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Africa is estimated to have great potential for agricultural 
production, but there are a number of constraints inhib-
iting the development of that potential. Spatial data are 
increasingly important in the realization of potential as 
well as the associated constraints. With crop production 
data generated at 5-minute spatial resolution, the paper 
applies the spatial tobit regression model to estimate the 
possible impacts of improvements in transport accessibil-
ity in East Africa. It is found that rural accessibility and 

access to markets are important to increase agricultural 
production. In particular for export crops, such as coffee, 
tea, tobacco, and cotton, access to ports is crucial. The 
elasticities are estimated at 0.3–4.6. In addition, the estima-
tion results show that spatial autocorrelation matters to the 
estimation results. While a random shock in a particular 
locality would likely affect its neighboring places, the spatial 
autoregressive term can be positive or negative, depend-
ing on how fragmented the current production areas are. 
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I. INTRODUCTION  

 

Africa has great potential for agriculture. Together with agribusiness, it is estimated that 

agriculture currently generates $31 billion or nearly half of the GDP of the region. This is 

projected to continue growing to $1 trillion by 2030 (World Bank 2013). However, the 

potential has not been fully explored yet. For instance, the ratios of potential to actual 

agricultural outputs are estimated at 1.5 for cassava, 1.9 for rice, 2.7 for maize and 5 for 

wheat in West Africa (World Bank 2012). Importantly, from the agro-ecological point of 

view, Africa can feed itself if proper inputs, such as improved seeds and fertilizer, are used. 

But Africa is currently importing considerable quantities from outside the region.1 Given 

rapid urbanization and strong population growth, Africa needs to produce more agricultural 

products.  

 

There are a number of constraints: Africa’s agriculture is mostly small-scale subsistence 

farming. Irrigation and fertilizer are among the most important missing inputs (e.g., Gyimah-

Brempong, 1987; Bravo-Ortega and Lederman, 2004; Xu et al., 2009; Dillon, 2011). Access 

to markets is also important, for farmers to take advantage of advanced technologies and 

market opportunities. In Africa, rural accessibility is particularly limited.2 Transport 

accessibility — regardless of mode — has a crucial role to play to reduce input prices and 

boost agricultural production (Khandker, Bakht and Koolwal, 2009; Donaldson, 2010). A 

growing literature also suggests the importance of access to information and communication 

technology to obtain market information (Kiiza and Pederson, 2012, Zanello 2012).  

 

Spatial techniques are becoming an increasingly popular tool to identify potential economic 

opportunities and possible bottlenecks in unlocking them. On the agriculture side, there are 

several important international initiatives to examine current land use and potential crop 

1 Africa imported $15 billion of cereals in 2008, out of which only 5 percent originated from the African region 
(World Bank 2012). 
2 In Africa, rural accessibility measured by the proportion of the rural residents within a 2-km walking distance 
from an all-weather road is less than 30 percent (Gwilliam 2011).  
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productivity in connection to climate and soil conditions (e.g., Global Agro-ecological Zones 

(GAEZ) system developed by the FAO and the International Institute for Applied Systems 

Analysis (IIASA)). These data provide information on crop suitability at the detailed spatial 

level. On the infrastructure side, the new economic geography literature is building a solid 

body of knowledge on regional distribution and disparity of infrastructure endowments, 

identifying missing links and bottlenecks (see, for instance, World Bank (2009) and (2010)).  

 

There are however only a few empirical studies that statistically link these two different 

sources of spatial data on the agriculture and infrastructure sides, excepting a number of 

more recent works, such as Dorosh, Wang, You and Schmidt (2012). This paper examines 

the agricultural potential of East Africa, namely, Burundi, Kenya, Rwanda, Tanzania and 

Uganda, through an examination of the two different sources of spatial data. Despite the 

currently high international commodity prices, in particular in the traditional export crops, 

such as coffee and cotton, these East African countries are still struggling to improve 

agricultural productivity. This paper specifically aims at: (i) generating spatial agricultural 

production and potential data for the region; (ii) developing spatial data to show transport 

accessibility in each locality; and (iii) developing an empirical model to link these data and 

analyze the relationship between agriculture production and transport infrastructure 

investment.  

 

The remaining sections are organized as follows: Section II describes our spatial agriculture 

data. Section III develops an empirical model and describes our infrastructure data. Section 

IV discusses our main estimation results and some policy implications. Section V concludes.  

