initial values will be updated
during the execution of the algorithm.

The individuals to be processed by CE are selected in a
deterministic way. The CEsize best individuals in the popu-
lation are chosen to constitute CEpop. Once they have been
obtained, the individuals x and σ update their values and new
samples are generated.

The updating is done by directly applying the equations
in lines 7 and 8 from Algorithm 2 to the Clabel and Crule

parts of the individuals. For these parts, the generation of
new samples is done by generating random values obeying
the normal distribution with x and σ.
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For the Chierarchy part of the individuals, the updating of
the mean and variance and the generation of new samples fol-
low a different process. The vectors representing the hierarchy
are converted into vectors that store the order of each of the
variables (the last position is used to represent the position of
the ending character). Then x and σ are updated by using these
order vectors. Finally, the samples generated are subjected
to the inverse transformation (from order to hierarchy). This
process is illustrated in Figure 6 and works as follows: the
given selected individuals (a) are converted into order vectors
(b); then the mean and variance values are calculated and used
to update x and σ (c). Finally, new samples are generated (d)
and converted into hierarchy vectors (f).

The individuals generated are combined with the ones
coming from the GA part of the method in order to generate
the population to be processed in the next iteration of the
algorithm.

IV. EXPERIMENTATION

In this section, the performed experimentation is presented.
In Section IV-A, the data used in this work are described. The
organization of those data is explained in IV-B. Section IV-C
contains every different configuration used to carry out the
experimentation. Finally, Section IV-D presents the results of
each experiment carried out in test data and analysis of them.

A. Data support

The data used in this work were provided by the Caltrans
Performance Measurement System (PeMS1). PeMS is a real-
time database from the California Department of Transporta-
tion that offers over 10 years of traffic data for historical
analysis. A 9-km-long section of highway I5 in Sacramento,
California, is used for this research. A total of 13 points where
sensors are situated on the main road and eight ramp sensors
were chosen. Traffic measures were collected by the detector
stations every 5 minutes. The information collected by the
main road sensors monitored the flow (the number of vehicles),
the occupancy (the percentage of the time during which the
sensor was switched on) and the speed (in miles per hour).
The information taken from the ramp sensors only concerns
the flow. The data were collected from 0:00 on September
1, 2013 to 23:55 on September 30, 2013. Figure 7 shows a
schema of the fragment of road used as well as the sensors
located on it.

Fig. 7. Segment of highway I5 used in this study. Sensors are denoted by S,
Off Ramps by OR, and On Ramps by IR.

A congestion variable is added at the end of the datasets. It
is calculated using the intervals shown in Table II, which are

1www.pems.dot.ca.gov

TABLE II
VALUES OF CONGESTION AND THEIR CALCULUS.

Level of Congestion Traffic Density (ve/km/ln) Vehicle Speed (km/h)
Slight [29–37] [48–80]

Moderate [37–50] [24–64]
Severe > 50 < 40
Free Other cases

adopted from [53]. Although the density is not given by PeMS,
its calculation is carried out by using the values of the flow
and speed: density = flow/speed. Therefore, congestion can
take one of four values: free, slight, moderate and severe.
These values are presented as universal units of the metric
system (km).

B. Datasets

With the data obtained in the previous section, four different
types of datasets were created:
• Point Dataset (PD): This dataset contains all sensors.

The congestion column is calculated only for a point on
the road. In this case, the middle point corresponding to
S7 is chosen.

• Simplified Point Dataset (SPD): This dataset is a sim-
plified version of PD. It only contains data from the first
(S1), middle (S7), and last (S13) sensors and a combined
value of the off-ramp and on-ramp flows. The congestion
values are calculated in the same way as in PD. Figure 8
shows the way in which the data were collected. ∆IR and
∆OR represent the combined flow value of the in-ramps
and off-ramps, respectively, located before and after the
point of interest.

• Section Dataset (SD): This dataset contains all sensors,
and the congestion is calculated as the maximum level of
congestion that occurs at any of the the sensors on the
main road.

• Simplified Section Dataset (SSD): this is a simplified
version of SD. It contains only the first (S1), middle
(S7), and last (S13) sensors and an average flow of the
off-ramps and on-ramps. The congestion is calculated in
the same way as in SD.

In summary, PD and SPD aim at predicting the congestion
at a single point S7, while SD and SSD aim at predicting
the maximum level of congestion appearing in the whole road
section. On the other hand, PD and SD use all the available
information while SPD and SSD use a version of the dataset
with a smaller number of attributes. Besides, the proposed
technique takes into account what happens before and after the
point of interest to make the prediction in S7 more accurate
in the PD and SPD datasets. In addition, for each type of
dataset, in order to make a congestion prediction, the desired
output will be the value of congestion that occurs within a
time horizon of 5, 15, or 30 minutes ahead. From now on, 12
generated datasets will be used and denoted by the acronym
and the time horizon. For instance, PD5 will denote the point
dataset with a time horizon of 5 minutes.

