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Abstract. A major objective of the study described in the present paper is to achieve a high
accuracy in the time integration of transient convection-diffusion problems and to eventually
combine this with new methods for space discretization, such as meshless methods. In this way,
a uniformly high-order accurate methodology could be made available for the numerical solution of
convection-diffusion problems. Both Padé approximations of the exponential function and Runge-
Kutta methods are considered for deriving multi-stage schemes involving first time derivatives
only, thus easier to implement than standard Taylor-Galerkin schemes which incorporate second
and third time derivatives. After a brief discussion of the stability and accuracy properties of
the multi-stage schemes and the presentation of illustrative examples, the paper closes with some
considerations on the coupling of high-order accurate temporal schemes and meshless methods
for the spatial representation.
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1 INTRODUCTION

A great deal of effort has been devoted in recent years to the development of finite element meth-
ods for the numerical approximation of transport problems involving convective and diffusive
processes. As described by Morton in his recent book [1], many different ideas and approaches
have been proposed to overcome the deficiencies of the Galerkin method in highly convective
situations.

In the particular case of truly transient problems, which are of interest in the present paper,
the basic issue is not merely a question of achieving a stable and accurate spatial approximation,
another equally important aspect being to ensure an adequate coupling between the spatial
approximation provided by the finite element method and the time discretisation [2]-[5]. For
instance, the absence of an adequate coupling between spatial and temporal discretisations is
the reason why second-order accurate time-stepping methods, such as the Lax-Wendroff, leap-
frog and Crank-Nicolson methods, properly combine with linear finite elements in convection
problems only for small values of the time step, thus severely undermining the utility of such
time integration schemes in practical applications.

Due to the coupling effects between space and time discretisations, methods for developing
time-accurate finite element methods for highly convective unsteady problems must clearly go
beyond the concept of properly adding diffusion to the underdiffuse Galerkin method, which was
the key to the success in steady state situations. In the transient case, the overall truncation
error of numerical schemes clearly incorporates the effects of both the spatial and the temporal
discretisations and this must be taken into account when generalising the Galerkin finite element
method for truly transient problems. In particular, by contrast with the steady state case, the
truncation error in the discretisation of the linear, one-dimensional convection equation cannot
be expressed in the form of a diffusion operator. Here, the overall truncation error depends
upon the particular time-stepping method used in combination with linear finite elements [1],
[3]- [5] and it generally involves both even and odd spatial derivatives of the unknown, thus
simultaneously affecting the dissipative and the dispersive properties of the numerical schemes.

In the present paper, a study has been made of high order time-stepping methods with the
view of identifying schemes that could possibly be used for a time accurate finite element solu-
tion of transient problems describing convective-diffusive transport. Both explicit and implicit
methods are considered.

To be easily implemented in combination with Co finite elements, high-order time-stepping
schemes for the convection-diffusion equation should not involve higher-order time derivatives.
This is the case for Runge-Kutta methods [6, 7] , as well as for multi-stage schemes emanating
from Padé approximations to the exponential function [8, 9]. Schemes involving first time
derivatives are indeed easier to implement for solving unsteady convection-diffusion problems
than the standard Taylor-Galerkin schemes which imply the substitution of the higher-order time
derivatives with spatial derivatives [10]. Moreover, some of the implicit methods to be discussed
possess the interesting property of unconditional stability in application to hybrid parabolic-
hyperbolic equations and are thus of great interest for solving transient convection-diffusion
problems.

Section 2 is devoted to a discussion of multi-stage schemes obtained from Padé approxima-
tions to the exponential function. The properties of such schemes are then briefly summarized
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as regards their stability properties and their phase and damping responses.
Then, Runge-Kutta methods of high order are introduced in Section 3. Both explicit and

implicit methods are considered and their stability and accuracy properties are compared with
those of corresponding Padé approximations.

Numerical results are then presented in Section 4 to confirm the accuracy and stablility
properties of some of the multistage methods considered in the paper.

Finally, Section 5 presents the main conclusions of the present study and indicates the lines
of ongoing research in the area of numerical simulation of convection-diffusion phenomena.

2 MULTI-STAGE APPROACH TO PADE
APPROXIMATIONS

The task of integrating forward in time the convection-diffusion equation

∂u

∂t
+ a · ∇u = k∇2u (1)

amounts to devise an approximation to the evolution operator

E(∆t) : u(tn) → u(tn+1)

which allows to transport the numerical solution at a given time tn = n ∆t to the next time
station tn+1 = tn + ∆t. Now, from the forward Taylor series development

un+1 =

(
1 + ∆t

∂

∂t
+

1
2!

∆t2
∂2

∂t2
+

1
3!

∆t3
∂3

∂t3
+ . . .