 

 

II. SPATIAL PRODUCTION ALLOCATION MODEL (SPAM) UPDATE 

 

The current paper relies on a spatial production allocation model (SPAM) developed by the 

International Food Policy Research Institute (IFPRI) for generating highly disaggregated 

crop-specific production data. The SPAM is a spatial model to allocate crop production 
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derived from large statistics reporting units, such as country, province and district, to a raster 

grid at a spatial resolution of 5 minutes of arc (approximately 9 km at the equator (normally 

referred to as 10km x10km pixel for simplicity). To infer likely production locations, the 

model uses a cross-entropy method (Shannon 1948). Given initial allocations, the cross-

entropy method minimizes the cross-entropy distance—entropy is referred to as a 

measurement of uncertainty of expected information—between different probability 

distributions of the variables in the analysis, under different spatial constraints. As a result, 

the SPAM allows the simulation of the most plausible agricultural production locations given 

all available data at different levels.   

 

Various input data are taken into account in the cross-entropy procedure, such as sub-national 

crop production statistics, satellite data on land cover, maps of irrigated areas, biophysical 

crop suitability assessments, population density, secondary data on irrigation and rainfed 

production systems, cropping intensity, and crop prices. Specifically in the SPAM, we start 

with crop production statistics at the large administrative (geopolitical) units (Figure 1).3 

These are typically national or sub-national. Key information to determine where and how 

much agricultural land exists at the pixel level comes from the existing land cover imagery, 

which is divided into crop land and non-crop land. With this crop land combined with the 

crop suitability data based on local climate, terrain and soil conditions, the crop-specific land 

areas can be obtained (e.g., maize in the figure). Note that the SPAM model disaggregates 

crop areas and yields into four different management intensities: (i) irrigated; (ii) high-input 

rain-fed; (iii) low-input rain-fed; and (iv) subsistence. Together with all these data, the 

SPAM applies the cross entropy method to obtain the final estimation of each crop 

distribution.  

 

For the current paper, the SPAM was updated for five member countries of the East Africa 

Community. The model was rerun for 42 crops around 2010 with the latest available crop 

statistics and other new spatial data included. In the previous SPAM, i.e., SPAM 2000, which 

3 See You and Wood (2006), You et al. (2009), and You et al. (2014) for further details.  
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is available on the Internet at MapSpaM.info, only 20 major crops were allocated. In the 

current application, the base year is changed to 2010, and the coverage of crops was 

increased to 42. In addition, some other updated inputs, such as land cover, are also used (see 

Annex Table 1). Therefore, the SPAM 2010 provides more precise estimates of crop 

production at each locality.  

 

Data sources for subnational crop statistics differ across countries (Annex Table 2). Ideally, 

the data should cover the same period of time around 2010. However, data is not always 

available. In such a case, the spatial distribution of crop production is assumed to be the same 

as the year for which the latest data is available, and the data is scaled to FAO average 2009-

2011 values.  

 

In the following empirical analysis, only eight major crops that are produced in East Africa 

are used for analytical purposes: maize, rice, bananas (and plantains), cassava, coffee, tea, 

cotton, and tobacco. But the same types of data are available for other crops as well.  
 
Figure 1. Overview of Spatial Production Allocation Model  

 
Source: Authors’ illustration.  
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III. EMPIRICAL MODEL AND DATA  

 

In the literature, the traditional approach to investigating the linkage between agricultural 

production and infrastructure investment is to estimate a production function (see for instance 

Gyimah-Brempong (1987) and Bravo-Ortega and Lederman (2004) for literature reviews). 

Besides infrastructure conditions (often represented by transport accessibility), at least four 

other inputs are considered essential: labor, land, fertilizer and irrigation. The literature 

suggests that the output elasticities are relatively high for labor, reflecting the fact that 

agriculture production is labor-intensive. The elasticities associated with land are often 

modest, reflecting the relative abundance of land in Africa.  

 

Fertilizer and irrigation seem to be critical to improve production, but the statistical 

significance varies across studies (Bravo-Ortega and Lederman, 2004). A growing literature 

suggests their importance: In Zambia, timely availability of fertilizer could increase maize 

yields by 11 percent on average (Xu et al., 2009). Improved availability of irrigation could 

nearly double agricultural productivity in Mali (Dillon, 2011).  

 

Transport infrastructure has multiple implications for agricultural production. Better market 

access can reduce input prices. Khandker, Bakht and Koolwal (2009) find that farm-gate 

fertilizer prices were lowered by rural road investment in Bangladesh. Better transport 

infrastructure also provided more opportunities for farmers to engage in cash crop production 

and market transactions. Agriculture output prices increased by 2 percent and the volume of 

production was boosted by 22 percent (ditto).  

 

To examine the infrastructure impacts on agricultural production, the following simple 

production function is considered:  

 

ik ikkizi uxzy +++= ∑ βββ0       (1) 
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where y is the amount of a crop produced at location i, which depends on an exogenous agro-

ecological factor and the amounts of inputs used. ui is an error term. z is a measurement of 

crop suitability or productivity of land. x’s are production inputs: { }TFIRLk ,,,,= . L 

denotes labor. Land is divided into two types: rain-fed (R) and irrigated (I). F and T denote 

fertilizer and transport accessibility, respectively. The logarithms are taken for all dependent 

and independent variables.4  

 

As is often discussed, spatial autocorrelation is an important empirical issue for estimating 

the equation. Our primary data is spatial, and the unit of analysis is approximately10 x 10 km 

parcels of land for each crop. Therefore, one observation may not be independent of another, 

i.e., 0),( ≠st uuCov . By nature, agricultural land is a continuum of various characteristics, 

such as soil fertility and water availability. Weather conditions are continuous across 

locations. On the infrastructure side, public infrastructure, such as transport networks, is a 

typical network industry, which also creates autocorrelation among neighboring areas.  