In order to provide a preview of the datasets collected,
Figure 9 shows the density of examples for each level of
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Fig. 6. Creation phases of hierarchy part in a new individual

Fig. 8. Simplified Point Dataset, taking into account only S1, S7, and S13
and a combination of OR and IR before and after the point of interest.

congestion considered in this work. In this figure, densities
are shown with respect to the day of the week (left) and hour
of the day (right) for datasets regarding data related to the
point of interest (top) and the section of the road (bottom).
These figures show graphically the probability of occurrence
of each of the traffic states in different datasets with respect to
the temporal variable. With the exception of the SD dataset,
where a state of severe congestion is highly possible between
7:00 and 9:00 hours, during the rest of the time, it is hard to
properly estimate the state of the road in the datasets.

Fig. 9. Traffic state distribution in PD5 and SD5 datasets depending on the
day of the week and hour of the day.

The datasets used in this paper contain a larger number of
free flow examples than any other class of congestion. For
this reason, these datasets are highly unbalanced. In order
to validate this affirmation, the imbalance ratio (IR) [54] is
used. Equation 6 shows how the calculation has been done;

TABLE III
DATASETS USED IN THE PRESENT WORK. VALUES BEFORE THE ARROW

INDICATE THE ORIGINAL VALUE; THOSE AFTER THE ARROW WERE
OBTAINED AFTER REDUCTION.

Datasets Vars Free Slight Moderate Severe IR
PD5 47 8277 → 850 61→ 61 172 → 172 129 → 129 135.6→ 13.9
PD15 47 8275 → 866 61 → 61 172→ 172 129→ 129 135.6→ 14.1
PD30 47 8272→ 847 61→ 61 172 → 172 129→ 129 135.6→ 13.8
SPD5 13 8277→ 113 61→ 55 172 → 120 129→ 97 135.6→ 2.1
SPD15 13 8275→ 139 61 → 45 172 → 102 129→ 103 135.6→ 3.0
SPD30 13 8272→ 88 61 → 58 172 → 108 129 → 96 135.6→ 1.8
SD5 47 4157→ 293 2776 → 473 1402 → 453 304 → 304 13.6→ 1.6
SD15 47 4155 → 290 2776 → 549 1402 → 444 304 → 304 13.6→ 1.8
SD30 47 4152→ 293 2776 → 464 1402 → 442 304→ 304 13.6→ 1.5
SSD5 11 4157→ 46 2776 → 58 1402 → 65 304 → 108 13.6→ 2.3
SSD15 11 4155→ 56 2776 → 57 1402 → 85 304 → 110 13.6→ 1.9
SSD30 11 4152 → 54 2776 → 43 1402 → 76 304 → 114 13.6→ 2.6

in addition, Table III shows the number of instances of each
of the types of congestion considered and other values such
as the number of variables in each dataset and the number of
instances of each class.

IR = MAC/MIC (6)

where MAC is the number of instances of the majority class
and MIC is the number of instances of the minority class.

With the aim of balancing the datasets, a simplification
procedure inspired by the K-nearest neighbours method [55]
is used. The reduction is based on two parameters: k and u,
where k indicates the chosen number of neighbours, and u is
a threshold chosen by the user that cannot be exceeded for
the distance between the actual node and any of the chosen
neighbours. If this threshold distance between actual node
and nth neighbour is exceeded, the nth neighbour is deleted
from the dataset. The method is iterative and stops when no
nodes can be deleted, that is, when any of the combinations of
a node and its neighbours surpasses the indicated threshold.
The results obtained by applying this reduction method to the
datasets used in this paper are shown in Table III after the
arrows. This table also contains the IR values of the datasets
so as to be able to compare it with the complete ones.

Reduced datasets are used as training data for GACE in
order to avoid over-fitting of the majority classes, while the
complete datasets are used for testing the results. In this work,
the forecasting problem has been treated like a classification
one. States of the road are replaced by numbers to provide
proper forecasting measures [56]. In particular, following
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assignations of congestion states will be used for the calcu-
lation of the MAE (Eq. 3): {Free=1, Slight=2, Moderate=3,
and Severe=4}. With this change, accuracy metrics can be
used in forecasting in a proper way. Finally, these datasets are
provided2, so that they can be downloaded for use.

C. Experimental Setup

Different combinations of the number of individuals in
GApop and CEpop are tested and compared. In addition,
GACE configurations are compared with pure GA (CEsize =
0) and pure CE (GAsize = 0) to test the benefits of using the
proposed hybridization, in comparison with using each of the
methods alone. Eight experiments with different numbers of
individuals in the populations were carried out; each execution
was repeated 10 times in order to obtain average results.

For the experiments, several values of number of genera-
tions and population size have been tested. Finally, the number
of generations was set to 500 and the population size to 50.
The executions are referred to by their population sizes: that
is, {GAsize−CEsize}; for example, 50-0 refers to a GA with
the operators explained in this paper, and 0-50 is the same as a
CE execution. GAsize ∈ {50, 45, 40, 35, 25, 15, 10, 0} is used,
and the remaining CEsize = 50−GAsize.

