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Abstract Switches and crossings (S&C) or turnouts are

one of the important systems in the Swedish railway traffic

maintenance planning. For immediate diverting of the

trains, they need to be predict the working condition for

short time duration, also known as nowcasting and for long

time duration, also known as forecasting. The prediction of

the condition of turnout is useful for traffic planning

without disrupting to the traffic. Hence, the main purpose

of this paper is to predict the condition of S&Cs for shorter

and longer duration. In order to achieve it, at first, statis-

tical analysis is carried out to find the root causes of fail-

ures. Secondly, non-homogenous Poisson process is

applied to nowcast and forecast the working condition. The

results of this study will guide the train dispatchers to plan

the train timetable according the present traffic.

Keywords Non-homogenous Poisson process �
Nowcasting � Switches and crossings � Railway

1 Introduction

Railway are the important drivers of the today’s society.

Railways have been facing higher demands from the public

and from industries due to expansion in adaptation, popu-

lation growth and traffic flow. In the context of Swedish

railways, there are expected into increase 3% for passenger

traffic and 1% in freight traffic up to 2050 annually. To

meet these demands, the infrastructure managers need to

plan to achieve higher requirements; reduce the unexpected

failures, increase the train capacity and reduce in cost.

The recent study (Analysis 2014) on the Swedish rail-

way sector identifies the key problems within the existing

network as (1) a backlog of track infrastructure mainte-

nance, (2) capacity problems, and (3) punctuality. The first

problem, maintenance, has been given less consideration

because of low investments hence there is an excessive

need for improved maintenance (Vredin 2013). With 70%

single tracks and passenger and freight mix of traffic,

Swedish rail infrastructure is vulnerable to traffic distur-

bances and lead to huge consequences in any part of the rail

network.

The traffic planning is in general scheduled for

18 months in Swedish rail infrastructure. However, due to

maintenance activities such as repair/replace/overhaul, this

plan will change for shorter durations as well. Within the

traffic planning, the Switches and Crossings (S&Cs) or

turnouts are the one of the most important assets as it acts

as a network switch to choose between two or more routes.

Also, Nissen (2009), Ossberger and Bishop (2010) and

Parahy (2011) studies showed that the failure of S&Cs led

to higher costs. Hereafter, the condition of these S&Cs is

crucial for planning because inoperable status leads to

disruption of the traffic in two or more lanes. The condition

of S&Cs can be predicted within short duration (nowcast-

ing) or for longer durations (forecasting).

Hence, the purpose of this study is to predict the present

and future status of the S&Cs for the effective traffic and

maintenance planning within traffic management system.

Section 1 presents the definitions of nowcasting and fore-

casting. Section 2 provides the background of Swedish

railway traffic management system, provides the basis of

nowcasting and forecasting in failure and no-failure sce-

narios and selection of S&C as main critical asset.
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Section 3 implements non-Homogenous Poisson process

for S&C and its results are shown in Sect. 4.

1.1 Nowcasting and forecasting

In general, the term ‘‘forecasting’’ known to most of the

local and global community, the term ‘‘nowcasting’’ is not

known to, especially in railway. But this is predominantly

of significant importance in various research areas espe-

cially in meteorology, economics, medicine and environ-

mental sciences. Its approval to the railway community

needs to be clarified with appropriate connotations so that it

is in aligned for applicability (Oneto et al. 2017).

The term ‘‘nowcasting’’ frequently applied in the field of

Meteorology, where it is denoting the process of providing

weather data and forecasts from zero to few hours ahead

(e.g. 30 min (Rasmussen et al. 2001), 1 h (Sokol 2006), 2 h

(Browning and Collier 1989), 3 h (Shao and Lister 1996)

(Sokol and Pešice 2009), 6 h (Isaac et al. 2014). In general,

the term ‘‘nowcasting’’ is used when dealing with sudden

events (e.g. thunderstorms, lightning, tornados) that cannot

be predicted by traditional forecasting approaches and can

be unsettling or represent a safety threat. Hence, the

nowcasting is used for discriminating from ‘‘forecasting’’

both in means of timeframe (forecasts are long-term pre-

dictions, nowcasts are short-term predictions) and of

methodology (nowcasts are produced with different

approaches and algorithms, respect to forecasts).