 

Another issue is that our agricultural production data are censored. As in many empirical 

spatial studies, an actual value for the dependent variable—in our case, crop production y—is 

only available for a subset of the observations. As discussed below, some crops are grown 

everywhere, and others are produced in specific areas. As a result, there are a large number 

of locations (i.e., 10 x 10 km of land parcels) with zero production of a given crop.  

 

To deal with these two problems, the spatial tobit (SPTobit) regression model is used. 

Denoting the latent variable of the output produced by y*, the following censoring 

mechanism is considered:  

 



 >+++=

= ∑∑
otherwise0

0 if **
iik ikkizj jiji

i
yuxzywy

y
ββλ    (2) 

4 A small positive number (one) is added if the amount of input used is zero to avoid taking the logarithm of 
zero. For instance, fertilizer is not used in many observations of our sample.  
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ij jiji uwu ερ += ∑         (3) 

 

where w is an element of the spatial-weighting matrix. λ and ρ are spatial autoregressive 

parameters in the dependent variable and error term, respectively. ε is an idiosyncratic error 

distributed independently and identically. Under the normality assumption, this can be 

estimated by the conventional maximum likelihood estimation procedure (e.g., Anselin, 

1988; Amaral and Anselin, 2011).5  

 

For the spatial weighting matrix, inverse distances between two locations s and t are used. 

The distance is calculated using the Euclidean distance between the two locations. The 

intuition is that two locations are more closely related to each other, if they are located 

closely. This follows the Tobler’s first law of geography: “everything is related to everything 

else, but near things are more related than distant things (Tobler 1970).”  

 

Our primary data source is the SPAM 2010 update. As discussed above, the SPAM is 

basically a model to disaggregate the national and subnational production data into the 10 x 

10 km plots (pixels) using a number of different spatial data types. Therefore, it is critical to 

control for spatial autocorrelation in our analysis.  

 

The analysis focuses on eight major crops that are produced in East Africa: maize, rice, 

bananas (and plantains), cassava, coffee, tea, cotton, and tobacco (Figure 2). The selection 

aims at examining both domestic food crops, such as maize and bananas, and export crops, 

such as tea and coffee. These eight crops account for about 40 percent of total agricultural 

commodities produced in the region.6 The current productivity of these crops is generally 

low by regional standards, though it exceeds the African average in some cases (Figure 3). 

5 For estimation we rely on a STATA command sptobitsac developed by Shehata and Michaiel (2013).  
6 According to FAOSTAT, the East Africa Community member countries produced about $25 billion of 
agricultural commodities in 2011. The eight commodities examined amount to $9.3 billion in total.   
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As shown in Annex Figure 1, the spatial distribution of agricultural production differs 

significantly across commodities.  

 

Agricultural production depends crucially on agro-climatic conditions at each locality. While 

recognizing that various constraints exist in reality, such as absence of infrastructure and 

environmental protection (e.g., national parks), the current agricultural production does not 

seem to fully exploit its biophysical potential in the region (also see Annex Figure 1). We use 

the crop suitability developed by FAO and IIASA to measure agricultural potential of each 

crop at each location, z. This is defined by the amount of crops that could technically be 

produced given the underlying biophysical, climatic and landscape characteristics under the 

“low input and subsistence” assumption, which is more or less the same as the technology 

currently available in the region.  

 
Figure 2. Major crops produced in East Africa, 2010 (1,000 tons)  
Domestic food crops Export crops 

  
Source: FAOSTAT (accessed in December 2013).  
 
Figure 3. Yields of crop production by country, 2011 

 
Source: FAOSTAT (accessed in December 2013).  
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For production factors, various spatial and other data are used. For labor, the number of 

population engaged in crop j production at location i is calculated from the rural population 

estimate and the probability of household’s engagement in crop production. The latter comes 

from the national statistics of each country, and the level of aggregation differs across 

countries.7 The pixel-level rural population data is taken from the Global Rural-Urban 

Mapping Project (GRUMP).8  

 

)Pr(*  crop jworking onhousehold ruralpopx iL =    (4) 

 

The land data comes from the same source as the output variable, i.e., SPAM. It provides an 

estimate of land use for each crop at each location. Land has two types: rain-fed (R) and 

irrigated (I). There is little irrigated area in East Africa (Figure 4). According to the SPAM 

data, there is no irrigated land in the region for bananas, for which the variable I is omitted 

from the model.  

