
Comjmers & Slrucrures Vol. 58, No. I, pp. 133-141. 1996 

0045-7949tMWO120-4 
Copyright 0 1995 Elswier Science Ltd 

Printed m Great Britain. All rights reserved Pergamon . , 
0045~7949/96$9X + 0.00 

EFFECTIVENESS OF BLOCK ITERATIVE 

SCHEMES IN COMPUTING THE SEISMIC RESPONSE 

OF BUILDINGS WITH NONLINEAR BASE ISOLATION 

A. H. Barbat, N. Molinares and R. Codina 

Technical University of Catalonia, Edificio Cl, Campus Norte UPC, Gran Capitan, s/n, 
08034 Barcelona, Spain 

(Received 21 May 1994) 

Abstract-The conventional form of solving the equations of motion governing the seismic response of 
building structures with nonlinear base isolation consists of using monolithic step by step integration 
methods. As an alternative, the application of a block iterative scheme is examined in this paper. After 
describing the particularities of the equations of motion of the structure with base isolation, different block 
iterative schemes are described. Their effectiveness is discussed and compared with that of monolithic step 
by step integration methods. Adequate examples are used with the aim of performing numerical 
comparisons 

1. INTRODUCTION 

Base isolation systems partially uncouple a structure 
from the seismic ground motion by means of specially 
designed, replaceable, devices inserted between the 
structure and its foundation. These devices are 

capable of absorbing part of the energy induced by 
earthquakes [l-4] and drastically reduce the seismic 
action transmitted to the structure. A numerical 
simulation of their effect on the seismic response of 
structures requires algorithms capable of analysing 
structures with both elastomeric (hysteretic) bearings 
and sliding (frictional) bearings [5,6]. Different nu- 
merical schemes for solving the equations of motion 
have been proposed. The most often used numerical 
procedures are monolithic step-by-step integration 
schemes, that is, schemes that lead to algebraic 
systems of equations involving both the degrees of 
freedom corresponding to the structure and the foun- 
dation. On the other hand, there is the possibility of 
coupling these two sets of unknowns iteratively, 
rather than by solving the full algebraic system. These 
iterative methods, when combined with the proper 
linearization of the nonlinear terms, yield block iter- 
ative schemes such as those considered in this paper. 
Their capability for solving bther problems, such as 
the dam-fluid interaction or the motion of thermally 
driven flows, is described in Ref. [7]. In this paper, the 
application of schemes of this type in computing the 
seismic response of building structures with base 
isolation is considered, this being a problem of two 
systems coupled across their boundary conditions. 
The corresponding equations of motion are first 
written and then details concerning the possibilities of 
numerical computation of the seismic response are 
given. Different manners of formulating block itera- 

tive schemes are described in a generic form and are 
then applied to the studied case. Their effectiveness is 
then explored on the basis of a complete numerical 

example. 

2. EQUATIONS OF MOTION 

2.1. Formulation 

In the following developments it is assumed that 
the isolated structure has a linear behaviour due to 
the effect of the base isolator. Also the bearings will 

be considered to be. hysteretic, frictional, or a combi- 
nation of both. Moreover, the base isolation system 
is assumed to have only one degree of freedom, the 
displacement db in the direction of the earthquake. 
Under these conditions the corresponding system of 
equations of motion for the building structure of 
Fig. 1 is 

MO + Cb + KD = -MJ[c& + a(t)], (1) 

where D is the displacement vector relative to the base 
of the structure. The mass matrix M, the damping 
matrix C, the stiffness matrix K and the vector J 
which express the rigid body motion according to the 
degrees of freedom of the model, are dependent on 

the procedure used in the spatial discretization. In the 
particular case where the structure is modelled as a 
shear building, the matrix M is diagonal, K is tri-di- 
agonal and J is a unit vector. The damping matrix C 
is considered to be of Rayleigh type and is computed 
using a direct modal evaluation method [8]. &, is the 
acceleration of the base relative to the ground, ac- 
cording to its single degree of freedom and a(r) is the 
ground acceleration. System (1) does not contain the 
equation corresponding to the degree of freedom of 
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Fig. I. Building structure with base isolation 

the base. The equation describing its motion can be 
written as 

+ kbdb + f = 0, (2) 

wherefis the sum of the restoring forcef, due to the 
hysteretic elements of the bearing andf, the force due 
to the frictional elements. An adequate mathematical 
description of these forces is required to solve the 
problem. mb is the mass of the isolation system, k, the 
stiffness of its complementary elastic device and cb its 
damping coefficient. 