)
un

= exp
(

∆t
∂

∂t

)
un, (2)

one notes that the evolution operator E(∆t) is given by the exponential function in the above
relationship. It is, therefore, apparent that time-stepping schemes of various orders of accuracy
can be devised in the form of Padé approximations [7, 8, 9] to the exponential function. Padé
approximations to ex, where in the present context x = ∆t ∂

∂t , are shown in Table 1 in which
classical explicit and implicit time integration methods are easily recognized.

With the view of integrating convection-diffusion equations forward in time using first time
derivatives only, we shall now look at ways of reproducing higher-order Padé approximations
through a multi-stage process. Explicit methods will be considered first. Then, multi-stage
schemes corresponding to implicit Padé approximations will be examined. The section closes
with a summarized account of the accuracy and stability properties of the various multi-stage
Padé schemes.

2.1 Explicit multi-stage methods

Padé approximants Rn,0 in the first row of Table 1 are fully explicit approximations which yield
time-stepping schemes of the type:

un+1 = E∆ un = un + ∆t un
t + 1

2∆t2 un
tt + 1

6∆t3 un
ttt + · · · . (3)

3



J. Donea, B. Roig and A. Huerta

To avoid second and higher-order time derivatives which are difficult to express in terms of the
spatial derivatives using the governing convection-diffusion equation, a multi-step approach to
the explicit schemes derived from the Rn,0 approximations has been proposed in the literature.

As far as R2,0 is concerned, a two-step approach has been suggested first by Richtmyer in
the finite difference context (see [11]). Here, we write it in the form

un+
1
2 = un + 1

2∆t un
t

un+1 = un + ∆tu
n+

1
2

t (4)

which emanates from the following factorization of Padé approximation R2,0 :

1 + x + 1
2x2 = 1 + x

(
1 + 1

2x
)

(5)

Similarly, for Padé approximation R3,0, a three-stage approach has been suggested to produce
a third-order method involving first time derivatives only. This corresponds to the following
factorization of R3,0:

1 + x + 1
2x2 + 1

6x3 = 1 + x
(
1 + 1

2x + 1
6x2

)
= 1 + x

(
1 + 1

2x(1 + 1
3x)

)
(6)

which produces the three-stage scheme

un+
1
3 = un + 1

3∆t un
t

un+
1
2 = un + 1

2∆t u
n+

1
3

t

un+1 = un + ∆t u
n+

1
2

t (7)

This third-order explicit scheme has been employed in references [12] and [13] in the finite
element solution of incompressible flow problems.

The above procedure is easily generalized to higher order Padé approximants. For instance,
the explicit Padé approximation R4,0 can be transformed into a four-stage method through the
following factorization:

1 + x + 1
2x2 + 1

6x3 + 1
24x4 = 1 + x

(
1 + 1

2x + 1
6x2 + 1

24x3
)

= 1 + x
(
1 + 1

2x(1 + 1
3x + 1

12x2)
)

= 1 + x
(
1 + 1

2x
(
1 + 1

3(1 + 1
4x)

))
(8)

which produces the four-stage explicit method

un+
1
4 = un + 1

4∆t un
t

un+
1
3 = un + 1

3∆t u
n+

1
4

t

un+
1
2 = un + 1

2∆t u
n+

1
3

t

un+1 = un + ∆t u
n+

1
2

t (9)
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Rn,m(x) n = 0 n = 1 n = 2 n = 3

m = 0 1 1 + x 1 + x +
1
2
x2 1 + x +

1
2
x2 +

1
6
x3

m = 1
1

1− x

1 + 1
2x

1− 1
2x

1 + 2
3x + 1

6x2

1− 1
3x

1 + 3
4x + 1

4x2 + 1
24x3

1− 1
4x

m = 2
1

1− x + 1
2x2

1 + 1
3x

1− 2
3x + 1

6x2

1 + 1
2x + 1

12x2

1− 1
2x + 1

12x2

1 + 3
5x + 3

20x2 + 1
60x3

1− 2
5x + 1

20x2

m = 3
1

1− x + 1
2x2 − 1

6x3

1 + 1
4x

1− 3
4x + 1

4x2 − 1
24x3

1 + 2
5x + 1

20x2

1− 3
5x + 3

20x2 − 1
60x3

1 + 1
2x + 1

10x2 + 1
120x3

1− 1
2x + 1

10x2 − 1
120x3

Table 1: Padé approximations of the exponential function ex.
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As will be seen in Section 3, this method does possess the same stability and accuracy properties
as the classical fourth-order explicit Runge-Kutta method.

2.2 Implicit multi-stage methods

We shall now consider implicit multi-stage methods for the convection-diffusion equation ema-
nating from Padé approximations in Table 1 corresponding to m 6= 0. Actually, not all implicit
methods with m 6= 0 are unconditionally stable in application to the linear convection–diffusion
equation. As discussed in Section 3, only those approximations which are on or below the
diagonal in Table 1, i.e., the Rn,m with m ≥ n, do possess interesting stability properties.