The usage of ‘‘nowcasting’’ can be related to: a shorter

span with respect to ‘‘forecasting’’, a same or different

approach or algorithm for execution the prediction of the

value. The fact that the data used for the both approaches

can be estimated with detailing in terminology so that it is

of specific interest for predicting the status for railway

asset’s optimization, planning and scheduling (Mantis

2017).

The term is vague enough to be stretched to cover all

these slightly different meanings, so the need of a formal

definition is not necessary nor, probably, useful. A rea-

sonable simple definition could be adopted in the frame-

work of the In2Rail project for differentiating

‘‘forecasting’’ and ‘‘nowcasting’’ processes (In2Rail 2017;

Jiménez-Redondo et al. 2017):

• Nowcasting: The process of exploiting past and present

uncertain or incomplete data to make deductions about

the present.

• Forecasting: The process of exploiting past and present

data to make deductions about the future.

Note that, as it is assumed that forecasts would be in any

case uncertain, because of the uncertainty linked to any

event that will happen in the future, there is no need to

specify that the data for forecasting could be uncertain or

incomplete. In this unfortunate case, the accuracy of the

forecast would obviously be low, but this could happen

anyway, even with ideal data, while this is not true for

nowcasting, where ideal data would result in perfect

nowcasts. The following term is used in this context.

Nowcasting should be used by the train dispatcher to

select the best initial route to be locked for the train. The

best route will be selected by evaluating measurements and

estimations of the asset status giving the probability of each

rout to provide the required service. By extending this

analysis to other sections along the complete route to the

destination, beyond the first locked section, the nowcast

transforms into a forecast. The forecast can further be

extended up to more than 18 months into the future.

If the nowcast and the forecast concepts should be

converted into the time domain there are some parameters

that have to be considered. Since the train will occupy the

track later the nowcasting has to consider the time between

0 and 10 min (approximately). The length of the time span

mainly depends on train length, train speed and length of

the section.

Forecasting needs to be carried out on the sections that

are ahead of the locked route as shown in Fig. 1. The time

span of forecasting varies after the time span of locked

route to several months that depends on the requirements,

length and planning of the train. After locking the first

route, the group of track sections also need to be forecasted

of asset condition up to the destination for e.g., 1 day. In

the diagram shown, the track route extended from T2 to T3

is the first level of forecasting. Once this information is

sent to the train dispatcher, then the status of this group of

track sections is known that has good asset condition and

lower level of probability of failure. For the second level of

forecasting, the length of time span varies from 1 day to

14 days. By knowing the condition of the asset prior this

long time, necessary maintenance actions must be carried

out on S&Cs. For the third level of forecasting, within time

span of 14 days to 18 months, maintenance actions can be

carried out as well as scheduling of the maintenance

vehicles also to be intimated to train management system

(TMS) for the appropriate time planning. This time can

also be used to carry out for procuring, logistics and cost-

effective solutions.

2 Background of Swedish railway

2.1 Objectives

The main objective is to nowcast and forecast the proba-

bility of failure of switches and crossings based on the

inspections and maintenance actions for traffic planning.
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• To identify the condition of switch

• To calculate time to restoration if there is a failure of

switching and crossing

• To reduce the probability of risk by sending the train to

the best alternative route

2.2 Swedish railway TMS

The traffic planning incorporates nowcasting and fore-

casting with the following factors:

• for statistics into traffic management

• to combine different disciplines within the Swedish rail

administration

• maintenance demand due to traffic density and

characteristics

• maintenance demand according to the use of the

infrastructure

• traffic management affected by a feed-back loop from/

to every business area

The time perspective for the use case (and the time to

restoration) can be from a few minutes up to several

months. In the longer time perspectives (more than about

24 h), the main user of the information may rather be the

production planning department than the TMS-users.