 

The fertilizer variable represents the quantity of plant nutrients applied to the land area for 

each crop. This is calculated by multiplying the land area (ha) where fertilizer is used by the 

national average fertilizer consumption (kg per ha). The land area with fertilizer application 

is derived from SPAM, which generates the land area for each crop depending on 

7 For Tanzania, the district-level share of households engaged in each crop production is calculated with the 
2010 LSMS data. For Uganda, the LSMS 2010 is similarly used to calculate the shares at the first sub-national 
level. For Rwanda, the subnational statistics are available at the 30-district level. For Burundi, the national-level 
data are directly used because no subnational data are available. For Kenya, household-level agriculture 
production data are not available, either. In this paper it is assumed that the average plot size per household is 
the same across crops in each administrative unit. As in other countries in the region, the vast majority of 
farmers are small landholders with an average of 2.5 ha in Kenya. While some wealthy households sometimes 
own a significant amount of land, the variation of land per household is relatively small (Jayne et al. 2006; 
Salami et al. 2010). Thus, our assumption may not always hold but can generate a reasonable proxy.   
8 The Global Rural-Urban Mapping Project (GRUMP) is a derivative product of the Gridded Population of the 
World (GPW) data, which is based on 2000 round census data and has actual 1990, 1995, and 2000 population 
grids and projected 2005, 2010, and 2015 grids at a 2.5 minute resolution (approximately 5km at the equator). 
GRUMP is at a 30 arc-second (1km) resolution (the same as Landscan) and includes an urban-rural reallocation.   
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technologies, i.e., low-input, high-input and irrigated production systems. The last two 

figures are used for our calculation of areas with fertilizer application.  

 

The average fertilizer consumption is calculated based on IFA/IFDC/IPI/PPI/FAO (2002) 

and Liu et al. (2010). Our fertilizer variable is the sum of three major elements of fertilizer: 

nitrogenous (N), phosphate (P2O5) and potash (K2O), because the actual mix and content of 

N, P and K varies across fertilizers. They are simply the sum of all the three elements for 

each crop.  

 

Transport connectivity is also a crucial input for agricultural production. Farmers need to go 

to the markets to purchase necessary inputs and sell their products. Transport connectivity 

can be measured at different levels. First, the distance to the nearest road—denoted by T0—is 

fundamental regardless of the type of crop, because farmers need to get to the road network 

no matter which crop is produced and where the products are transported to. In East Africa, 

rural accessibility is still a challenge and the accessibility indices are estimated at about 25-

35 percent (Figure 5). Using the spatial data of road networks, the distance to the nearest road 

is calculated from the centroid of each location i. This varies from less than 1km to over 100 

km, depending on location (Figure 6).  

 

Beyond the local accessibility, required transport connectivity may differ depending on the 

destination of the products. For domestically consumed food crops, such as maize and 

bananas, the destination is assumed to be a large town/ city, which is defined by the nearest 

populated area with more than 50,000 inhabitants.9 Under the cost minimization assumption, 

the transport network cost is calculated by summing up the transport unit costs of road, 

railway and port along the optimal path from the production area to the city (Figure 7). This 

is denoted by T1. Note that the unit road transport costs vary, depending on type and class of 

road, and road conditions. In addition, not only road user costs and transport tariffs, but also 

9 For small countries, such as Burundi, some other cities below this threshold are also included, because there 
would otherwise be only one domestic market in the country, i.e., the capital city, Bujumbura.  
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waiting time costs at transport nodes, such as stations, inland ports and seaports, are included. 

The transport costs to the nearest large town/city vary from several dollars to over $50 per 

ton. This can be significant in remote areas, compared to the regional market prices 

(Table 1).  

 

For export crops, the destination is assumed to be one of the regional ports: Dar es Salaam 

and/or Mombasa. Again, the transport cost, T2, is calculated from the production location to 

the port based on the lowest cost criteria. Transport costs to the ports are significant: Port 

handling costs and fees are included, which amount to about $96 and $78 at the ports of Dar 

es Salaam and Mombasa, respectively. Thus, the total transport cost to a port can be over 

$150 per ton in inland areas and land-locked countries (Figure 8).  

 
 
Figure 4. Irrigated agriculture production areas (ha)  

 
Source: SPAM Update 2010.   
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Figure 5. Rural Accessibility Index Figure 6. Distance to the nearest road (km) 

  
 Source: World Bank calculation.  
 
 
Figure 7. Transport costs to a large city (US$/ton) Figure 8. Transport costs to the port (US$/ton) 

  
Source: World Bank calculations. Source: World Bank calculations. 
Note: The transport cost to the nearest city is 
calculated based on unit road user costs, transport 
tariffs, waiting time at stations, inland ports and 
seaports. 