Due to space limitation, we shall limit ourselves to illustate the derivation of multi-stage
implicit Padé schemes for the fourth-order approximant R2,2 and the sixth-order one R3,3. Multi-
stage schemes corresponding to other implicit approximants are derived along similar lines [9].

The implicit method corresponding to R2,2 reads(
1 − x

2
+

x2

12

)
un+1 =

(
1 +

x

2
+

x2

12

)
un, (10)

and produces the well-known fourth-order scheme of Harten and Tal-Ezer [14]:

un+1 = un +
∆t

2

(
un

t + un+1
t

)
+

∆t2

12

(
un

tt − un+1
tt

)
(11)

To avoid second time derivatives, we rewrite expression (10) in the following factorized form:(
1 − x

2
(1 − x

6
)
)

un+1 =
(

1 +
x

2
(1 +

x

6
)
)

un (12)

from which the following 4-stage method incorporating two explicit stages and two implicit ones
can be deduced:

un+
1
6 = un +

∆t

6
un

t

un+
1
2 = un +

∆t

2
u

n+
1
6

t

ũ = un+1 − ∆t

6
un+1

t

un+1 = un+
1
2 +

∆t

2
ũt (13)

Note that the two implicit stages in (13) are coupled and thus require a simultaneous solution.
Considering now approximation R3,3, it produces the time scheme(

1 − x

2
+

x2

10
− x3

120

)
un+1 =

(
1 +

x

2
+

x2

10
+

x3

120

)
un, (14)

which reads

un+1 − un

∆t
=

1
2

(
un

t + un+1
t

)
+

∆t

10

(
un

tt − un+1
tt

)
+

∆t2

120

(
un

ttt + un+1
ttt

)
, (15)
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Scheme (15) is sixth-order accurate in the time step ∆t. To implement such a scheme using first
time derivatives only, the following factorization of expression (14) is introduced(

1− x

2

(
1− x

5
(1− x

12
)
))

un+1 =
(

1 +
x

2

(
1 +

x

5
(1 +

x

12
)
))

un (16)

This leads to a multi-stage version of R3,3 involving three explicit stages

un+
1
12 = un +

∆t

12
un

t

un+
1
5 = un +

∆t

5
u

n+
1
12

t

un+
1
2 = un +

∆t

2
u

n+
1
5

t (17)

followed by three implicit ones

un+1 − ∆t

12
un+1

t = ũ

un+1 − ∆t

5
ũt = û

un+1 − ∆t

2
ût = un+

1
2 (18)

Here again, the implicit stages are coupled and require a simultaneous solution

Remarks:

1. When using the above high-order accurate implicit methods in combination with finite
elements for spatial discretization, the dimension of the system of semidiscrete equations
to be solved at each time station is, as we have seen, very much increased (doubled for the
fourth-order method, tripled for the sixth-order one) with respect to traditional second
order methods, such as the Crank-Nicolson scheme. However, as shown in Section 4, the
high-order time schemes permit the use of larger time-step values for an identical global
time accuracy.

2. When dealing with pure convection problems it is generally possible to express the second
time derivative of the unknown in terms of spatial derivatives. It follows that multi-stage
schemes incorporating both first and second time derivatives can be employed for solving
problems describing purely convective transport. In this respect, approximation R2,2 can
be used directly in pure convection problems, as shown in references [3] and [4] where
scheme (11) is directly used in combination with linear elements for spatial discretization.

3. The sixth-order approximation R3,3 can also be specialized to deal with pure convection
problems. The result of its factorization in the form(

1− x

2
(1− x

5
+

x2

60
)

)
un+1 =

(
1 +

x

2
(1 +

x

5
+

x2

60
)

)
un (19)

7



J. Donea, B. Roig and A. Huerta

is a four-stage method including two explicit phases and two implicit ones as follows:

un+
1
5 = un +

∆t

5
un

t +
∆t2

60
un

tt

un+
1
2 = un +

∆t

2
u

n+
1
5

t

ũ = un+1 − ∆t

5
un+1

t +
∆t2

60
un+1

tt

un+1 = un+
1
2 +

∆t

2
ũt (20)

3 Properties of Padé approximations

3.1 Stability analysis

The spatial discretization of the convection-diffusion equation using finite elements leads to the
following system of differential equations to be solved at each station of the time integration
procedure:

du
dt

= R(u) (21)

where u is the vector collecting the nodal values of the unknown and R(u, t) stands for the
nodal loads arising from the discretization of the first- and second-order spatial operators.