However, the timeframe between the needs of the opera-

tional control (TMS-users) and the production planning

dependent on the organization of the Infrastructure Man-

ager (IM) in Fig. 2.

1. TMS-user identify in the production plan that a part of

infrastructure is marked as out-of-order, so that a

segment of the infrastructure cannot be used.

2. TMS-user inspects the traffic that corresponds to the

restoration of the infrastructure and makes appropriate

priorities to ensure that restoration time can be

fulfilled.

3. If the infrastructure component is faulty but still usable

then the error is indicated in the production plan.

4. The TMS-user looks at the estimated ‘‘time-to-restora-

tion’’ for the affected infrastructure segment.

5. User adjusts the production plan to take the uncertainty

of restoration time into account.

2.3 Switching and crossings

S&Cs has been selected based on the opinion from the

TMS with respect to the components responsible for the

largest disturbance in the train management process. Fail-

ure of this component has a larger impact on the planning

systems and possibility to lock train routes, causing dis-

turbing dominant effects in the surrounding network.

Switches and crossings (or turnouts) are a collective

term like turnout where S stands for switching part and C

stands for section where the rails are crossings each other

as shown in Fig. 3. Switches and Crossings are mechanical,

electrical and signaling systems in the railway. Their

function is to be able to carry trains into two (or more)

tracks in a safe way. When the switching mechanism is set

up from the control system, the switch blade switches from

one position to another position for diverting the train in

opposite direction. The switch is locked to new position

when a control signal from the locking procedure has been

received. When the control signal has been received by the

TMS, the asset can be utilized for an intended train route.

This switching mechanism can be failed due to many types

of failure modes that malfunctions the switching procedure.

In some cases, called as partial failure, the switch retains in

a right-side position and locked but cannot be controlled

with switching mechanism.

Fig. 1 Nowcasting and

Forecasting of routes
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2.4 Failure modes of S&Cs to nowcast and forecast

S&Cs are crucial subsystems in the railway that allows the

trains to change from one track to another track. By

enabling trains to move, and allowing slower trains to be

overtaken, S&Cs are provided to achieve higher capacity

both on a single track and on double track lines. Failure

modes for S&Cs are shown below (Esveld and Esveld

2001):

1. Drive mechanism failure: A failure in the drive

mechanisms will disable any movement of the switch-

blade. This failure mode is considered as a semi-failure

since the switching function could still be in an upstate

if no movement of the switch blade is required before

the locking of the trail route. This requires that the

control in signaling that the blade is in a correct

position and locked.

2. Control circuit failure: If the switch blade is in the right

position but the control signal has failed to detect this,

a control failure occurs. For some switch types, it is

however allowed to manually inspect the blade posi-

tion and pass the switch. Therefore, this failure could

be considered as a semi-failure.

3. Snow and ice problems: During winter, the number of

failures increases with up to 50%. Most of this is

related to weather conditions but is also more common

early in the winter that heating element fails.

4. Cracks: Cracks will evolve over time and are depen-

dent on the load cases. If the crack reaches predefined

limits, a failure occurs. Cracks can appear in different

parts in the S&C but especially in the crossing nose

where impact forces are high. There is only measured

information on rail and switch rail, but not for the

crossing.

There are various maintenance actions that can be per-

formed for an S&C to retain its function. For minimal

repair and short term, the lubrication is performed on the

slide bars for every month. For maximum repair and longer

term, surface welding, tamping and grinding are performed

after a period of 1–5 years. For longer than 5 years,

overhaul or renewal of subsystems such as switch blades,

crossing and renovating of point machines are performed

that are expensive and time consuming. Most of the

maintenance decisions are taken based on an inspection

report. Usually, regular inspections are carried out between

Fig. 2 Illustration of failure:

Production plan (graphical

timetable) with infrastructure

failures and estimated

restoration times on a single-

track line

Fig. 3 Illustration of switches and crossings (Mishra et al. 2017)
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1 and 3 months. In some other countries, visual inspection

is performed for every week on the most critical S&Cs.