2.2. Computer simulation of the base isolators 

The constitutive models which describe the be- 
haviour of the seismic base isolation system have to 
be able to consider [9]: 

the shear stiffness in hysteretic bearings before and 
after yielding; 
the loss of shear stiffness in hysteretic bearings as 
a function of the increment of the axial force; 
the variation of the friction coefficient as a function 
of the velocity and the pressure in frictional bear- 
ings. 

The hysteretic isolation devices will be formulated 
using Wen’s constitutive model [l&12], which ex- 
presses the force fi as 

fi =f’z (3) 

wherefy is the yield force and z an auxiliary variable 
expressed as a function of the displacement d,, of the 
base relative to the ground and of its derivative c&,. 
This variable is the solution of the differential 
equation 

S = D& - vlzl”h, - y(zI”-‘z(d,(. (4) 

The parameters A, v, y and n allow a description of 
the hysteretic cycles for a wide range of materials 
from elastic to elasto-plastic ones. 

For the frictional isolation devices, the calculation 
of the pure frictional force f2 is made by using the 
equation [lo] 

f2 = PQ sign 4, (3 

where Q is the force perpendicular to the friction 
surface. The coefficient p is calculated from the 
equation 

P = /*Inax _ APe-Pi&I (6) 
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where j? is a constant, pcmax the fricitional coefficient 
for high sliding velocities and Ap the difference 
between pmsX and the frictional coefficient for slow 
sliding velocities, which is also considered to be a 
constant [lo]. Whenever the base sticks to the foun- 
dation, the non-sliding condition 

;i, = 0, c&, = 0, db = 0 (7) 

has to be applied. If this condition is applied to eqn 
(2) then [12] 

/LQ - ]m,,u + J’Mfj + JTMJa] > 0. (8) 

Slip will occur if stick condition (8) fails and then 
eqn (2) has to be used. 

2.3. Criteria for selecting the solution procedure 

The type of problem defined by eqns (1) and (2) 
conditions the solution procedure that can be ap- 
plied. This is because the force f has both hysteretic 
and frictional components. The hysteretic component 
corresponds to a model, which for certain values of 
the parameters A, v, y and n produces great energy 
absorption, so the problem is very nonlinear. The 
frictional component is characterized by a coefficient 
of friction that depends on the velocity and the 
additional stick condition given in eqn (8). In ad- 
dition, all this is complicated by the fact that the 
isolation system has stops that limit excessive dis- 
placements. From the point of view of the equations 
of motion, these stops add a further condition to the 
treatment of the non-linearity. During the time 
period when the base is stuck against the stop there 
is no interaction. Obviously, in a well designed iso- 
lation device, these stops are not reached for a seismic 
ground motion within the design range. Nevertheless, 
the structure-base system is difficult to analyse and 
any numerical procedure requires the use of very 
small time increments [12]. Step-by-step monolithic 
integration procedures have been applied in all the 
consulted references [2-121. They all have the disad- 
vantage of requiring a large number of iterations as 
their convergence process is very slow. This paper 
considers an alternative method of block iteration to 
reduce the number of iterations and improve conver- 
gence [7,13]. An efficiency study is made by compar- 
ing the block iteration scheme to the monolithic 
scheme which treats non-linearity as an iterative 
actualization of the force f in eqn (2). Both methods 
are combined with two discretizations in time: New- 
mark’s simple step method and the two-step central 
difference scheme. 