Note: The transport cost to the nearest port is 
calculated based on unit road user costs, transport 
tariffs, waiting time at stations, inland ports and 
seaports. 

   

Source: Gwilliam (2011).  
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Table 1. Regional crop prices of selected commodities 

Food crop $/ton Export crop $/ton 
Maize 260 Coffee 3,192 
Rice 856 Tea 1,506 
Bananas 536 Cotton 1,429 
Plantain 240 Tobacco 1,365 
Cassava 294     

Source: Calculated based on FAOSTAT.  

 

 

IV. ESTIMATION RESULTS AND POLICY IMPLICATIONS  

 

The spatial tobit (SPTobit) regression is performed for each crop and each geographic group. 

Since the amount of data points is significant from the computational point of view, the entire 

region is separated into 6 areas for food crop calculations and 3 areas for export crop 

calculations (Figure 9).10 The three landlocked countries comprise the first group.  Kenya is 

the second group, but the analysis is focused only on the western half of the country, because 

there is little variation in agricultural production in the other half.  

 

Tanzania is a large country, which is composed of over 9,000 10 x 10 km pixels. This would 

cause significant computational difficulties without disaggregation of the country. Food 

crops are produced in many places. Therefore, the sample data is divided into four areas: 

“Tabora”, “Mbeya”, “Arusha”, and “Coastal.” For export crops, the production takes place in 

very limited places (compared to the size of the country). Thus, the sample data are trimmed 

down to focus on the areas where major production takes place.   

 

All the estimation results are shown in Annex Tables. The ordinary least squares (OLS) 

estimates are also included as references. The results are broadly consistent with a priori 

expectations. First of all, regarding the autocorrelation parameters, i.e., λ and ρ, they indicate 

10 Major national parks are also excluded from our analysis, because these areas are environmentally protected 
and not supposed to be used for agriculture production purposes.  
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that the OLS estimation is likely biased. The hypothesis that the spatial autocorrelation 

parameters are zero can easily be rejected. Therefore, not surprisingly, spatial autocorrelation 

matters to our data. Because of this autocorrelation, some estimated coefficients are 

significantly different from the SPTobit results, although the coefficients tend to be broadly 

similar (see Annex Tables).  

 

An important finding is that the spatial autoregressive term λ is almost always significant but 

can be positive or negative. This implies that spatial concentration varies across crops and 

areas. For tobacco production, for instance, the estimated spatial autoregressive term is 

positive at 0.502 in Kenya. It means that if tobacco is produced in one place, the neighboring 

places are also likely to grow tobacco in Kenya. On the other hand, the same parameter is 

estimated at -0.246 in Tanzania, which is also statistically significant. It means that if tobacco 

production takes place in one locality, the neighboring places are less likely to grow tobacco 

in Tanzania. The evidence indicates certain fragmentation or agglomeration diseconomies in 

tobacco production in Tanzania. This is consistent with the maps depicting production areas 

at the same scale: Production areas are more dispersed in Tanzania than in Kenya (Figure 

10).   

 

Unlike the spatial autoregressive term, the autocorrelation coefficient in the errors, ρ, is 

almost always positive at 0.8-0.95 and highly significant. This can be interpreted to mean 

that an exogenous shock—for example, drought and flood—in a given location has a 

substantial spillover effect on its neighboring areas. Obviously, this is plausible because there 

must be various shocks that affect agricultural production in a wider area than our unit of 

analysis (10 x 10 km). Because of this, it is important to control spatial autocorrelation in the 

analysis.  
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Figure 9. Regional groups for analytical work  

 
Source: Authors’ illustration.  
 
Figure 10. Difference in spatial concentration of tobacco production 
(Kenya)  (Tanzania)  

  
Source: SPAM Update 2010.  Source: SPAM Update 2010.  
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Regarding the impacts of transport accessibility on agricultural production, the main results 

from the SPTobit models are shown in Table 2. Despite the autocorrelation discussed above, 

these are considered unbiased and consistent. The estimated elasticities vary across areas and 

crops but are broadly consistent with our prior expectation: Both rural accessibility and 

market access are important factors in stimulating agriculture production. Figures 11 and 12 

depict the predicted changes in each crop production under the assumption that each element 

of transport accessibility is improved by 10 percent.11 Recall that while our rural accessibility 

is measured by the distance to the nearest road (km), market accessibility is measured by the 

economic transport cost ($ per ton) to the nearest city or port, depending on the type of crop.  

 

Our estimation results suggest that market accessibility is generally more important than rural 

accessibility. Particularly, for export crops, access to maritime port is found to be crucial: In 

some cases (e.g., coffee in the landlocked countries, tea in Kenya and tobacco in Tanzania), a 

10-percent reduction in transport costs to the maritime port could boost export crop 

production by more than 10 percent. These are considered as high-yield crops from the 

infrastructure investment point of view.  

