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Industrial Summary

This paper describes the objectives and current status of the research project NUMISTAMP
currently under development at the International Center for Numerical Methods in Engineer-
ing of (CIMNE) located in Barcelona, Spain. The aim of this project is the assesment of different
finite element models for simulation of sheet stamping processes. The models currently ana-
lyzed include: quasistatic viscoplastic flow and elastoplastic solid models and explicit dynamic
models. Both shell and continuum elements are considered in most of these cases. The paper
presents an overview of the basic features of the different models. Examples of application
including some benchmark test cases proposed at NUMISHEET are also presented.

1. Introduction

Considerable effort has been made in recent years in the development of numerical
models for analysis of sheet stamping processes. The intrinsic complexity of these
problems due to material and geometrical nonlinearities, contact and friction effects
and time changing boundary conditions, has made difficult the development of
reliable and efficient numerical procedures which allow the solution of practical
industrial stamping problems at reasonable times and cost.

Different finite element based codes for sheet-forming analysis have been developed
worldwide and many are now operational for the solution of practical sheet-stamping
problems. The dispersion in the basic approaches, constitutive equations, finite-
element models, solution strategies, etc. chosen for each of these codes is enormous.
This adds an extra difficulty for the non-experienced user who is typically confronted
with the need to choose a particular code without sufficient knowledge of the
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Fig. 1. Different finite element models analyzed in NUMISTAMP project.
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are the following:

1. Quasistatic rigid—plastic/viscoplastic flow model using plane strain, axisymmetric
and 3D shell elements.

2. Quasistatic elasto-plastic solid model using 2D/3D continuum elements, as well as
plane-strain, axisymmetric shell and 3D shell elements.

3. Explicit dynamic elasto-plastic solid model using 2D/3D continuum elements as
well as plane-strain, axisymmetric shell and 3D shell elements.
A flow chart showing the different models, currently studied, can be seen in Fig. 1.
A brief description of the basic features of each of these models is presented next.

2. Quasistatic flow model

2.1. Basic equations

This approach is typical of fluid mechanics, where a fixed Eulerian frame defining
a control volume through which the material flows is used. This method appears to be
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more natural for bulk-forming problems such as mould filling, rolling, extrusion, etc.
[4]. However, it can be applied also to stamping problems in a straight-forward
manner simply by identifying the control volume with the sheet geometry at each
deforming step [5-8].

The main variables of the flow approach are the velocities # of the points of the
deforming sheet, and these being linearly related to the rates of deformation & by

é=1Lu, (1
where L is the standard strain rate operator, i.e. for 2D problems
d
— 0
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viscoplastic materials including the effect of microscopic voids can be found in [9,10].
Also note that a cut-off value of x4 must be used in quasi-rigid zones where £ ~ 0 to
prevent singularity.

The set of equations for the flow approach is completed by the rate of virtual work
equation written as

jas'TadV - JéddeV + j&thdF, (5)
Vv 1 4 r
where b and ¢ are body forces and surface tractions acting on the sheet volume V and
the surface I', respectively.

2.2. Finite-element discretization

The form of the constitutive equation (4) for Von-Mises metals defines an incom-
pressible flow problem (i.e. é; = 0). This introduces serious difficulties if the finite-
element solution is based on “continuum” elements. However, the incompressibility
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condition can be simply imposed in “shell type” elements by setting Poisson’s ratio
equal to 0.5 and then updating the element thickness making use of the plane stress
condition.

It is interesting to note that the overall equations of the flow approach as written in
(1)=(5) are analogous to those of standard infinitesimal (incompressible) elasticity
[5-8,4]. This analogy can be exploited to simplify further the computational proced-
ure by directly using standard finite-element codes written for the elasticity case
simply replacing displacements and strains by velocities and strain rates, respectively,
and the shear modulus by the (non-linear) flow viscosity [5-8].