3 Methodology

3.1 Modelling

Some researchers are interested to study the wheel/rail

interaction at turnouts. Andersson and Dahlberg (1998)

emphasized on wheel/rail impacts at turnouts. Gurule and

Wilson (2000) developed simulation methodology for

wheel/rail interaction for South African Railways. Kassa

et al. (2006) developed simulation framework for dynamic

interaction of train and turnout. Casanueva et al. (2014)

studied the influence of S&Cs on wheel profile evolution.

Kaewunruen (2014) provided structural deterioration via

dynamic wheel/rail interaction.

Some more researchers are considered maintenance

modelling using condition monitoring techniques for dif-

ferent countries. Zarembski et al. (2006) developed main-

tenance indices. Zwanenburg (2009) presented the

modelling for degradation process of S&Cs for mainte-

nance and renewal planning for Swiss Railway. Nicklisch

et al. (2010) studies the geometry and stiffness optimiza-

tion and simulation of S&C degradation. Cornish et al.

(2012) developed a methodology for predictive mainte-

nance using condition monitoring for Network Railways.

They observed that there are higher peaks of strain at the

crossing nodes and switch blade.

Garcı́ et al. (2003) and Pedregal et al. (2004) developed

Reliability Centered Maintenance (RCM) approach for

maintenance of S&Cs in UK. Yilboga et al. (2010) pre-

dicted the failures in turnouts using time delay neural

networks. Eker et al. (2012) developed support vector

machine (SVM) framework. Atamuradov et al. (2009)

failure diagnostics of point machines. Guclu et al. (2010)

predicts using autoregressive moving average. Mishra et al.

(2017) predicted the status of S&C using track geometry

degradation. The more recent studies include Kieu (2018)

for analytical modelling of point process, Babishin and

Taghipour (2019) for maintenance effectiveness, Das et al.

(2020) for track restoration and Zarezadeh and Asadi

(2019) for coherent systems. There are not many reliability

studies of S&C which exploits data related to failures and

maintenance records. Hence, this paper utilizes application

of Non-homogenous poison process (NHPP) for predicting

the failure in S&Cs.

3.2 Problem formalization

The nowcasting for the probability of failure of S&Cs can

be calculated as shown in flowgraph depicted in Fig. 4.

There are different data sources available to calculate the

forecasting. These data sources are asset register (BIS),

failures (Ofelia), Optram (Track geometry), weather

(SMHI), maintenance (BESSY), interlocking system (DS-

Analys) and traffic information (STIG) (Thaduri et al.

2015). This aggregated data must be cleaned before pro-

cessing according to the S&C within track section. This

aggregated data is useful to analyze and find the statistical

insights and behavior of S&Cs.

The analysis of the problem can be carried out in two

stages; one is statistical analysis and second is the now-

casting and forecasting prediction. The statistical results

show an insight to the different types of failures and

maintenance actions carried out on the S&Cs. This will

help in TMS to give a quick judgement on what are the

possible dominant failure modes/causes that can disrupt the

traffic. From the available data, the nowcasting and fore-

casting of a specific S&C in a track section can be found

out by using data driven methods using reliability mod-

elling. To obtain the probability of failure, a non-ho-

mogenous Poisson process (NHPP) was used to predict the

nowcasting. Furthermore, the nowcasting of further inputs

such as weather forecasts from the previous data can also

be prediction using regression modelling, but it is not that

dominant to influence the predictions.

3.3 Proposed solution

The assets chosen in this scenario, the switches and

crossings, are the repairable systems. The probabilities can

be estimated by using non-homogenous Poisson process-

Power law models for rerouting the traffic by TMS. This

can be achieved by analyzing the life data from the growth

curves. The mean number of repairs and the rate of

occurrence of failure (ROCOF) over time can be calculated

by using a power-law process or a homogeneous Poisson

process. The developed models based on the Power Law

NHPP are useful to predict the nowcast for present con-

dition (Minitab 2017).