The number of MFs to be used in each of the single FRBSs
that compose the hierarchy was set to Nlabels = 3, so the
number of rules in each FRBS is Nrules = N2

labels = 9.
The value of Nlabels has been chosen in order to establish
three MFs (low, middle, and high) for each input variable
of a system. The increase in Nlabels involves an increase in
Nrules, and it can worsen the performance and accuracy of
the systems. The size of the hierarchy part of the codification
depends on the number of variables in each dataset plus one
(the ending character), and varies from 12 to 48 (Table III).

For the GA part of the experimentation, the probability of
crossover was set to 0.8, and the probability of mutation was
set to 0.2. These probabilities were set to these values due
to the use of a high crossover probability and low mutation
probability in most applications of GAs. For BLX crossover
and BGA mutation, α = β = 0.5. While the use of α = 0.5
is the default value for BLX, β = 0.5 is chosen for BGA
to keep the probabilities of exploration and exploitation at the
same level. In the CE part of the algorithm, it is recommended
that Learnrate be in range of [0.7, 0.9] [57]. Following
this recommendation, Learnrate = 0.7 was used in order to
update x and σ.

A cross-validation method for testing the model is used.
Cross-validation divides the dataset into n sub-datasets with
the same number of instances; n − 1 sub-datasets are used
for training the model, and the last one is used for testing it.
In this case, n = 10. The instances in each sub-dataset are
chosen randomly from the whole dataset.

D. Results

The experimentation was done using Matlab Software. Table
IV shows the average symmetric mean absolute percentage

2http://research.mobility.deustotech.eu/media/publication_resources/
I5_Congestion_Datasets_GACE2015.rar

TABLE IV
AVERAGED SMAPE IN TEST SETS FOR EACH OF THE TECHNIQUES.

GACE GACE GACE GACE GACE GACE
Dataset GA 45− 5 40− 10 35− 15 25− 25 15− 35 10− 40 CE
PD5 0.023 0.022 0.020 0.020 0.023 0.045 0.028 0.039
PD15 0.017 0.011 0.011 0.013 0.015 0.023 0.023 0.067
PD30 0.044 0.017 0.016 0.017 0.019 0.018 0.026 0.042
SPD5 0.020 0.019 0.018 0.025 0.018 0.023 0.027 0.303
SPD15 0.017 0.016 0.011 0.012 0.015 0.060 0.109 0.434
SPD30 0.031 0.027 0.021 0.021 0.026 0.028 0.040 0.298
SD5 0.199 0.199 0.202 0.204 0.198 0.197 0.340 0.484
SD15 0.333 0.240 0.251 0.217 0.240 0.365 0.463 0.545
SD30 0.202 0.186 0.244 0.210 0.205 0.318 0.378 0.445
SSD5 0.237 0.201 0.234 0.296 0.327 0.375 0.396 0.355
SSD15 0.301 0.256 0.322 0.344 0.311 0.374 0.375 0.361
SSD30 0.306 0.221 0.328 0.299 0.346 0.343 0.387 0.387

error (sMAPE) [58] in the test datasets, considering previ-
ous state assignations ({Free=1, Slight=2, Moderate=3 and
Severe=4}). The calculation of sMAPE is shown in Eq. 7,
where Y is the expected value, Y is the predicted one, and n
is the number of examples. By using sMAPE, the problem of
large errors when the actual value, Y , is close to zero and the
large difference between the absolute percentage errors when
Y is greater than Y and vice versa is avoided [59].

sMAPE =
1

n

n∑
i=1

|Yi − Yi|
(|Yi|+ |Yi|)/2

· 100 (7)

The boldfaced values in the tables indicate the two best
values for each dataset. In most cases, a GACE with GAsize ∈
[35, 45] obtains values of higher accuracy than other algo-
rithms such as GACE25−25, GA, or CE. Therefore, a better
performance is obtained by the algorithms that use a bigger
GAsize than CEsize. GACE45−15 obtains one of the two best
results in 9 out of 12 cases, while GACE40−10 obtains one
of the best results in 7 out of 12 cases. On the other hand, the
results obtained by GACE10−40 and CE are not among the
best ones in any case. Comparing GA with CE, GA obtains
the best result in all cases and CE obtains the worst result in
9 out of 12 cases.

Figures 10-13 show the percentage of correctly classified
instances for each of the types of congestion predicted in this
research. Each bar indicates the mean and variation values for
each execution carried out; thus, eight bars are shown per plot.
Each bar is denoted by its GAsize value on the X axis. From
left to right are the values from pure GA to CE.

In most cases, the GACE configurations achieve perfor-
mance better than or equal to that of GA or CE, with pure
GA obtaining values closer to those obtained by GACE in
most of the datasets. The best prediction values are obtained
when the time horizon is low (5 minutes) and when congestion
prediction is done for a point (PD and SPD). When predict-
ing congestion in a segment (SD and SSD), a 30-minute
forecast is possible with good accuracy values. Regarding the
use of simplified or complete datasets, it is easy to come to
the conclusion that in the point prediction cases (PD and
SPD), simplified datasets give practically the same values
for any congestion type. The best results are obtained with
the SPD5 dataset. For the segment prediction cases, good
prediction values for Severe congestion are obtained with all
of the datasets, significantly improving the prediction of Free
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Fig. 10. Percentage of correctly classified instances for each class in the
datasets PD5 (top), PD15 (center), and PD30 (bottom).