In order to discuss the stability of any time-integration method applied to eq.(21), we first
define the eigenvalues λ of the spatial discretization operator R as

R(v) = λv (22)

where v is the eigenvector associated to the eigenvalue λ.
If R(u) corresponds to the spatially discrete form of a diffusion operator, the eigenvalues are

purely real and negative. On the other hand, if R(u) arises from the discretization of a convection
operator, its eigenvalues are complex with a negative real part if upwind approximations are
employed, whereas the real part is zero and the eigenvalues are purely imaginary whenever a
central spatial approximation (e.g., the Galerkin projection) is used.

The stability of the method is ensured if and only if the time step is such that the value of the
modulus of the amplification factor G is less than unity for all the eigenvalues of the discretization
operator R. It can be shown that the amplification factor of a Padé approximation Rn,m has
the same structure as the approximation itself:

G(Rn,m) = Rn,m(λ∆t). (23)

It follows that Table 1 contains the amplification factors of all Padé approximations considered
herein, provided we pose x = λ∆t.

In situations where diffusive effects are small with respect to the convective ones, the eigen-
values of R are distributed close to the imaginary axis of the λ∆t complex plane. A time
integration method whose stability region encloses the imaginary axis is then necessary. In the
frame of explicit methods, the Euler first-order scheme, the stability region of which does not
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enclose the imaginary axis of the λ∆t complex plane, has therefore to be rejected in favor, for
instance, of higher-order explicit Padé approximations or Runge-Kutta methods. However, even
if an explicit method has a stability domain which encloses part of the imaginary axis, the prob-
lem of a maximum allowable time step still remains. This is actually the case for all explicit
methods.

We have to turn to implicit methods in order to reach unconditional stability. The stability
domain then encloses the whole left half-plane of the λ∆t complex plane, including the imaginary
axis. Some implicit Padé approximations do possess the interesting property of unconditional
stability or A-stability. As shown in [6, 7], a Padé approximation Rn,m is unconditionally stable
if it satisfies the condition:

m− 2 ≤ n ≤ m ⇐⇒ Rn,m is A-stable (24)

It follows that the implicit Padé approximations

R0,1, R1,1, R0,2, R1,2, R2,2, R1,3, R2,3, R3,3

are A-stable and therefore potentially interesting for the time integration of convection-diffusion
equations.

3.2 Phase and damping responses

To analyze the accuracy properties of the implicit multi-stage Padé schemes, we consider their
application to the linear convection-diffusion equation

∂u

∂t
+ a

∂u

∂x
= ν

∂2u

∂x2
, (25)

using a uniform mesh of linear elements of size h. We then substitute a Fourier mode eikx into
the resulting discrete scheme and, defining the dimensionless wave number ξ = k h, obtain the
amplification factor of the Padé scheme in the form

G(Rn,m) = f(ξ , c , d). (26)

Here, c = a∆t/h is the Courant number and d = ν ∆t/h2 the diffusion number. The corre-
sponding quantity for the partial differential equation (25) is

Gexact = e−(δ + i ω) (27)

where δ = d ξ2 and ω = c ξ are the exact damping and the exact frequency, respectively. To
evaluate the accuracy of the Padé schemes beyond the asymptotic limit ∆t → 0, we introduce
the damping δnum and frequency ωnum of the fully discrete schemes through the relation

G(Rn,m) = e−(δnum + i ωnum) (28)

which implies

δnum = − ln |G(Rn,m)|

ωnum = arg (G(Rn,m)) . (29)

9
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ex.   R22    R33

R12

R13

R23

ω=cξω=cξ

|G|

δ=0

ex.

R12

R22
R13
R23
R33

ω=cξω=cξ

ωnumωnum

δ=0

Figure 1: Accuracy of some A-stable Padé approximations for pure convection.

On this basis, the frequency response of the schemes can be characterized by the relative phase
error ∆ = ωnum/ω − 1, and their damping response by the damping ratio δnum/δ.

Figures 1 to 3 give a graphical representation of the phase and damping responses of selected
implicit Padé schemes. Recall that the amplification factor of the schemes is given by the simple
relationship (23). In the case of pure convection (Fig.1), we note that, as expected, the frequency

R22

ex

R33

R23
R12

R13

ω=cξω=cξ

|G|

δ=ω

ex.

R22

R12

R13

R23

R33

ω=cξω=cξ

ωnumωnum

δ=ω

Figure 2: Accuracy of some A-stable Padé approximations for convection-diffusion.

response improves with the temporal accuracy of the multi-stage Padé schemes. We also observe
that, for each scheme, there is clearly an accuracy limit. In practice, this means that there is
an upper value of the Courant number beyond which there is a clear degradation in the phase

10
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accuracy. We also note from Fig. 1 that the off-diagonal approximants yield dissipative schemes,
while the Rn,n schemes are non-dissipative. As a consequence, such schemes are not ideally
suited to deal with pure convection problems if centered (Galerkin) approximations are used
for spatial discretization. These methods should therefore be combined with Petrov-Galerkin
methods (such as the SUPG [15] or the Galerkin-Least-squares [16] methods) for the spatial
representation.