3.3.1 Non-homogeneous Poisson process (NHPP)

A nonhomogeneous Poisson process with an intensity

function that represents the rate of failures or repairs (Crow

1975). There are several studies that utilizes NHPP for

repairable systems. Hossain and Dahiya (1993) and Zhao

and Xie (1996) for software reliability, Guida et al. (1989)

for NHPP with Bayes inference and Yanez et al. (2002) for

general renewable process using Monte Carlo Simulation,

Majeske (2007) for automobile warranty claims and Gar-

mabaki et al. (2016) for aircraft fleet. In Railway industry,

there were only few studies, Pievatolo et al. (2003) for

underground trains, Panja and Ray (2007a) for point

123

S188 Int J Syst Assur Eng Manag (July 2020) 11(Suppl. 2):S184–S195



machines, Panja and Ray (2007b) for track circuit signal-

ing, Chattopadhyay and Kumar (2009) for rail degradation

model and Garmabaki et al. (2016) for frequency

converters.

The power-law process can model a system that is

improving, deteriorating, or remaining stable. This model

can predict failure/repair times that have an increasing,

decreasing, or constant rate. The repair rate for a power-

law process is a function of time. The non-homogeneous

Poisson process (NHPP) differs from the HPP by the fact

that the ROCOF varies with time. The condition to fulfil

for a counting process N(t), t C 0 to be an NHPP are:

- N(0) = 0; - N(t), t C 0 has independent increments (not

in accordance with definition but assumed anyway);—the

number of events (failures) in any interval ti - ti-1,(-

i = 1,…, n) has a Poisson distribution with mean r
ti

ti�1

v tð Þdt,

we have (Basile et al. 2004):

Pð N tið Þ � N ti�1ð Þ ¼ jð Þ ¼
exp r

ti
ti�1

v tð Þdt
� �

r
ti
ti�1

v tð Þdt
� � j

j!

ð1Þ

where i = 1,…, n; j C 0; where i and j are identifiers for

failure times

The expression of the reliability function is:

R ti � ti�1ð Þ ¼ exp r
ti

ti�1

v tð Þdt
 !

ð2Þ

where i = 1,…, n; j C 0;

ROCOF for the power law is

v tð Þ ¼ abtt�1 ð3Þ

where a and b are indicators of the model. And the

expected number of failure is

v tð Þ ¼ abtt�1 ð4Þ

Because of the polynomial nature of the ROCOF, this

model is very flexible and can model both increasing

(b[ 1 or a\ 0) and decreasing (0\ b\ 1 or 0\ a\ 1))

failure rates. When b = 1 or a = 0, the model reduces to the

HPP constant repair rate model (NIST 2017). Each of these

tests uses the Bartlett’s modified likelihood ratio test

whenever possible.

The hypotheses for these tests are:

H0: all the shapes (or scales or Mean Time Between

Failure (MTBF)) are equal

H1: at least one of the shapes (or scales or MTBFs) is

different

3.3.2 Probability of failure

Parametric Growth Curve is used to estimate the proba-

bility of failure within a given time frame. The estimated

mean cumulative function, MCF,

Data Data 
Analysis

Assets
Reliability of 

S&Cs 

Inputs
Weather 

forecasts, etc

S&C and 
Track 

BIS

Track Type...

Ofelia
DoT of failure, 

subsystem, TTR, failure 

BESSY
Number of trains, Load 
MGT, Delayed trains, If 

winter,...

DS-Analys
Interlocking, 

Movements per month, 
No. Of trains per day,...

SMHI
Weather data at 

Temperature,….

Optram
SDH, Driv1 Max, Driv2 
Max, Dubbelderivata, 

Korsning,...

Data Cleaning

Fig. 4 Proposed process flow of nowcasting scenario
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MCF ¼ t

h

� �b
ð5Þ

where t = the time since the start of the test, b = the esti-

mated shape parameter, h = the estimated scale parameter.