Fig. 11. Percentage of correctly classified instances for each class in the
datasets SPD5 (top), SPD15 (center), and SPD30 (bottom).

congestion values’ with the simplified datasets, specifically
SSD5 and SSD15, where the results between the different
congestion levels are more stable.

Table V shows the average ranking for each technique in all
the datasets, that is, the average position occupied when they
are sorted by fitness in each dataset. The results show that
45− 5 is the best in 50% of the cases (2 out of 4 congestion
cases) while 40− 10 and 35− 15 obtain the best position in
the remaining cases. This can be seen in Table VI, where
the best techniques for each dataset and congestion case are
shown. GACE techniques have the best performance in 67% of
cases (32 of 48), mostly in the Free (11 of 12) and Severe (10
of 12) congestion cases, while in Slight and Moderate cases
the GACE techniques have the best performance in only 6 and

Fig. 12. Percentage of correctly classified instances for each class in the
datasets SD5 (top), SD15 (center), and SD30 (bottom).

Fig. 13. Percentage of correctly classified instances for each class in the
dataset: SSD5 (top), SSD15 (center), and SSD30 (bottom).

TABLE V
AVERAGE RANKING FOR EACH TECHNIQUE WHEN PREDICTING DIFFERENT

LEVELS OF CONGESTION. THE TWO BEST VALUES ARE BOLDFACED FOR
EACH CASE.

GACE GACE GACE GACE GACE GACE
GA 45− 5 40− 10 35− 15 25− 25 15− 35 10− 40 CE

Free 4.16 2.66 2.91 3.08 3.08 5.75 6.75 7.58
Slight 4.50 4.25 4.83 5.33 5.33 3.66 3.41 4.66
Moderate 5.33 4.66 3.58 3.16 3.91 5.75 5.41 4.16
Severe 2.91 2.33 2.58 3.16 4.16 6.25 6.75 7.83
Total 4.22 3.47 3.47 3.68 4.12 5.35 5.58 6.06
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TABLE VI
BEST TECHNIQUE FOR PREDICTING CONGESTION IN EACH DATASET.

Free Slight Moderate Severe
PD5 40− 10 CE 45− 5 45− 5
PD15 35− 15 CE 40− 10 45− 5
PD30 25− 25 CE GA 35− 15
SPD5 40− 10 CE CE 40− 10
SPD15 40− 10 GA 45− 5 GA
SPD30 25− 25 15− 35 35− 15 35− 15
SD5 45− 5 15− 35 CE 40− 10
SD15 45− 5 15− 35 CE 45− 5
SD30 45− 5 10− 40 CE 45− 5
SSD5 35− 15 45− 5 GA 45− 5
SSD15 GA 45− 5 GA 25− 25
SSD30 25− 25 GA 35− 15 GA

TABLE VII
COMPARISON OF GACE TECHNIQUES WITH C4.5, LDWPSO, AND

SGERD ALGORITHMS

GACE GACE GACE
Dataset 45− 5 40− 10 35− 15 C4.5 LDWPSO SGERD
PD5 0.022 0.020 0.020 0.002 0.100 0.043
PD15 0.011 0.011 0.013 0.004 0.100 0.043
PD30 0.017 0.016 0.017 0.004 0.089 0.043
SPD5 0.019 0.018 0.025 0.018 0.013 0.604
SPD15 0.016 0.011 0.012 0.033 0.027 0.108
SPD30 0.027 0.021 0.021 0.052 0.027 0.029
SD5 0.199 0.202 0.204 0.048 0.606 0.202
SD15 0.240 0.251 0.217 0.140 0.604 0.396
SD30 0.186 0.244 0.210 0.176 0.602 0.395
SSD5 0.201 0.234 0.296 0.362 0.362 0.684
SSD15 0.256 0.322 0.344 0.328 0.423 0.766
SSD30 0.221 0.328 0.299 0.310 0.400 0.270

5 cases, respectively.
In addition to the experimentation carried out, a compar-

ison between the three best GACE configurations and three
algorithms from the literature is made. The algorithms are
executed using KEEL Software [60] with their default values.
These techniques are C4.5 [61], Linear Decreasing Weight -
Particle Swarm Optimization (LDWPSO) [62], and Steady-
State Genetic Algorithm for Extracting Fuzzy Classification
Rules (SGERD) [63].

Table VII contains the sMAPE for each dataset and tech-
nique. Boldfaced values indicate the best result for each
dataset.

In the PD cases, C4.5 is better than GACE in 3 out of
6 cases but GACE is between the best values obtained in
all of the datasets. On the other hand, in SD cases, GACE
performs better than methods from the literature in 3 out of 6
cases (SSDs). The biggest difference between two best values
is found for the SD5 dataset, with GACE45−5 and C4.5.
LDWPSO obtains one of the best values in two cases, while
SGERD obtains the second best value in only one dataset.

Looking at the results of the experimentation, it can be said
that the proposed technique is a competitive technique. Even
so the algorithm could improve in PDs and SDs in order to
be competitive with this type of technique or achieve a better
performance on this kind of datasets.