 

Notably, however, this does not underplay the importance of rural accessibility. For instance, 

there is no evidence showing that banana production is constrained by market access in 

Burundi, Kenya, Rwanda and Uganda. But improving rural accessibility would likely result 

in some increases in banana production. While a 10-percent rural accessibility improvement 

could increase coffee production by 0.5 percent in Tanzania, the same amount of 

improvement in port access could increase the production by 4 percent. Thus, both are 

important to improve, and the relative importance varies across countries.  

11 The predicted changes are shown only in case the estimated elasticity is statistically significant. In several 
cases, the predicted impacts are counter-intuitive. For instance, the evidence implies that an improvement in 
rural accessibility would result in less production of tobacco. This may be interpreted to mean that rural roads 
are well developed in the tobacco producing area of Kenya. At the same time, there may be a statistical issue 
that over- or under-estimate the impact, particularly when a large number of observations are censored, as in the 
case of tobacco in Kenya.   
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For the landlocked countries, access to a port is found to be most important. The expected 

impact is largest on coffee production, followed by tobacco and cotton. For domestic food 

crops, access to a large city is also a significant determinant of production, particularly for 

rice. The result indicates that rice production areas are not well connected to major 

consumption areas.  

 

For Kenya, cotton and tobacco production could benefit greatly from transport cost 

reductions to the port. Expected benefits to tea and coffee production are also likely 

significant. To stimulate coffee production, rural accessibility is also found to be important. 

For food crops, there would be some gains by improving market access to cassava, maize and 

rice producers.  

 

The expected impacts of improved connectivity to the port look relatively modest in 

Tanzania. The obvious reason is that the country has the port of Dar es Salaam and major 

export crop production areas seem to be well connected to the port by the trunk road 

network. Of course, cotton and tobacco production, which takes place largely in inland areas, 

such as Tabora and Mwanza, could still be stimulated by improved transport access to the 

port. But rural accessibility and access to domestic markets are expected to be relatively 

important in the case of Tanzania. Expected benefits are large for rice production in Mbeya 

Area, maize in Arusha, and cassava in Tabora and Coastal Areas.  

 

Regarding other production inputs, it is commonly found that land, regardless of whether 

rain-fed or irrigated, is among the most important production factors. It can be interpreted to 

mean that agricultural production in East Africa is and still can be dependent on 

extensification (more land), rather than improving technological level (intensification). For 

instance, the land elasticity is estimated at 0.74 to 0.98 for food crops, such as rice, maize and 

cassava in Burundi, Rwanda and Uganda. For cash crops, such as tea and cotton, the land 

elasticity is also large at 0.85 to nearly 1 (see Annex Tables).  
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Other advanced inputs are also found productive. As discussed above, irrigation use is still 

limited. But the irrigated land elasticity is estimated at 0.77 for rice in Burundi, Rwanda and 

Uganda. In Kenya, this is estimated at 1.13, an indication of more significant potential of 

irrigation use.  

 

Fertilizer is also found to be productive: The estimated elasticities range from 0.01 to 0.3 in 

most cases. In Kenya, for instance, the fertilizer elasticity is 0.074 for maize, while the same 

is estimated at 0.23 for tea. Thus, fertilizer use is more effective for the latter. In Tanzania, 

the fertilizer elasticity for maize is 0.06 to 0.11, depending on areas, while it is estimated at 

0.12 for tea, 0.19 for rice and 0.51 for tobacco. Those export crops may need more fertilizer 

use.   

 

In contrast, labor seems to be less productive and sometimes unproductive. This is 

particularly observed in the estimation results for food crop production. One possible reason 

is that our labor variable is poor, because there is no agricultural labor statistics at the 

location level: We allocated labor using the sub-national statistics. But the evidence may be 

consistent with the common view in the region: Labor is abundant in the agriculture sector. It 

is important to increase the adoption of more advanced technologies and promote the shift of 

production towards more valuable commodities.  

 
Figure 11. Predicted changes in food crop production by a 10% reduction of transport connectivity  
Rural accessibility  Market accessibility (to a large city) 

  
Source: Authors’ illustration based on the SPTobit estimation results (shown in Annex Tables).  
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Figure 12. Predicted changes in export crop production by a 10% reduction of transport connectivity  
Rural accessibility  Market accessibility (to a seaport) 

  
Source: Authors’ illustration based on the SPTobit estimation results (shown in Annex Tables).  
 

 

From the policy point of view, the question that may be raised is where governments should 

invest. First, as discussed above, the estimated elasticities are already indicative of expected 

returns on infrastructure investment. More investment should be made where the elasticities 

are high, such as coffee in the landlocked countries, cotton and tea in Kenya and tobacco in 

Kenya and Tanzania. All these export crops are likely to benefit from transport cost 

reductions at the ports for instance. Therefore, the ports seem to be the priority areas to 

improve efficiency and lower costs. For the same reason, priority should also be placed on 

the regional and national transport networks in Kenya and Tanzania, to improve market 

access within the countries. It would also seem that both countries would benefit from further 

support to improve rural accessibility for specific crops, such as cassava in Mbeya Area, and 

coffee in Kenya and Tanzania.  