The probability that at least one failure will occur between

now (t) and the next t1 h is:

P X� 1ð Þ ¼ 1� e� MCF tþt1ð Þ�MCF tð Þð Þ ð6Þ

where X is the number of failures in the time interval (t,

t ? t1].

4 Nowcasting and forecasting results

4.1 Statistical results

The below results are obtained from the aggregation of

available data sources obtained from Trafikverket. The

figures from Figs. 6 and 7 show the dominant failure

modes, causes, actions and interdependencies of failures.

This information will provide a decision support to TMS

for quick action possible outcomes of the failure to reduce

the time to restoration. Because, the identification of the

problem, in case of less information, can be useful to TMS

to judge the approximate time to restoration and to get the

asset in working condition.

4.1.1 Causes versus actions

The most Cause-Action pairs as shown in Fig. 5 are:

• Snow–Snow clearance

• Rinsing-material fatigue

• Unknown cause-cleaning

The cause-action pair can provide the combination of

different causes and possible actions taken on the S&Cs.

As illustrated in the figure, these action pairs are dominant

of all other combinations. Due to the environmental con-

dition of Swedish network, it is shown from the results that

these S&Cs are subjected to frequent failures due to snow.

4.1.2 Failure type versus subsystem corrected

The most failure type-subsystem corrected pairs as shown

in Fig. 6 are

• Point machine and bars-not possible to define

• Heating system and broken

• Switch blade detection because of broken materials.

There is lot of uncertainty on the point machine bars as

what might be the reason for failure. This need further

research to consider engineering solutions to reduce the

frequency of the failures. The other systems are mostly

failed because of the broken materials due to overstress and

excessive usage of the subsystems.

4.1.3 Failure number versus down time of S&Cs

The distribution of time to restoration is shown in Fig. 7.

The time to restoration of S&Cs is 90% in the range up to

2 h. There are some failures delayed[ 1000 min due to

Fig. 5 Interaction of causes and actions of S&Cs
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less importance or no traffic disruption. Because of the

distribution of the time to restoration, it has been pre-

sumably estimated that the TMS needs approximately two

hours to plan for maintenance actions of S&Cs to do repair/

replacement depending upon the traffic density.

4.2 Nowcasting and forecasting predictions

For the demonstration purpose, the nowcasting predictions

of the S&Cs are carried out for a track section 414. There

are 13 S&Cs. The predictions can be carried out by using

the Weibull distribution (Power Law) with Maximum

Likelihood Estimation (MLE).

A nonhomogeneous Poisson process with an intensity

function can be used for modelling probability of failure

(PoF) of S&C since the power-law process can model a

system that is improving, deteriorating, or remaining

stable. The probability of failure can be estimated by using

the (Majeske 2007):

PoF tð Þ ¼ 1� exp 1� T þ t

g

� �b

� T

g

� �b
( )" #

ð7Þ

where g = scale parameter and b = shape parameter,

T = Last occurrence of failure and t = time from the Last

failure. The failure corresponds to failure record of any

Fig. 6 Failure type versus subsystem corrected pairs for S&Cs
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Fig. 7 Time to restoration of failures of S&Cs
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subsystem in an S&C system that is stored in failure

database, Ofelia. The probability density function (PDF)