3. BLOCK ITERATIVE SCHEMES 

3.1. General theory 

This section explains the general method of block 
iteration to solve equations that describe the be- 
haviour of coupled systems through their boundary 

conditions. The algorithm requires a certain dis- 
cretization procedure for the equations of motion and 
solves them in a single iterative loop that considers 
their linearization and coupling [7, 131. 

The equations that describe a generic coupled 
problem of the type studied in this paper may be 
reduced by the application of the discretization pro- 
cedure to a non-linear algebraic system with the 
form [13] 

where x and y are the vectors to be determined, q, and 
q2 are the force vectors and A,, i, j = 1,2 are matrices 
with A,, depending on y. The equations of system (9) 
are coupled linearly. The matrix A,, is linearized in 
the following way: 

A,,(y’“)y’” z A,L, y(‘l + $(y”- I’), (10) 

where AiX is a linearized form of A,,. Starting from 
eqn (9) the following monolithic form can be ob- 
tained: 

Using eqn (11) we can write the following coupling 
equations for block iteration: 

block-Jacobi 

A,, x(f) = q, _ A 
12 

y”- 1) 
(12) 

A;2Y’” = q2 _ $(y”- ‘1) _ A 
21 

x(‘- 1). (13) 

This represents a first approach for implementing 
the block iteration procedure. Equation (12) is solved 
first to give a value for xc0 and this is then used to 
solve eqn (13) to give the vector y’n. A second way of 
solving the problem [eqn (1 1)] considers the following 
way of expressing the equations: 

block-Gauss-Seidel 

A,,x’” = q, - A,,y (i 1) - Wa) 

or 

At2 y'" = q2 _ +(y"- '1) _ A 
21 

x'" 

Ai y”’ = q2 - $ (y” - “) - A,, x 0 I) - 

U4b) 

(lsa) 

A,,x’“=q, -A,2y’“. (15b) 

In the case of eqn (14), x@ is first calculated from 
eqn (14a) and used to solve eqn (14b). In eqn (15), y(fi 
is calculated from eqn (15a) and then used to solve 
eqn (15b). 
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The Jacobi-block procedure is now applied to 
perform the analysis of structures with base isolation. 

3.2. Time discretization 

As mentioned earlier, in order to develop a block 
iteration scheme, there must be a discretization of 
time in the equations of motion. Two types of 
formulation are considered. One uses the Newmark 
discretization for the velocity and the accelera- 
tion [ 141 

Q+, = Di (16) 

Dj + 1 = & (Di+ , - Di) 

+(I-;)1).+(1-$ArQ (17) 

and the other is based on a formulation of central 
differences [ 143 

ii,=&D,,,-2D,+D,,l (18) 

‘<=A Pi+,-Di-11. (19) 

In eqns (16Hl9), the subscript refers to the time 
step considered. 

3.3. The case of the uncoupled structure 

To uncouple eqn (1) using the first q modes of 
vibration, the displacement vector is approximated as 

where ‘pi is the eigenvector and the function ri(t) is 
the genera1 coordinate corresponding to the mode of 
vibration i. An equation of the uncoupled system has 
the following form [ 141: 

j;l(t) + 2VjWjjj(t) + Ui_Y,(t) 

=-s,@b+a(t)]: j=l,2 ,... q, (21) 
I J 

where v, and wj are the damping ratio and the 
eigenfrequency corresponding to the mode of vi- 
bration j. Transformation (20) is also applied to the 
variable t) of eqn (2), giving 

JTM i (piyi(t) + J(& + a) + mb(& + a) i=l 1 
+cJ,, + kbdb +f= 0. (22) 

In this way the system to be solved is made of q 
equations of type (21) and eqn (22). These equations 
may be expressed in the following compact form: 

aTMJ 
~+2vm$+w*y+~db= -sa(t) (23) 

JTM@j; + (JTMJ + m,)li, + c,;ib + kbdb +f 

= -(JTMJ)a(t) - m,a(t), (24) 

where @ is the modal matrix corresponding to the 
first q modes of vibration with dimensions (n x q), v 
is the diagonal matrix of damping ratios, w is the 
diagonal matrix of frequency and w2 the diagonal 
matrix of the squared frequencies. The terms yi and 
ji in eqn (22) and db and h,, in eqn (23) can be 
expressed in the function of the accelerations 9, and 
1;6 by applying the Newmark discretization or that of 
central differences. A problem with the same charac- 
teristics as that described by the system of eqn (9) is 
thus produced. The procedure to be implemented is 
therefore the same as that described earlier. 