The velocity field is discretized in the standard form

i = Nd, (6)

where N and a are the shape function matrix and the nodal velocity vector [111.
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where r,p and fstand for the vectors of residual forces, internal forces and external
forces, respectively, x is the cartesian coordinate vector and ¢ is the time. Vector p can
be written in the flow approach as

p=Ki with K=JBTDBdV. (8)

v

In (8) K is the stiffness matrix obtained in terms of the constitutive matrix of Eq. (3)
and the strain rate matrix B = LN [5-8].
Eq. (7) can be iteratively solved for the values of 4. For the kth iteration we have

Aa"= _ [t+AtHk]-1t+Atrk (9)
where H is an adequate iteration matrix. Vector d is subsequently updated as

1+Atak+1 t+At k+Aa (10)
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The next step is to compute the new stress field by use of Eq. (3). Then the sheet
geometry and mechanical properties are updated and the sheet—tool contact and
friction conditions are checked. The process is restarted and continues until conver-
gence is achieved. The authors have found that a convergence norm based on the
velocities is more appropiate than one based on residual forces. This is due to the
cut-off value for the viscosity in quasi-rigid body zones, which can lead to inaccurated
stress values in these regions.

Details on the choice of the iteration matrix H and on the different geometry
updating procedures available can be found in Refs. [6—8].

2.3. Treatment of frictional contact

The interaction between the sheet and rigid tool surfaces can be treated as a prob-

1 ~ 1. LS R . S -1 S R i SV e g g I R

I Ol
for 2-D
surfaces are trea
A gz
(x(S)
ster

x™ and
10d

tl

Nnoacs an

implemented the closest master point is searched in the topological neighbourhood
of the previous closest point. The algorithm has found to be quite effective - the
contact operations have usually been kept within 10-15% of the total computation
time.

The penalty method has been adopted to enforce the normal contact conditions
and to compute normal contact forces. It is assumed that the normal contact force
F©° applied to the slave node is proportional to the amount of penetration (g < 0)
and a penalty coefficient k™, i.e. F® = — k'g. The tangential contact forces are
computed using the local regularized Coulomb friction law. Elasto-plastic analogy
between friction and elasto-plasticity [14, 18] is employed in the friction force calcu-

lation. A trial tangential force F{{,,, is calculated as

(ct) (ct) t 1
Fthy = Figiyy — kW Au®'® {11)

where F(l, is the friction force from the previous time step, k* is the penalty

coefficient for tangential forces and Au®"P is the relative displacement of the slave
node with respect to the master surface. The trial force is compared with the limit
friction force F{{ii, = uF*", where u is the friction coefficient, and an appropriate
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value is assigned to the friction force F{y,, according to the following rule:

F {F (ot if [Fifthyll < Fifimios (12)
(new) — .
Fftcrti)al) flcltnlm)/“F}fr'x)al)“ if ”F:frtl)al)” > F}fitx{ait)-

2.4. Prediction of spring-back effects

The computation of spring-back effects is of importance in sheet stamping opera-
tions. In principle only finite element computations incorporating elastic effects in the
constitutive equations (i.e. elastoplastic or elasto-viscoplastic models) can deal with
elastic recovery effects in a straight forward manner.

The authors have investigated the possibility of predicting spring-back effects using
a rigid- plastlc/v1scoplast1c flow formulation with the followmg procedure
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where 6° are the initial stresses in the last increment during the stamping process
using the flow approach, K is the elastic stiffness matrix kept constant during the
iterations and B* is the standard strain matrix from small displacement theory which
is updated for each iteration. The iterative process stops when the residual forces
equal to — jBTa dV satisfy a prescribed norm. This process can be enhanced by
scaling the initial stresses which are then applied in an incremental manner.

3. Quasistatic solid model
3.1. Basic concepts

This approach uses a total or updated description of the motion. The basic
variables are the displacements, u, of the deforming sheet points and these are related
to the strains, ¢, by standard non-linear kinematic expressions of the form

= (L + L(w)u, (14)
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where L is the linear operator of Eq. (1) and L(u) is a nonlinear strain operator
accounting for large displacement effects [11]. On the other hand, the constitutive
equations relating the appropiate stress measures, o, and the strains ¢ must be written
in an objective manner accounting for large strain effects. In our work the elasto-
plastic model has been chosen. Here two major branches can be recognized: hypoelas-
tic and hyperelastic models. Hypoelastic models have been traditionally used for the
constitutive description of large strain elasto-plasticity [ 16]. It is the experience of the
authors [20-22] that hyperelastic models have a big potential for the kind of material
nonlinearities appearing in metal forming problems and they have been chosen for
this work.