V. CONCLUSIONS

In this paper, a combination of a Genetic Algorithm (GA)
and the Cross Entropy (CE) method for the optimization of

a Parallel Hierarchical Fuzzy Rule-Based System (PHFRBS)
is presented. The objective of the combination is to obtain
a synergy between exploration and exploitation in order to
improve the system’s parameters. The method divides the
population into two sub-populations. In one of them, a GA is
used, while in the other, the CE method is executed. After that,
both sub-populations are joined, and they replace the current
population. The final aim is to predict congestion at a point
or in a segment of the I5 freeway in California for a time
horizon of 5, 15, or 30 minutes. The data were obtained from
a governmental source and were used to prove the efficiency
of the systems. Four different datasets were created with these
data.

Different weights, denoted as GAsize and CEsize, are used
as the population sizes for the experimentation. GACE config-
urations are compared with pure GA (CEsize = 0) and pure
CE (GAsize = 0) to test the benefits of using the proposed
hybridization in comparison with the two pure methods alone.
It was found that GACE showed good performance. The
algorithm can predict short-term congestion at a point with
a very low error. GACE obtains better results with a bigger
GAsize than CEsize. GACE45−15 is, in 9 of 12 cases, one of
the best performers. On the other hand, CE obtains the worst
values in 10 out of 12 cases. When analysing datasets, the best
errors are obtained with complete datasets. Despite this issue,
the errors obtained with simplified datasets are small enough
to consider using only this kind of dataset in future works.

Although the proposed technique has proved its good per-
formance on this kind of problem, it would be interesting to
demonstrate whether combining GA with other techniques like
Differential Evolution or PSO would improve the optimization
of these systems. Besides, GACE can be used in other research
areas due to the adaptability of its parts. The population size
can be an obstacle, because it can change depending on the
kind of problem being addressed. In future research, improve-
ments can be made in the optimization of the PHFRBS by
applying different methods. Also, a model that automatically
selects the best combination of sizes of the GA and CE parts
or improves the results in the cases of moderate and severe
congestion can be sought.

REFERENCES

[1] A. Abadi, T. Rajabioun, and P. Ioannou, “Traffic flow prediction for road
transportation networks with limited traffic data,” IEEE Transactions on
Intelligent Transportation Systems, vol. 16, no. 2, pp. 653–662, 2015.

[2] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow
prediction with big data: A deep learning approach,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2015.

[3] L. Zhang, J. Ma, and C. Zhu, “Theory modeling and application of an
adaptive kalman filter for short-term traffic flow prediction,” Journal of
Information and Computational Science, vol. 9, no. 16, pp. 5101–5109,
2012.

[4] M.-C. Tan, L.-B. Feng, and J.-M. Xu, “Traffic flow prediction based on
hybrid arima and ann model,” Zhongguo Gonglu Xuebao/China Journal
of Highway and Transport, vol. 20, no. 4, pp. 118–121, 2007.

[5] D. Ámer Faruk, “A hybrid neural network and arima model for water
quality time series prediction,” Engineering Applications of Artificial
Intelligence, vol. 23, no. 4, pp. 586–594, 2010.

[6] J. Taylor, L. de Menezes, and P. McSharry, “A comparison of univariate
methods for forecasting electricity demand up to a day ahead,” Interna-
tional Journal of Forecasting, vol. 22, no. 1, pp. 1–16, 2006.



11

[7] C.-F. Chen, M.-C. Lai, and C.-C. Yeh, “Forecasting tourism de-
mand based on empirical mode decomposition and neural network,”
Knowledge-Based Systems, vol. 26, pp. 281–287, 2012.

[8] K. De Ridder, U. Kumar, D. Lauwaet, S. Van Looy, and W. Lefebvre,
“Kalman filter-based air quality forecast adjustment,” NATO Science for
Peace and Security Series C: Environmental Security, vol. 137, pp. 177–
181, 2013.

[9] B.-C. Kim and K. Reinschmidt, “Probabilistic forecasting of project
duration using kalman filter and the earned value method,” Journal of
Construction Engineering and Management, vol. 136, no. 8, pp. 834–
843, 2010.

[10] H. Liu, H.-Q. Tian, and Y.-F. Li, “Comparison of two new arima-ann
and arima-kalman hybrid methods for wind speed prediction,” Applied
Energy, vol. 98, pp. 415–424, 2012.

[11] R. Bauza and J. Gozalvez, “Traffic congestion detection in large-scale
scenarios using vehicle-to-vehicle communications,” Journal of Network
and Computer Applications, vol. 36, no. 5, pp. 1295–1307, 2013.

[12] J. Rzeszótko and S. Nguyen, “Machine learning for traffic prediction,”
Fundamenta Informaticae, vol. 119, no. 3-4, pp. 407–420, 2012.

[13] L. Jia, L. Yang, Q. Kong, and S. Lin, “Study of artificial immune cluster-
ing algorithm and its applications to urban traffic control,” International
Journal of Information Technology, vol. 12, no. 3, pp. 1–6, 2006.

[14] M. Castro-Neto, Y.-S. Jeong, M.-K. Jeong, and L. D. Han, “Online-svr
for short-term traffic flow prediction under typical and atypical traffic
conditions,” Expert systems with applications, vol. 36, no. 3, pp. 6164–
6173, 2009.