3.4. The case of the structure without uncoupling 

A similar formulation is used for the case of when 
the system eqn (1) is not uncoupled. Equations (1) 
and (2) are written as follows: 

MD+MJ&+Cb+KD= -MJa(t) (25) 

JTMb + (JTMJ + PY&, + c,& + kbdb +f 

= - JTMJa(t) - m,a(t). (26) 

If discretization is applied we obtain once again a 
system similar to eqn (9). 

4. STEP BY STEP INTEGRATION ALGORITHMS 

In previous studies, the seismic response of base 
isolated structures has been simulated by solving the 
system of equations composed of eqns (1) and (2) 
using step-by-step integration methods [2-121. Gener- 
ally speaking, such methods are applied in the follow- 
ing sequence of operations: 

(1) If the modal uncoupling of eqns (1) and (2) is 
used, the first 4 modes of vibration are calculated and 
the uncoupling performed, which produces eqns (23) 
and (24). 

(2) The computational process is started by initial- 
izing the values of the displacement, velocity and 
acceleration responses of the structure. 

(3) The hysteretic force in eqn (4) is solved numeri- 
cally using the Runge-Kutta scheme of fourth order. 
The value of z is thus obtained. A base displacement 
limit has to be considered for each type of bearing 
analysed. 

(4) Newmark’s or central difference step-by-step 
integration methods are used to solve the equations 
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Fig. 2. Base isolation systems: (a) hysteretic; (b) frictional. 

of motion [eqns (25) and (26)] or their uncoupled 
versions [eqns (23) and (24)]. 

5. EFFECI’WENESS OF THE BLOCK ITERATION SCHEME 

5.1. Objectives and comparison criteria 

The following study analyses the efficiency and 
convergence of the numerical block iteration scheme 
applied to the problem of base isolated buildings and 

t 

J 
20. I 

Time (I) 

Fig. 3. Relative displacement history of the highest point of 
the structure. 

0 5. IO. IS. 20. 

Time (s) 

Fig. 4. Displacement history of the base relative to the 
foundation. 

compares it to the Newmark monolithic integration 
method. This comparison is made using two different 
methods of time discretization of the equations of 
motion: Newmark differences and central differences. 
The comparison between these two methods uses the 
number of iterations in each discretization instant 
and the variation of the residual norm at a given time 
instant. 

The comparison is carried out numerically, consid- 
ering a shear building with 10 storeys and only one 
degree of freedom in a horizontal direction (Fig. 1). 
The mass of each of the 10 storeys, as well as that of 
the base, is 6 x 10’ kg. The stiffness of the columns in 
the structure varies by 5 x 10’ N m-’ between storeys 
from 9 x 10’N m-’ at the first level to 4.5 x 108N 
m-l at the top. The damping ratios have been fixed 
at 0.05 for all vibration modes. 

Two types of base isolation were considered: hys- 
teretic and frictional, as shown schematically in 
Fig. 2. In either of the two cases, the damping ratio 
of the bearing is 0.2 and its stiffness kb = 2 x 10’ N 
m-i. For the aseismic hysteretic bearing, the secant 
stiffness required in eqn (2) is defined as a relation 
between the yield limit f and the yield displacement 
dY of the isolation. In the analysis p was equal to 
1.5 x lo3 N and dY to 0.0245 m. The constants defin- 
ing the uniaxial hysteretic model are A = 1 .O, v = 0.5, 
y = 0.5 and n = 1. The characteristics of the fric- 
tional bearing are pmax = 0.175, pm,, = 0.100 and 
p =2. 