for a 2-parameter Weibull distribution is

f tð Þ ¼ b
g

t

g

� �b�1

e�
t
gð Þ

b

ð8Þ

where t is the failure time, b is the shape parameter and g is

the scale parameter

The failure probabilities for all S&Cs are calculated

from the above equation. There are 18 S&Cs in track

section 414 with different failures as represented in event

plot in Fig. 8. The duration of failure events is selected

from the time window of year 2013 to mid of 2016 (means

0 to 1,800,000 min). The parameter estimates from Wei-

bull distribution (Power Law) with Maximum Likelihood

Estimation (MLE) is extracted from MINITAB is shown in

13

12
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9

8

7

6

5

4

3

2

1

10000008000006000004000002000000

ID

TTF

Event Plot for TTF
System Column in ID

Fig. 8 Event plot for time to

failure (TTF) in mins

Table 1 Extraction of parameters from Minitab

Parametric growth curve: TTF

System: ID

Estimation method: maximum likelihood

Parameter estimates

Parameter Estimate Standard error 95% normal CI

Lower Upper

Shape 0.904954 0.067 0.782462 1.04662

Scale 164,118 33,846.459 109,550 245,868

Test for equal shape parameters

Bartlett’s modified likelihood ratio Chi square

Test statistic 20.58

P value 0.245

DF 17

Trend tests

MIL-Hdbk-189 Laplace’s

TTT-based Pooled TTT-based Pooled Anderson–Darling

Test statistic 270.55 268.80 1.34 - 1.35 7.18

P value 0.171 0.004 0.180 0.179 0.000

DF 240 206
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Table 1. The Weibull parameters obtained for n = 18

S&Cs are scale parameter, g18 is 164,118 and shape

parameter, b18 is 0.9049 (needs further validation). The test
for equal shape parameters suggests that there is not

enough proof that the systems came from same population

with different shapes (P value = 0.245). The pooled esti-

mate of the shape is valid. The tests for trend are all sig-

nificant (P value = 0.000) from Anderson–Darling test.

These tests showed that non-Homogenous Poisson process

is applicable for modelling PoF for failure data of S&Cs in

track section 414.

The probability of failure (PoF) of S&Cs are calculated

from the present instant (PT = 1,800,000) to 12,000 min

(for example, time span for nowcasting and forecasting) are

shown in Fig. 9. Here, the probability of failure of an S&C

is determined by considering the time of last failure,

number of failures and time between failures of a particular

S&C. The nowcasting predictions of probability of failure

of S&Cs are tabulated in Table 2. The predicted proba-

bility of failures shown in Fig. 9 can be utilized by TMS to

reroute the train for an S&C within a network. The model

will also be recalculated in the event of maintenance action

or failure.

5 Conclusion

For re-routing trains by TMS, the above nowcasting pre-

dictions can provide an additional information of proba-

bility of failure of S&Cs within a network. The probability
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Fig. 9 PoF of S&Cs from the present instant (PT = 1,800,000 min) to 12,000 min

Table 2 Probability of failure

from last failure until present

instant ? 12,000 min

S&C ID Last failure T (in mins) PT-T (time elapsed) (in mins) PoF at [(PT-T) ? 12,000]

ID1 1,647,341 152,659 0.512267

ID2 1,115,089 684,911 0.954643

ID3 1,578,668 221,332 0.639232

ID4 1,712,786 87,214 0.350658

ID5 1,719,887 80,113 0.330223

ID6 1,624,704 175,296 0.558352

ID7 1,723,040 76,960 0.320946

ID8 1,600,701 199,299 0.60253

ID9 1,041,995 758,005 0.967526

ID10 1,237,537 562,463 0.920997

ID11 1262126 537,874 0.911744

ID12 1,182,606 617,394 0.938363

ID13 1,081,953 718,047 0.961007

ID14 1,162,082 637,918 0.943839

ID15 1,537,126 262,874 0.699576

ID16 1,369,990 430,010 0.856891

ID17 1,658,637 141,363 0.487528

ID18 131,708 1,668,292 0.999634
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of failure for the next t ? 200 h (approx. 10 days) now-

casting predictions will be helpful in a case where TMS has

to choose between two possible meetings stations for two

trains for shorter term decision. However, the model can be

applied for the required time frame for nowcasting pur-

poses. If the interlocking system status of two S&Cs are

similar, then the TMS can decide the possible meeting

station, which has less probability of failure. For the

maintenance managers, the one with high probability of

failure and it can disrupt the traffic has higher priority to

take immediate action to make best time to restoration. In

addition, the results need to be validated on the field to get

the correct estimates.
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