δ

R22

R23
ex.

R33
R12

R13

GG

ω=0

Figure 3: Accuracy of some A-stable Padé approximations for pure diffusion.

Fig. 2 illustrates the frequency and damping responses for a mixed convective-diffusive
situation characterized by δ = ω. We see that all schemes exhibit a very good phase accuracy
up to ω ' 2 and that there is a systematic accuracy degradation beyond this value. The same
applies to the damping response, with all schemes being underdiffusive at elevated frequencies,
except R3,3 which is overdiffusive.

Finally, for the case of purely diffusive transport, Fig. 3 indicates an accurate response of all
schemes up to δ = d ξ2 ' 2. This means that, in the range of accurate resolution (0 ≤ ξ ≤ π/4),
all schemes can be safely operated with a value of the diffusion number d of the order of 3. One
also notes that approximants R1,3 and R3,3 are the most accurate in pure diffusion with an
excellent response up to δ = 6.

4 Runge-Kutta methods

The Runge-Kutta methods are multi-stage methods that only make use of the solution un at
time tn to compute the next solution un+1. This is achieved by computing a number k of
intermediate values of the time derivative of the unknown u, within the interval ∆t = tn+1− tn.

11
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Applied to the differential equation
du

dt
= R(u, t) (30)

the most general form of a k-stage Runge-Kutta method is written as follows [6, 7]:

δi = ∆tR


un +

k∑
j=1

aij δj , tn + ci∆t


 i = 1, . . . , k (31)

un+1 = un +
k∑

i=1

bi δi (32)

The associated consistency conditions are (see e.g. [6])

ci =
k∑

j=1

aij and
k∑

i=1

bi = 1 (33)

The widely used explicit Runge-Kutta methods are such that aij = 0 for j ≥ i. If this condition
is not satisfied, the methods are implicit.

4.1 Explicit Runge-Kutta methods

The most popular explicit Runge-Kutta method is the classical fourth-order four-stage scheme:

δ1 = ∆tR (un , tn)

δ2 = ∆tR
(
un + 1

2δ1 , tn + 1
2∆t

)
δ3 = ∆tR

(
un + 1

2δ2 , tn + 1
2∆t

)
δ4 = ∆tR (un + δ3 , tn + ∆t)

un+1 = un +
1
6

(δ1 + 2δ2 + 2δ3 + δ4) (34)

The amplification factor of the above fourth-order Runge-Kutta method is given by:

G = 1 + (λ∆t) +
1
2!

(λ∆t)2 +
1
3!

(λ∆t)3 +
1
4!

(λ∆t)4 (35)

The method is effectively fourth-order accurate since G matches exp(λ∆t) to the fourth-order
term. The associated absolute stability curve is the same as that of Padé approximation R4,0

and is shown in Fig.(4). It cuts the real and imaginary axes at −2.78 and ±2
√

2, respectively [7].
Since the absolute stability region contains a finite portion of the imaginary axis, the method
can be used in convection dominated situations.

12
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Figure 4: Stability domain of explicit Padé and Runge-Kutta methods of order s.

4.2 Implicit Runge-Kutta methods

Generally, the application of an implicit Runge-Kutta method requires the simultaneous solution
of the k equations for the increments δi (i = 1, . . . , k).

Butcher (see e.g. [6]) has deeply investigated k-stage Runge-Kutta methods and shown that,
for each value of k, there is one method of order 2k. Moreover, Crouzeix [7] has demonstrated
that such high-order methods are A-stable. This is indeed a very attractive property of implicit
Runge-Kutta methods in view of their application in the solution of transient advection-diffusion
problems.

The only fourth-order accurate two-stage implicit Runge-Kutta method is given by [7]

[aij ] =

[
1
4

1
4 −

√
3

6
1
4 +

√
3

6
1
4

]
b =

(
1
2
1
2

)
c =

(
1
2 −

√
3

6
1
2 +

√
3

6

)
(36)

The method then reads

δ1 = ∆t R (un + a11δ1 + a12δ2 , tn + c1∆t)
δ2 = ∆t R (un + a21δ1 + a22δ2 , tn + c2∆t)

un+1 = un + b1δ1 + b2δ2 (37)

The size of the implicit system associated with this method is double when compared to standard
second-order methods, since δ1 and δ2 must be simultaneously determined. This is the price
to pay to obtain an unconditionally stable fourth-order accurate time integration scheme. As
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Implicit RK
method