[15] R. Li and G. Rose, “Incorporating uncertainty into short-term travel time
predictions,” Transportation Research Part C: Emerging Technologies,
vol. 19, no. 6, pp. 1006–1018, 2011.

[16] X. Zhang, E. Onieva, A. Perallos, E. Osaba, and V. Lee, “Hierarchical
fuzzy rule-based system optimized with genetic algorithms for short
term traffic congestion prediction,” Transportation Research Part C:
Emerging Technologies, vol. 43, pp. 127–142, 2014.

[17] C. Sicre, A. Cucala, and A. Fernández-Cardador, “Real time regulation
of efficient driving of high speed trains based on a genetic algorithm and
a fuzzy model of manual driving,” Engineering Applications of Artificial
Intelligence, vol. 29, pp. 79–92, 2014.

[18] S. A. Zargari, S. Z. Siabil, A. H. Alavi, and A. H. Gandomi, “A
computational intelligence-based approach for short-term traffic flow
prediction,” Expert Systems, vol. 29, no. 2, pp. 124–142, 2012.

[19] N. Zhang, Y. Zhang, and H. Lu, “Seasonal autoregressive integrated
moving average and support vector machine models: prediction of short-
term traffic flow on freeways,” Transportation Research Record: Journal
of the Transportation Research Board, no. 2215, pp. 85–92, 2011.

[20] W.-C. Hong, “Application of seasonal svr with chaotic immune algo-
rithm in traffic flow forecasting,” Neural Computing and Applications,
vol. 21, no. 3, pp. 583–593, 2012.

[21] E. Vlahogianni and M. Karlaftis, “Testing and comparing neural network
and statistical approaches for predicting transportation time series,”
Transportation Research Record: Journal of the Transportation Research
Board, no. 2399, pp. 9–22, 2013.

[22] E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias, “Short-term traffic
forecasting: Where we are and where we’re going,” Transportation
Research Part C: Emerging Technologies, vol. 43, pp. 3–19, 2014.

[23] J. Wang and Q. Shi, “Short-term traffic speed forecasting hybrid model
based on chaos-wavelet analysis-support vector machine theory,” Trans-
portation Research Part C: Emerging Technologies, vol. 27, pp. 219–
232, 2013.

[24] P. Posawang, S. Phosaard, W. Polnigongit, and W. Pattara-Atikom,
“Perception-based road traffic congestion classification using neural
networks and decision tree,” Lecture Notes in Electrical Engineering,
vol. 60, pp. 237–248, 2010.

[25] J. H. Holland, Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[26] E. Osaba, F. Diaz, and E. Onieva, “Golden ball: a novel meta-heuristic
to solve combinatorial optimization problems based on soccer concepts,”
Applied Intelligence, vol. 41, no. 1, pp. 145–166, 2014.

[27] E. Osaba, E. Onieva, R. Carballedo, F. Diaz, A. Perallos, and X. Zhang,
“A multi-crossover and adaptive island based population algorithm for
solving routing problems,” Journal of Zhejiang University SCIENCE C,
vol. 14, no. 11, pp. 815–821, 2013.

[28] J. Qiao, N. Yang, and J. Gao, “Two-stage fuzzy logic controller
for signalized intersection,” IEEE Transactions on Systems, Man, and
Cybernetics Part A:Systems and Humans, vol. 41, no. 1, pp. 178–184,
2011.

[29] V. Bevilacqua, N. Costantino, M. Dotoli, M. Falagario, and F. Sciancale-
pore, “Strategic design and multi-objective optimisation of distribution
networks based on genetic algorithms,” International Journal of Com-
puter Integrated Manufacturing, vol. 25, no. 12, pp. 1139–1150, 2012.

[30] T.-C. Lu, “Genetic-algorithm-based type reduction algorithm for interval
type-2 fuzzy logic controllers,” Engineering Applications of Artificial
Intelligence, vol. 42, pp. 36–44, 2015.

[31] E. Onieva, V. Milanés, J. Villagrá, J. Pérez, and J. Godoy, “Genetic
optimization of a vehicle fuzzy decision system for intersections,” Expert
Systems with Applications, vol. 39, no. 18, pp. 13 148–13 157, 2012.

[32] O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena, “Ten
years of genetic fuzzy systems: Current framework and new trends,”
Fuzzy Sets and Systems, vol. 141, no. 1, pp. 5–31, 2004.

[33] R. Rubinstein, “Optimization of computer simulation models with rare
events,” European Journal of Operational Research, vol. 99, no. 1, pp.
89–112, 1997.

[34] ——, “The cross-entropy method for combinatorial and continuous
optimization,” Methodology and computing in applied probability, vol. 1,
no. 2, pp. 127–190, 1999.

[35] R. E. Haber, R. M. del Toro, and A. Gajate, “Optimal fuzzy control
system using the cross-entropy method. a case study of a drilling
process,” Information Sciences, vol. 180, no. 14, pp. 2777–2792, 2010.

[36] M. Xia and Z. Xu, “Entropy/cross entropy-based group decision making
under intuitionistic fuzzy environment,” Information Fusion, vol. 13,
no. 1, pp. 31–47, 2012.