5.2. Time history of the response 

The seismic excitation used in this case was an 
accelerogram of the El Centro (1940) earthquake. 
Figure 3 shows the time variation of the displacement 
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Fig. 5. Total number of iterations in each step, structure 
with modal uncoupling (Newmark method). 

of the highest point of the structure relative to the 
base for both the hysteretic and frictional cases as 
well as when the building has fixed base. The figure 
shows the reduction in the response when some type 
of base isolation is used in the building. It also shows 
that the response in the hysteretic case is less than in 
the frictional case. 

The plots in Fig. 4 show how the displacement of 
the base varies in relation to the foundations. This 

- Monolithic-central differences 
- Block-central differences 

Fig. 6. Total number of iterations in each step, structure 
with modal uncoupling (central differences method). 

Fig. 7. Total number of iterations in each step, structure 
without modal uncoupling (Newmark method). 

figure also shows that this displacement is less in the 
frictional model than in the hysteretic case. 

5.3. Analysis of the eficiency of the procedure 

A comparison was made of the efficiency of the 
iterative block scheme to the Newmark method, for 
the case that considers the modal uncoupling of the 
system of equations of the structure (including the 10 
modes of vibration) as well as for the case when this 
is not applied. The seismic excitation a(t) has been 
defined in this case as the sinusoidal acceleration 
a(t) = A sin Bt with an amplitude A of 3.5 m se2 and 
a frequency 0 of 10 rad s-l. 

Figure 5 shows the results of the comparison 
between the Newmark method and the iterative block 
scheme using the Newmark discretization with a 
tolerance of 1%. In both cases modal uncoupling of 
the structure was applied. The process of iterative 
blocks with Newmark discretization has a lower 
number of iterations throughout the calculation of 
the response of the system. Figure 6 shows the same 
comparison using central differences discretization. 
The iterative block scheme has a lower number of 
iterations than the monolithic solution method for 
each of the calculation steps. 

In Figs 7 and 8 a comparison between the process 
of iterative blocks-using Newmark’s and the central 
difference discretization-and the monolithic sol- 

ution method can be seen for the case in which the 
modal uncoupling was not used. It can be observed 
that in both cases the block iteratives schemes are 
more efficient, as they require a smaller number of 
iterations to calculate the response. 

All the above results correspond to a hysteretic 
base isolation system. Figures 9 and 10 show the same 
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Fig. 8. Total number of iterations in each step, structure Fig. 10. Total number of iterations in each step, structure 
without modal uncoupling (central differences method). without modal uncoupling corresponding to frictional case 

(central differences method). 

comparison between the monolithic solution method 
and the iterative block which uses the Newmark 
formulation, but for a fricional base isolation system. 
The results of Fig. 9 correspond to the case of using 
prior modal uncoupling, whereas Fig. 10 shows the 
results of the system of equations without uncou- 
pling. Comparison of Figs 9 and 10 (frictional bear- 
ing) with Figs 5 and 7 (hysteretic bearing) shows that 

..^ 
I”” 20” NO. 

Step 
400 500 

Fig. 9. Total number of iterations in each step, structure 
with modal uncoupling corresponding to frictional case 

(Newmark method). 

! ’ ___ Monolithic-Newmark 
I 

- Block-Newmark 

the average number of iterations is similar for both 
types of bearings. Nevertheless, there is a greater 
variation in the number of iterations between calcu- 
lation steps in the frictional case. 

5.4. Convergence analysis 

This section analyses the variation of the residual 
norm for cases using iterative block schemes com- 

I 0. 

Newmark hysteretic 
------------ 10 modes-monolithic 
------- IO modes-black iterative 
----- Without uncaupling-monolithic 
----- Without uncoupling-block 

Fig. 11. Variation of the residual norm, structure with 
hysteretic isolation, Newmark method. 
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Newmark frictional Central differences hysteretic 

~-~~--~~---~ IO modes-monolithic 
-~----- 10 modes-block ilerallve 
----- Without uncoupling-monolithic 
----- Without uncoupling-block 

5 20 25. 