 

Second, infrastructure investment has a spillover effect. One single investment in transport 

infrastructure can benefit all the countries in the region. But the magnitude of the benefits is 

different across countries. For instance, suppose that the waiting time cost at Dar es Salaam 

could be halved. The average waiting time is currently estimated at 327 hours for gate 

waiting, yard storage, customs and ship handling. By halving this, the total port costs, 

including handling and waiting costs, could be reduced by about 40 percent from $96 to $59 

per ton. As discussed above, export crop production would likely be increased. The predicted 

impacts differ across locations, depending on elasticity, current transport costs to the port, 
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and the level of production. The expected benefits range from $10 million to $170 million, 

which account for 0.2-0.6 percent of current GDP (Table 3).  

 

Finally, there exist many other investment options: Because of the expected spillover effects 

and the significance of investment requirements, strategic prioritization and coordination are 

called for not only within a country but also in the East African region. For instance, consider 

an alternative investment option that would halve the waiting time at the port of Mombasa 

from 260 hours to 130 hours.12 The total port costs would decline from $78 to $49 per ton. 

Kenya would greatly benefit from this investment, but benefits would also be accrued to 

Uganda and the northern part of Tanzania (Table 4). Burundi and Rwanda could also benefit 

to a certain extent. From the regional point of view, this investment choice would be more 

cost-effective than the above-mentioned port improvement project at Dar es Salaam, “if” 

everything else, including investment costs, remained the same.  

12 Kenya embarked upon a significant expansion project at the port of Mombasa in 2013. The first phase of the 
terminal is expected to be completed by 2016 and the whole project will be completed by 2020, increasing the 
port capacity from 750,000 TEU to 1.2 million TEU. The project cost is estimated at $366 million.  

                                                 



 
Table 2. Estimated output elasticities with respect to transport accessibility   

  Burundi, Rwanda & 
Uganda Kenya   Tanzania                             

  Tabora    Mbeya    Arusha    Coastal    
  T0   T1   T0   T1   T0   T1   T0   T1   T0   T1   T0   T1   
Rice -0.010  -0.117 *** 0.019  -0.091 * -0.013  -0.100 *** 0.000  -0.244 *** 0.005  -0.125 *** -0.025 * -0.037  
 (0.017)  (0.024)  (0.032)  (0.053)  (0.010)  (0.021)  (0.020)  (0.035)  (0.021)  (0.044)  (0.014)  (0.028)  
Maize 0.011  0.028 * 0.020  -0.142 *** -0.019 ** -0.048 *** -0.021 ** -0.082 *** -0.008  -0.203 *** -0.043 *** -0.068 ** 
 (0.011)  (0.017)  (0.013)  (0.023)  (0.008)  (0.016)  (0.010)  (0.019)  (0.012)  (0.027)  (0.012)  (0.028)  
Cassava -0.005  -0.039 ** 0.022  -0.169 *** -0.002  -0.207 *** -0.134 *** 0.047  -0.001  -0.109 *** -0.024  -0.252 *** 
 (0.013)  (0.019)  (0.017)  (0.028)  (0.016)  (0.037)  (0.018)  (0.029)  (0.013)  (0.030)  (0.020)  (0.038)  
Bananas -0.020 ** -0.013  -0.049 ** 0.060 * -0.011  0.005  -0.040  -0.042  0.008  0.041  0.010  -0.109 *** 
  (0.009)   (0.013)   (0.019)   (0.032)   (0.025)   (0.041)   (0.037)   (0.071)   (0.015)   (0.028)   (0.022)   (0.034)   

 
Burundi, Rwanda & 

Uganda Kenya  
Tanzania 

(all regions)              
  T0   T2   T0   T2   T0   T2               
Coffee -0.003  -1.644 *** -0.045 ** -0.804 *** -0.055 ** -0.437 ***             
 (0.007)  (0.097)  (0.018)  (0.094)  (0.023)  (0.076)              
Tea -0.013 ** -0.254 *** 0.029  -1.270 * -0.005  -0.218 ***             
 (0.007)  (0.030)  (0.024)  (0.767)  (0.032)  (0.060)              
Cotton 0.004  -0.647 *** -0.020  -4.623 *** -0.009  -0.853 ***             
 (0.009)  (0.027)  (0.021)  (0.340)  (0.012)  (0.077)              
Tobacco -0.014 ** -0.831 *** 0.090 *** -3.312 *** 0.004  -1.157 ***             
  (0.007)   (0.262)   (0.030)   (0.634)   (0.008)   (0.039)                           

Source: Based on the SPTobit estimation results (shown in Annex Tables).  
 