[37] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp.
338–353, 1965.

[38] J. Ropero, C. León, A. Carrasco, A. Gómez, and O. Rivera, “Fuzzy logic
applications for knowledge discovery: A survey,” International Journal
of Advancements in Computing Technology, vol. 3, no. 6, pp. 187–198,
2011.

[39] E. Onieva, J. Alonso, J. Pérez, V. Milanés, and T. De Pedro, “Au-
tonomous car fuzzy control modeled by iterative genetic algorithms,”
2009, pp. 1615–1620.

[40] R. Ghorbani, E. Bibeau, and S. Filizadeh, “On conversion of hybrid elec-
tric vehicles to plug-in,” IEEE Transactions on Vehicular Technology,
vol. 59, no. 4, pp. 2016–2020, 2010.

[41] J. Iglesias, P. Angelov, A. Ledezma, and A. Sanchis, “Human activity
recognition based on evolving fuzzy systems,” International Journal of
Neural Systems, vol. 20, no. 5, pp. 355–364, 2010.

[42] M. Awan and M. Awais, “Predicting weather events using fuzzy rule
based system,” Applied Soft Computing Journal, vol. 11, no. 1, pp. 56–
63, 2011.

[43] A. Fernández, M. del Jesus, and F. Herrera, “Hierarchical fuzzy rule
based classification systems with genetic rule selection for imbalanced
data-sets,” International Journal of Approximate Reasoning, vol. 50,
no. 3, pp. 561–577, 2009.

[44] A. Benítez and J. Casillas, “Multi-objective genetic learning of serial
hierarchical fuzzy systems for large-scale problems,” Soft Computing,
vol. 17, no. 1, pp. 165–194, 2013.

[45] R. Alcalá, J. Alcalá-Fdez, and F. Herrera, “A proposal for the genetic
lateral tuning of linguistic fuzzy systems and its interaction with rule
selection,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 4, pp. 616–
635, 2007.

[46] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error
(mae) over the root mean square error (rmse) in assessing average model
performance,” Climate research, vol. 30, no. 1, p. 79, 2005.

[47] D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” Foundations of genetic algorithms,
vol. 1, pp. 69–93, 1991.

[48] K. Deep and H. M. Adane, “New variations of order crossover for
travelling salesman problem,” IJCOPI, vol. 2, no. 1, pp. 2–13, 2011.

[49] L. J. Eshelman and J. D. Schaffer, “Real-coded genetic algorithms and
interval-schemata,” 1992.

[50] F. Herrera, M. Lozano, and J. Verdegay, “Tackling real-coded genetic
algorithms: Operators and tools for behavioural analysis,” Artificial
Intelligence Review, vol. 12, no. 4, pp. 265–319, 1998.

[51] P. Larraniaga, C. Kuijpers, R. Murga, I. Inza, and S. Dizdarevic,
“Genetic algorithms for the travelling salesman problem: A review of
representations and operators,” Artificial Intelligence Review, vol. 13,
no. 2, pp. 129–170, 1999.

[52] D. Schlierkamp-Voosen and H. Mühlenbein, “Predictive models for the
breeder genetic algorithm,” Evolutionary Computation, vol. 1, no. 1, pp.
25–49, 1993.

[53] L. M. C. Skycomp, Inc. in association with Whytney Bailey, “Major
highway performance ratings and bottleneck inventory,” State of Mary-
land, Spring 2008, 2009.



12

[54] V. López, A. Fernández, S. García, V. Palade, and F. Herrera, “An insight
into classification with imbalanced data: Empirical results and current
trends on using data intrinsic characteristics,” Information Sciences, vol.
250, pp. 113–141, 2013.

[55] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor
algorithm,” IEEE Transactions on Systems, Man and Cybernetics, no. 4,
pp. 580–585, 1985.

[56] O. Duru, “The role of predictions in transport policy making and the
forecasting profession: Misconceptions, illusions and cognitive bias,”
Illusions and Cognitive Bias (October 1), 2013.

[57] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial
on the cross-entropy method,” Annals of operations research, vol. 134,
no. 1, pp. 19–67, 2005.

[58] R. Hyndman and A. Koehler, “Another look at measures of forecast
accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679–
688, 2006.

[59] S. Makridakis and M. Hibon, “The m3-competition: Results, conclusions
and implications,” International Journal of Forecasting, vol. 16, no. 4,
pp. 451–476, 2000.

[60] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García,
L. Sánchez, and F. Herrera, “Keel data-mining software tool: Data set
repository, integration of algorithms and experimental analysis frame-
work,” Journal of Multiple-Valued Logic and Soft Computing, vol. 17,
no. 2-3, pp. 255–287, 2011.

[61] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
[62] T. Sousa, A. Silva, and A. Neves, “Particle swarm based data mining

algorithms for classification tasks,” Parallel Computing, vol. 30, no. 5,
pp. 767–783, 2004.

[63] E. G. Mansoori, M. J. Zolghadri, and S. D. Katebi, “Sgerd: A steady-
state genetic algorithm for extracting fuzzy classification rules from
data,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 4, pp. 1061–
1071, 2008.