Multistage Padé
method

Order
Amplification

factor
Gauss Rn,n 2n Rn,n(z)

Radau IA Rn−1,n 2n− 1 Rn−1,n(z)
Radau IIA Rn−1,n 2n− 1 Rn−1,n(z)

Lobatto IIIA Rn−1,n−1 2n− 2 Rn−1,n−1(z)
Lobatto IIIB Rn−1,n−1 2n− 2 Rn−1,n−1(z)
Lobatto IIIC Rn−2,n 2n− 2 Rn−2,n(z)

Table 2: Relationship between implicit Runge-Kutta methods and multi-stage Padé schemes.

indicated next, this fourth-order method possesses the same phase and damping properties as
Padé scheme R2,2.

4.3 Similarities between Runge-Kutta and Padé methods

In the explicit n−order algorithms, like the Rn,0 Padé approximants or the explicit Runge-Kutta
methods, the amplification factor G(z), where z = λ∆t (see eq. (23)), is a polynomial which
reads

G(z) = 1 +
z

1!
+

z2

2!
+ · · ·+ zn

n!
+ T (z) (38)

where T (z) = O(zn+1). That is,

G(z) = Rn,0(z) + T (z) (39)

The polynomial structure of G(z) in equation (38) indicates why explicit methods cannot be
A-stable. In the multistage explicit Padé methods, one has T (z) = 0 and the same holds for
the explicit n-stage Runge-Kutta methods of order n [6]. Thus, the multistage explicit Padé
schemes and the n-stage Runge-Kutta methods of order n are equivalent in application to linear
problems. The only difference resides in the numerical implementation of the methods. Recall
that the maximum order of a n-stage explicit Runge-Kutta method of order n is 4.

Among the implicit methods, k-stage Runge-Kutta methods of order 2k are called the Gauss
methods. There are other classical families of implicit Runge-Kutta methods, such as the Radau-
IA and Radau-IIA k-stage methods of order 2k − 1, and the Lobatto-IIIA, Lobatto-IIIB and
Lobatto IIIC k-stage methods of order 2k − 2 [6, 7]. As indicated in Table 2 from reference
[7], the various families of Runge-Kutta methods mentioned above are intimately related to the
Padé multi-stage methods in the sense that they possess identical amplification factors.

Another family of implicit Runge-Kutta methods includes the so-called diagonally implicit
(DIRK) methods. The great advantage of such methods is the absence of coupling between the
various stages (aij = 0 in eq. (31) for i < j), which reduces the size of the systems to be solved
at each step of the time integration procedure. Unfortunately, the accuracy properties of the
DIRK methods in mixed convection-diffusion situations are significantly inferior to those of the
classical implicit Runge-Kutta methods and of the implicit Padé schemes.
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Pe = 5
c = 0.236556
d = 0.0473112
T = 0, 12, 60, 108
steps = 510 (T=120)

Pe = 5
c = 0.236556
d = 0.0473112
T = 0, 12, 60, 108
steps = 510 (T=120)

Pe = 5
c = 0.396416
d = 0.0792832
T = 0, 12, 60, 108
steps = 310 (T=120)

Pe = 5
c = 0.396416
d = 0.0792832
T = 0, 12, 60, 108
steps = 310 (T=120)

3TG TG2Pe

Figure 5: Convection-diffusion of a Gaussian by 3TG [12] and TG2Pe [17] with Pe = 5.

5 Numerical examples

Preliminary tests were performed to assess the performance of selected Padé schemes of high
order in the solution of advection and advection-diffusion problems.
The selected schemes are R1,2, R2,2, R2,3 and R3,3.
Advection-Diffusion of a Gaussian Profile
To illustrate the performance of high-order Padé schemes and compare them to standard explicit
schemes, consider first the linear advection-diffusion problem over the spatial interval [0, 150]
defined by

u(x, 0) =
2.5
σ

e−
1
2
X2

u(0, t) = 0 (40)

with X = (x− x0)/σ, σ = 3.5 and x0 = 20 for Pe = 5 and x0 = 60 for Pe = 0.1. We have used
a unifrom mesh with h = 1.
In Figs. 5 to 10, we compare the profiles of the Gaussian obtained at various time levels with the
fourth-order scheme R2,2, with the three-stage explicit scheme R3,0 (3TG) and with the second
order explicit scheme of Peraire [17] (TG2Pe). Two values of the Péclet number were considered,
namely Pe = 0.1 and Pe = 5. The explicit schemes were operated with a time step equal to 90
percent of their critical value, while R2,2 used large values of the Courant number c to appraise
its accuracy well beyond the stability limit of the explicit schemes. The results indicate that
the fourth-order implicit scheme can produce very accurate answers for large values of the time
step. The dotted lines in Figs. 5 to 10 correspond to the analytical solution of the problem.
The Burgers equation
The main objective of the A-stable implicit methods is to solve nonlinear stiff problems. We use
the nonlinear Burgers advection equation with diffusion to show the improvement of the high-
order Padé schemes against the standard explicit schemes. We consider the Burgers problem
over the spatial interval [0, 1] defined by

ut + uux = kuxx

u(x, 0) = sin(πx)
u(0, t) = u(1, t) = 0 (41)

for Pe = 1 and k = 0.001. We have used a uniform mesh with h = 0.001.
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Pe = 5
c = 3
d = 0.6
T = 0, 12, 60, 108
steps = 40 (T=120)