3.2. Kinematics description

gradier
Ir© = Fer.

Eq.(
clasti

Co ]
€ €O LEu
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where e° are the elastic Almansi strains in the current configuration and ¢ is a set of
internal variables also defined in the current configuration.
The following yield criterion is introduced:

f=/1leq). (17)

For the sake of simplicity an associated flow rule is considered. The model is
completed with the additive decomposition d = d° + d® and with Clasius—Duhem
inequality written as — py + o d > 0. This leads to the following expressions for the
stresses ¢ and the plastic dissipation y:

oy (e°) e OYP
e y=06:d —pF’T.q>0. (18)

g=p

From this the spatial elasticity tangent tensor is found as

e _OY(e)
D= e (19)
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Finally, the elastoplastic constitutive law is written as

. pe .. Of
2 ) o 2]
o pe. 9

5E.D.66+H

6=D":d with D®=D°— {

) (20)

where & is the Truesdell stress rate, D*? is the elastoplastic spatial tangent tensor and
H is the hardening coefficient.

Further details of the theoretical aspects of this model can be found in Refs.
[20-22].

3.4. Finite elements chosen and numerical implementation of the model
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son algorithm combined with an elastic predictor-plastic corrector scheme. Full
details of this approach can be found in [20-22].

Frictional contact effects are treated as described in Section 2.3 for the flow
approach but using in this case a Quasi-Coulomb Law [20].

Spring-back effects are modelled in a natural manner in this formulation since the
effect of elasticity is included throughout the process.

4. Explicit dynamic model

Explicit dynamic methods have recently become very popular in the context of the
solid approach, as they do not require the solution of a system of equations. The basic
idea is the solution of the dynamic equilibrium equation at time ¢ using an explicit
integration scheme with a diagonal matrix. The explicit—dynamic algorithm is shown in
Box 1. The advantage of this procedure is that the stiffness matrix does not need to be
formed and that contact conditions are modelled accurately in a simple manner because
of the requirements of small time steps: moreover they can be easily parallelized.
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Explicit Dynamic Solution

Discretized dynamic equilibrium equation
M+ p(u) =f

Solution at time 1,

Dar=Mp'[f"—p"]l; Mp=diaghM
2) i‘n+1/2 _ ,-‘n—llz + %ﬁ"(At"_l + A[")
3) un+l =u" + Atni‘n+1/2

4) Compute strains and stresses

5} Compute f"*!,p"*!

6) Check frictional contact conditions -
7) New solution at time ¢,
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in the lowest structural mode are damped out. The damping used in our analysis was
proportional to the mass matrix, i.e. C = aM. The critical damping for the lowest
vibration mode was estimated using the following formula derived from the analytical
solution of damped vibration problem

2
cx=Elnf, (21)

where t is the user specified time (greater than the natural period) allowing to
diminish the energy of damped vibrations to the required fraction f of the non-
damped value; f= 0.01 was usually taken in our analyses.

Experience proves that the time period required for the springback analysis with the
explicit-dynamic code is extremely long, since the critical time step is very small when
compared to the period of natural vibrations. More economical solution of the
springback problem by switching the explicit analysis to a quasistatic implicit one is
currently being implemented in the explicit code STAMPACK developed by the
authors group.
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Fig. 2. OSU problem: Geometry and material data.
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time increment was taken equal to 0.5 s for a punch speed of 1 mmy/s. An average ot
3 iterations per time step for convergence using a velocity norm of 10~ were needed
in all cases.