Pedro Lopez-Garcia Pedro Lopez-Garcia was born
in Almeria, Spain, in 1991. He obtained his BSc
in Technical Engineer in Computer Systems at the
University of Almeria, Almeria, Spain (2012), a
MSc in Soft Computing and Intelligent Systems at
the University of Granada, Granada, Spain (2013)
and a MSc in Advanced Artificial Intelligent in
National University of Distance Education (UNED),
Spain (2014). He is currently a PhD student in
the field of Artificial Intelligent applied to mobility
in DeustoTech Mobility research team in Deusto

Institute of Techonology. His main research interest are: Fuzzy Logic, Meta-
heuristics, Soft Computing, Intelligent Transportation Systems among others.

Enrique Onieva Enrique Onieva was born in Priego
de Cordoba, Spain, in 1983. He received the B.E.,
M.E. and PhD degrees in computer science with
specialization in Soft Computing and Intelligent Sys-
tems from the University of Granada, Spain, in 2006,
2008 and 2011, respectively. From 2007 to 2012,
he was with the AUTOPIA Program at the Centre
for Automation and Robotics, Madrid. In 2012 he
was with the Models of Decision and Optimization
group from the University of Granada. From the
beginning of 2013, he is with the Mobility Unit

at the Deusto Insitute of Technology (DeustoTech), where he carries out
cutting-edge research in the application of soft computing techniques to the
field of intelligent transportation systems. His research interest is based on
the application of Soft Computing Techniques to Intelligent Transportation
Systems, including fuzzy-logic based decision and control and evolutionary
optimization.

Osaba Eneko Osaba is a PhD student at the
Deustotech research center at the University of
Deusto. He holds a B.Sc. in Computer Science since
2010 by the University of Deusto, and he received
in 2011 the title of Master Degree in Development
and Integration of Software Solutions, having stud-
ied at the same university. At the same time, in
September 2014 he began his career as a lecturer,
teaching statistics at the University of Deusto. His
doctoral thesis is focused on artificial intelligence,
specifically in the field of combinatorial optimiza-

tion, studying and developing heuristics and meta-heuristics solving routing
problems. During the develop of his thesis Eneko made a 3-months-stay at
Middlesex University (London). Since 2010, he has participated in several
research projects, and has also contributed to scientific production, publishing
several papers in international conferences and journals. In addition, Eneko has
participated as program committee member of some conferences as GECCO
or HAIS, and he usually he acts as a reviewer in conferences and journals
such as Soft Computing, Evolving Systems and Computers in Industry.

Antonio D. Masegosa Antonio D. Masegosa cur-
rently works at the Mobility Unit of the Deusto
Institute of Technology as IKERBASQUE Research
Fellow. He took his University degree in Computer
Engineering in 2005 and his PhD in Computer Sci-
ences in 2010, both from the University of Granada,
Spain. From June 2010 to November 2014 he was a
post-doc researcher at the Research Center for ICT
of the University of Granada. He has published three
books and more than 20 papers in leading scientific
journals and in both international and national con-

ferences. He is member of the program committee of international conferences
as IEEE CEC, ECAL or NICSO. He has served as reviewer in international
journals as Information Sciences, NeuroComputing and Memetic Computing
and international conferences as GECCO. His main research interests are:
Intelligent Systems, Soft Computing, Cooperative Hybrid Metaheuristics, Dy-
namic Optimization Problems, Fuzzy Systems, and Intelligent Transportation
Systems among others.

Asier Perallos Dr. Asier Perallos holds a PhD, MSc
and BSc in Computer Engineering from the Uni-
versity of Deusto (Spain). Since 1999 he has been
working as a lecturer in the Faculty of Engineering
at the University of Deusto, being now accredited
by Spanish Government as Associate Professor. His
teaching focuses on software design and distributed
systems, having taught several BSc, MSc and PhD
courses. He is currently the Head of the Computer
Engineering Department and in the past has been
the director of several MSc in Software Engineering.

He is also Head Researcher at the DeustoTech Mobility Unit at the Deusto
Institute of Technology (DeustoTech), where he coordinates the research
activities of around 25 researchers. This research unit promotes the application
of ICT to address smarter transport and mobility. In particular, Perallos’
research background is focused on telematic systems, vehicular communica-
tion middleware and intelligent transportation systems. He has over a decade
of experience in R&D management, with tens of projects and technology
transfer actions led, more than 25 JCR indexed publications and more than
50 other contributions in the area of intelligent transport systems and 2 PhD
dissertations supervised.


	Introduction
	Preliminaries
	Genetic Algorithms
	Cross Entropy
	Fuzzy Logic

	Genetic Algorithm with Cross Entropy: GACE
	Chromosome Structure and Fitness Calculation
	GACE: Genetic Algorithm and Cross Entropy
	Genetic Algorithm Operators
	Cross Entropy Operators

	Experimentation
	Data support
	Datasets
	Experimental Setup
	Results

	Conclusions
	References
	Biographies
	Pedro Lopez-Garcia
	Enrique Onieva
	Osaba
	Antonio D. Masegosa
	Asier Perallos