Fig. 12. Variation of the residual norm, structure with Fig. 13. Variation of the residual norm, structure with 
frictional isolation, Newmark method. hysteretic isolation, central differences method. 

pared to cases using monolithic solutions. This com- 
parison is made at the step in which the maximum 
number of iteration occurs. A tolerance of 1% in 
residual forces has been considered in the evaluation 
of the convergence of the iterative process. Figure 11 
shows the variation of the residual normal for the 
case of the structure with hysteretic isolation for the 
Newmark formulation, whereas Fig. 12 shows the 
solutions for the case of frictional isolation. The same 
comparison can be seen in Fig. 13 for the case of a 
hysteretic isolation, the central differences method 
being used. Note that the variation of the residual 
norm is similar in the two cases where the iterative 
block method is applied (Newmark and central differ- 
ences). 

5.5. Comparison of computation times 

This section analyses the time used by the com- 
puter to solve the problem for the various procedures 
described above. These times are taken for different 
modes of vibration in the case, including modal 
analysis and for the case without uncoupling, for 
both the monolithic scheme and that of iterative 
blocks. The following tables summarize the results 
obtained for the 10 storey building described earlier 
and for the sinusoidal vibration mentioned in Section 
5.3. Table 1 shows the CPU time obtained in a 
VAX-6420 computer for the monolithic solution 
using the Newmark simple-step method and Table 2 
shows the times corresponding to the block iterative 

Table 1. Calculation times for the monolithic scheme 

Modes Loops(s) Iterations(s) Systems solutions(s) 

10 226.10621 0.02690 0.01221 
5 146.95659 0.01879 0.00586 
1 8 1.48294 0.01386 0.00210 

No uncoupling 250.11798 0.02724 0.01180 

Table 2. Calculation times for the block iteration scheme 

Modes Loops(s) Iterations(s) Systems solutions(s) 

10 208.92214 0.02602 0.01124 
5 122.46383 0.01761 0.00481 
1 45.63047 0.01269 0.00175 

No uncoupling 210.67212 0.02598 0.00967 
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scheme using the Newmark discretization. These 
tables show that the block iterative schemes calculate 
the response of the system in less time than the 
monolithic scheme for all cases analyzed. 

6. CONCLUSIONS 

In this paper we have described the application of 
a block iterative technique to a nonlinear problem in 
structural analysis: the numerical simulation of the 
seismic response of structures with nonlinear base 
isolation. The method couples the equations describ- 
ing the motion of the building with those of the 
isolated base. This coupling is done by means of an 

iterative procedure that accounts for the nonlinearity 
of the problem. This nonlinearity is particularly 
relevant for the type of isolation that we have con- 
sidered, that is. frictional and hysteretic. 

In contrast to what happens when the monolithic 
system of equations is linearized, the block iterative 
technique treats the nonlinearity together with the 
coupling. This, apart from reducing the size of the 
problem by splitting it into two subproblems, may 
improve the convergence behaviour of the iterative 
scheme. 

The numerical experiments carried out show that 
in fact convergence improves when the block iterative 
method is used for the problem that we have studied 
in this work. It has to be noticed that the nonlinear 
terms have been linearized by computing them in 
the iteration previous to the current one. For the 
block iterative scheme, the resulting algorithm has a 
linear convergence rate with a slope steeper than 
using the monolithic one and more uniform More- 
over, due to the smaller size of the subproblems to the 
dealt with, the computer time per iteration is also 
smaller. 

Besides the better convergence and the lower com- 
puter cost, another aspect that makes the block 
iterative technique attractive is the ease for its nu- 
merical implementation in existing codes. For the 
problem treated in this paper, codes dealing with 
fixed base structures are easily adapted simply by 
adding the equations corresponding to the isolation 
system, no further modification of the construction of 
the matrices and solution of the equations for the 
building being required. 
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