(2) Quasistatic solid model. A mesh of 14 four node quadrilateral continuum
elements with two elements across the thickness was used. The time increments
used were equal to 0.7,0.3 and 0.15s for friction values of 0.0,0.15 and 0.30,
respectively. Convergence was achieved in an average of 2 iterations per time step in
all cases.

(3) Explicit—dynamic model. The same discretization as in (2) was taken although
a single element across the thickness was chosen in this case. An automatic time
increment was used.

Figs. 3,4 and 5 show the equivalent plastic strain curves obtained with the three
models studied for different punch travels of 10,20, 30 and 40 mm, for the friction
coefficients of 0.0,0.15 and 0.30 respectively. The coincidence of results in all cases is
remarkable.

Numerical results were obtained using a Convex C-120 computer. CPU times for
the quasistatic flow and solid approaches were approximately the same in both cases
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Fig. 5. OSU problem p = 0.30: Effective plastic strain profiles for different punch travels: exp, explicit
dynamic problem; imp, quasistatic elastoplastic model; flo, quasistatic flow model.

and equal to 50,90 and 180 s for friction values of 0.0,0.15 and 0.30, respectively. The
explicit-dynamic solution took around 400 s in all cases. These differences are to be
expected for this simple case where the explicit—-dynamic approach is not competitive
with the quasistatic codes.

5.2. Computation of springback effects

A 2D drawing of a U-profile which was the benchmark example no. 3 in Ref. [2] has
been analyzed to test the ability of the different approaches to predict springback
effects properly. The geometry of the problem is shown in Fig. 6(a). The case presented
here is that of the blank of aluminium alloy and the blankholding forces of F = 2.45
and 20kN. Material properties were the following: E =71 GPa, v =033,
p =2700kg/m® and o =579.79 (0.01658 + &®)°*3°3 MPa. A friction coefficient
1 = 0.162 was used. The explicit-dynamic solution was attempted first. Since the
width of the blank, 35 mm, was much greater than its thickness, 0.81 mm, the problem
was considered as a plain strain one. Due to the symmetry a half of the blank was
modeled with 358 4-node continuum elements using 2 layers of elements through the
thickness. The problem was analyzed with the actual mass density and the punch
velocity changing harmonically with vy, = 10 m/s. The explicit—dynamic analysis
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Fig. 6. 2D draw bending: (a) geometry of the problem; (b) measuring method.

with a constant time increment of 5 x 10~ s took 200 000 steps and 477 min. CPU on
a Silicon Graphics - Indigo R400 workstation and the springback analysis — 400 000
steps and 820 min CPU, respectively. The results obtained in the simulation are in
very good agreement with the average experimental results given in Ref. [2] (Fig. 7).
Springback angles and the radius of curvature of the side wall defined in Fig. 6(b) have
the following values: 6; = 108.9°, 6, = 74.3° and p = 100.5 mm for the present simu-
lation and 6; = 112.4°, 6, = 72.8°, p = 106 mm for the experiments [2].

The problem was analyzed next using the quasistatic flow model. 90 plane strain
shell type elements were used for the analysis. The CPU time required in this case was
340 s, whereas the springback computation took only 12 s. This shows the inefficiency
of the explicit-dynamic approach to model springback effects as previously discussed.
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a)

Fig. 7. 2D draw bending — deformed shape after springback: (a) from an experiment; (b) from the numerical
simulation using explicit dynamic model.

Explicit dynamic Quasistatic

—_

Fig. 8. 2D draw bending — deformed shapes after springback: (a) blankholding force 2.45 kN; (b) blank-
holding force 20 kN.

Similar results were obtained using the quasistatic solid approach with the same
number of elements as for the explicit-dynamic case. The comparison of the deformed
shapes after springback for the different models and for both values of the blankhold-
ing force is given in Fig. 8.
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Fig. 9. Forming of the industrial fastener — geometry of the part.