Pe = 5
c = 3
d = 0.6
T = 0, 12, 60, 108
steps = 40 (T=120)

Pe = 5
c = 2
d = 0.4
T = 0, 12, 60, 108
steps = 60 (T=120)

Pe = 5
c = 2
d = 0.4
T = 0, 12, 60, 108
steps = 60 (T=120)

R22

R22

Pe = 5
c = 3
d = 0.6
T = 0, 12, 60, 108
steps = 40 (T=120)

Pe = 5
c = 3
d = 0.6
T = 0, 12, 60, 108
steps = 40 (T=120)

Pe = 5
c = 2
d = 0.4
T = 0, 12, 60, 108
steps = 60 (T=120)

Pe = 5
c = 2
d = 0.4
T = 0, 12, 60, 108
steps = 60 (T=120)

R12

R12

Figure 6: Convection-diffusion of a Gaussian by R1,2 and R2,2 with Pe = 5 at c = 2, 3.

In the R2,3 and R3,3 Padé methods a nonlinear system is solved at each time step by Newton-
Raphson iteration. Only two iterations are needed to obtain accuracy over 10−4. Figures 11
and 12 show the results for the implicit and explicit methods. You can see the efficiency of the
high order Padé methods in Table 3. The R2,3 and the R3,3 methods are more than seven times
faster than the TG2Pe method, and more than seventeen times faster than the 3TG method.
The explicit schemes were operated with a time step equal to 75 percent of their critical value
to avoid oscilations, while R2,3 and R3,3 used large values of the Courant number c.

Pe = 5
c = 3
d = 0.6
T = 0, 12, 60, 108
steps = 40 (T=120)

Pe = 5
c = 3
d = 0.6
T = 0, 12, 60, 108
steps = 40 (T=120)

Pe = 5
c = 6
d = 1.2
T = 0, 12, 60, 108
steps = 20 (T=120)

Pe = 5
c = 6
d = 1.2
T = 0, 12, 60, 108
steps = 20 (T=120)

R33

R33

Pe = 5
c = 3
d = 0.6
T = 0, 12, 60, 108
steps = 40 (T=120)

Pe = 5
c = 3
d = 0.6
T = 0, 12, 60, 108
steps = 40 (T=120)

Pe = 5
c = 6
d = 1.2
T = 0, 12, 60, 108
steps = 20 (T=120)

Pe = 5
c = 6
d = 1.2
T = 0, 12, 60, 108
steps = 20 (T=120)

R23

R23

Figure 7: Convection-diffusion of a Gaussian by R2,3 and R3,3 with Pe = 5 at c = 3, 6.
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Pe=0.1
c=0.0075231
d=0.075231
T= 0, 2, 6, 24, 48
steps= 7980 (T=60)

Pe=0.1
c=0.0075231
d=0.075231
T= 0, 2, 6, 24, 48
steps= 7980 (T=60)

Pe=0.1
c=0.0099672
d=0.0996722
T= 0, 2, 6, 24, 48
steps= 6020 (T=60)

Pe=0.1
c=0.0099672
d=0.0996722
T= 0, 2, 6, 24, 48
steps= 6020 (T=60)

3TG TG2Pe

Figure 8: Convection-diffusion of a Gaussian by 3TG [12] and TG2Pe [17] with Pe = 1.

Pe=0.1
c=0.5
d=5
T= 0, 2, 6, 24, 48
steps= 120 (T=60)

Pe=0.1
c=0.5
d=5
T= 0, 2, 6, 24, 48
steps= 120 (T=60)

R22
Pe=0.1
c=0.5
d=5
T= 0, 2, 6, 24, 48
steps= 120 (T=60)

Pe=0.1
c=0.5
d=5
T= 0, 2, 6, 24, 48
steps= 120 (T=60)

R12

Pe=0.1
c=1
d=10
T= 0, 2, 6, 24, 48
steps= 60 (T=60)

Pe=0.1
c=1
d=10
T= 0, 2, 6, 24, 48
steps= 60 (T=60)

R22
Pe=0.1
c=1
d=10
T= 0, 2, 6, 24, 48
steps= 60 (T=60)

Pe=0.1
c=1
d=10
T= 0, 2, 6, 24, 48
steps= 60 (T=60)

R12

Figure 9: Convection-diffusion of a Gaussian by R1,2 and R2,2 with Pe = 1 at c = 0.5, 1.