5.3. Sectional analysis

Despite the great development of the hardware and finite element software capabili-
ties, it is still difficult to perform 3-D analysis for sheet parts of complex geometry and
simplified 2-D models of 3-D parts are usually considered. A section A-A of an
industrial fastener (Fig. 9) was analyzed assuming the plane strain state. The explicit
dynamic approach was chosen in this case. The material of the sheet is a stainless steel
with E=21x10°MPa, v=0.3; elasto-plastic model with initial yield stress
oY) = 850 MPa and isotropic linear hardening modulus H = 700 MPa were as-
sumed. The thickness of the sheet is 0.3 mm. A friction coefficient x4 = 0.1 was taken.
200 quadrilateral shell elements with the boundary conditions imposing plane strain
state were used to model the cross-section. The tooling consists of the punch and die
only. Both the forming process and subsequent springback have been simulated.
Different stages of deformation are presented in Fig. 10. The deformed shape at the
end of forming and the deformed shape of the profile after springback are compared in
Fig. 11.

A section A-A of an automobile part (Fig. 12) was next analyzed using again plane
strain conditions. The material is steel with the following parameters:
E =21x10°MPa, v =03, ¢'¥) = 260 MPa and H = 9.0 MPa. The thickness of the
sheet is 0.9 mm and the friction coefficient 4 = 0.1 was assumed. The strip discretized
with 200 quadrilateral shell elements was analyzed again with the explicit~dynamic
code STAMPACK. Different stages of the deformation are presented in Fig. 13. The
final deformed shape of the strip is shown in Fig. 14(a). In Fig. 14(b) the final profile is
compared with the shape after springback.



32 E. Ofiate et al. / Journal of Materials Processing Technology 50 (1995) 17-38
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Fig. 10. Forming of the industrial fastener — different stages of the simulation.

—— = ——— at the end of forming

after springback

Fig. 11. Forming of the industrial fastener — comparison of the shape at the end of forming with the shape
after springback.

Fig. 12. 3D view of the analyzed part.
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Fig. 13. Sectional analysis — different stages of the simulation.
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Fig. 14. Results of the sectional analysis: (a) deformed strip; (b) comparison of the deformed shape at the
end of forming and after the springback.

5.4. Analysis of 3D deep drawing problem

A square cup drawing (Fig. 15), the benchmark problem no. 1 in Ref. [1], was finally
analyzed with the explicit—-dynamic approach. The material properties are the follow-
ing: mild steel (thickness 0.78 mm), E = 2.06x 10°MPa, v=03, ¢ = 565.32
(0.007117 4 ¢®)%-238% MPa. The friction coefficient was y = 0.162 and the blankhold-
ing force 19.6 kN. A quarter of the problem was discretized with 900 8-node hexahed-
ral solid elements.

The analysis was carried out with the actual mass density and the punch speed
changing harmonically with the peak value of 10 m/s. The deformation for the punch
stroke of 40 mm was obtained. The simulation was run on a Silicon Graphics — Indigo
R400 workstation. It took 22 h 12 min of CPU time and required 72860 steps with
a time increment changing from 1.138 x 1073 to 7.200 x 107 sec.

The deformed square cup shape is shown in Fig. 16(a). The draw-in values obtained,
DX and DD as defined in Fig. 16(a) have been compared in Table 1 with other
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Fig. 15. Geometry of the square cup deep drawing problem.

numerical results and average experimental results reported in Ref. [2]. The amounts
of draw-in obtained in our analysis are in agreement with the reference results.
Thickness logarithmic strain contours at punch stroke of 40 mm are presented in
Fig. 16(b). In Fig. 17 we have compared our results with other numerical results and
average experimental results reported in Ref. [2]. The thickness distribution along
lines O—-A and O-B (Fig. 16(a)) obtained shows good agreement both with experi-
mental tests and numerical results obtained with other codes. Small discrepancies
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Table |

Comparison of draw-in values for the benchmark problem [2]

Draw-in Pres. sim. Numerical Numerical Numerical Experiment
solid B1-Sim-1 B1-Sim-6 B1-Sim-25 average

DX 271 289 30.03 28.43 27.95

DD 15.3 16.2 16.43 15.46 15.36
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Fig. 17. Thickness strain distribution: (a) along line O—A; (b) along line O-B.