Pe=0.1
c=1
d=10
T= 0, 2, 6, 24, 48
steps= 60 (T=60)

Pe=0.1
c=1
d=10
T= 0, 2, 6, 24, 48
steps= 60 (T=60)

R33

Pe=0.1
c=1
d=10
T= 0, 2, 6, 24, 48
steps= 60 (T=60)

Pe=0.1
c=1
d=10
T= 0, 2, 6, 24, 48
steps= 60 (T=60)

R23

Pe=0.1
c=2
d=20
T= 0, 2, 6, 24, 48
steps= 30 (T=60)

Pe=0.1
c=2
d=20
T= 0, 2, 6, 24, 48
steps= 30 (T=60)

R33

Pe=0.1
c=2
d=20
T= 0, 2, 6, 24, 48
steps= 30 (T=60)

Pe=0.1
c=2
d=20
T= 0, 2, 6, 24, 48
steps= 30 (T=60)

R23

Figure 10: Convection-diffusion of a Gaussian by R2,3 and R3,3 with Pe = 1 at c = 1, 2.
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Pe=1
c=0.072
d=0.072
T= 0, 0.2, 0.4, 0.6, 0.8, 1
steps= 13809 (T=1)

Pe=1
c=0.072
d=0.072
T= 0, 0.2, 0.4, 0.6, 0.8, 1
steps= 13809 (T=1)

TG2Pe

Pe=1
c=0.0907
d=0.0907
T= 0, 0.2, 0.4, 0.6, 0.8, 1
steps= 10998 (T=1)

Pe=1
c=0.0907
d=0.0907
T= 0, 0.2, 0.4, 0.6, 0.8, 1
steps= 10998 (T=1)

3TG

Figure 11: Solution of Burgers equation by 3TG [12] and TG2Pe [17] with Pe = 1.

Pe=1
c=6
d=6
T= 0, 0.2, 0.4, 0.6, 0.8, 1
steps= 170 (T=1)

Pe=1
c=6
d=6
T= 0, 0.2, 0.4, 0.6, 0.8, 1
steps= 170 (T=1)

R23

Pe=1
c=6
d=6
T= 0, 0.2, 0.4, 0.6, 0.8, 1
steps= 170 (T=1)

Pe=1
c=6
d=6
T= 0, 0.2, 0.4, 0.6, 0.8, 1
steps= 170 (T=1)

R33

Pe=1
c=3
d=3
T= 0, 0.2, 0.4, 0.6, 0.8, 1
steps= 335 (T=1)

Pe=1
c=3
d=3
T= 0, 0.2, 0.4, 0.6, 0.8, 1
steps= 335 (T=1)

R23

Pe=1
c=3
d=3
T= 0, 0.2, 0.4, 0.6, 0.8, 1
steps= 335 (T=1)

Pe=1
c=3
d=3
T= 0, 0.2, 0.4, 0.6, 0.8, 1
steps= 335 (T=1)

R33

Figure 12: Solution of Burgers equation by R2,3 and R3,3 with Pe = 1 at c = 3, 6.
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method cmax d ∆t CPU Time steps
TG2Pe 0.072 0.072 0.000072 2215 13809
3TG 0.0907 0.0907 0.0000907 5216 10998
R23 3 3 0.003 537 335
R23 6 6 0.006 280 170
R33 3 3 0.003 572 335
R33 6 6 0.006 306 170

Table 3: Comparison of the Padé and the explicit methods for the Burgers problem.

6 Conclusions

A multi-stage approach to Padé approximations of the exponential function can provide inter-
esting explicit and implicit time-stepping methods of high order. Such methods only involve
first time derivatives and are therefore easier to implement than Taylor-Galerkin methods in
application to convection-diffusion problems.

Various Runge-Kutta methods were also considered and the intimate relationship between
Runge-Kutta methods and multi-stage schemes derived from Padé approximations has been
underlined.

Numerical tests have clearly shown that, when compared to traditional second-order time-
stepping methods, the higher-order schemes permit the use of larger time-step values to reach
a given time accuracy. Indeed the cost per time step of the high-order implicit methods is very
much increased with respect to traditional second-order methods.

At this stage, further research efforts should be devoted to ways of improving the spatial
accuracy and thereby achieve a uniformly high-order accurate computational method for evolu-
tionary convection-diffusion problems. New methods for spatial discretization, such as meshless
methods, are currently being investigated as regards their stability and accuracy properties in
application to highly convective transport problems.
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