 

 

 



 
Table 3. Predicted production increases by halving the port waiting time at Dar es Salaams  

  Increase in production value ($ million)  % of GDP 
(2010)   Coffee Tea Cotton Tobacco Total 

Burundi 17.1 0.5 0.4 0.3 18.3 0.90 
Kenya 0.0 0.0 0.0 0.0 0.0 0.00 
Rwanda 12.4 1.4 0.0 1.0 14.8 0.26 
Tanzania 13.1 2.7 72.2 29.8 117.7 0.51 
Uganda 0.9 0.2 0.2 0.2 1.4 0.01 
Total 43.4 4.8 72.8 31.2 152.2 0.19 

Source: Authors’ calculation based on the SPTobit estimation results.  
 
Table 4. Predicted production increases by halving the port waiting time at Dar es Salaams  

  Increase in production value ($ million)  % of GDP 
(2010)   Coffee Tea Cotton Tobacco Total 

Burundi 14.3 0.4 0.3 0.2 15.3 0.75 
Kenya 109.8 181.9 128.9 19.1 439.6 1.37 
Rwanda 10.9 1.3 0.0 0.9 13.0 0.23 
Tanzania 12.4 1.7 69.7 20.3 104.1 0.45 
Uganda 167.4 2.9 13.4 4.8 188.4 1.10 
Total 314.8 188.1 212.3 45.3 760.4 0.95 

Source: Authors’ calculation based on the SPTobit estimation results.  
 

 

V. CONCLUSION  

 

Africa has great potential for agriculture. However, the potential has not been fully explored 

yet. It is important to accelerate agricultural growth further, because Africa is currently 

importing significant amounts of food from abroad, though Africa can feed itself from the 

agro-ecological point of view.  

 

The literature suggests a lot of constraints, from fertilizer use to public infrastructure 

availability. The current paper focuses on the relationship between major crop production 

and transport connectivity in the East Africa Community. Unlike the existing literature, the 

paper generates new agricultural production data for each crop at the detailed spatial 

resolution. In addition, spatial data is also developed to measure transport connectivity from 

each production location to the destination, either domestic market or port to export crops.  
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To deal with autocorrelation and censoring in data, the spatial tobit regression model was 

used in the paper. The results are consistent with prior expectation. Spatial autocorrelation 

matters, presumably because our agricultural production data are spatially connected to 

neighboring areas. In addition, transport infrastructure is a typical network industry. 

Therefore, it is methodologically important to take autocorrelations into account: OLS 

estimation is likely biased.  

 

It is also found that the impacts of transport accessibility on agriculture production vary 

across areas and crops. However, the results suggest that both rural accessibility and market 

access are important to stimulate agriculture production. Particularly, for export crops, access 

to port is found to be crucial: In some cases (e.g., coffee in the landlocked countries, tea in 

Kenya and tobacco in Tanzania), the estimated elasticities exceed one, implying that public 

investments to improve transport connectivity for these crops are highly profitable from the 

economic point of view.  

 

There are many possible investment options to improve transport connectivity in the region. 

For illustration purposes, the paper examined two particular scenarios under the assumption 

that the waiting time costs at the two regional ports, Mombasa and Dar-es-Salaam, would be 

halved. The expected impacts are different, depending on estimated elasticity and the current 

level of production. But the results indicate that infrastructure investment tends to have a 

spillover effect in the region. Therefore, strategic prioritization and coordination may be 

important not only within a country but also in the whole East African region. 

 
 

  



 - 25 - 

REFERENCES 

 

Amaral, Pedro, and Luc Anselin. 2011. Finite sample properties of Moran’s I test for spatial 

autocorrelation in Tobit models. Working Paper No. 07, GeoDa Center for Geospatial 

Analysis and Computation, Arizona State University.  

Anselin, Luc. 1988. Spatial Econometrics: Methods and Models. Kluwer Academic 

Publishers.  

Bravo-Ortega, and Lederman. 2004. Agricultural productivity and its determinants: 

Revisiting international experiences. Estudios de Economia, Vol. 31(2), pp. 133-163. 

Dillon, Andrew. 2011. Do differences in the scale of irrigation projects generate different 

impacts on poverty and production? Journal of Agricultural Economics, Vol. 62(2), pp. 

474-492.  

Donaldson, Dave. 2010. Railroads and the Raj: The economic impact of transportation 

infrastructure. NBER Working Paper No. 16487.  

Dorosh, Wang, You, and Schmidt. 2012. Road connectivity, population, and crop production 

in Sub-Saharan Africa. Agricultural Economics, Vol. 43, pp. 89-103 

Gwilliam, Ken. 2011. Africa’s Transport Infrastructure: Mainstreaming Maintenance and 

Management. The World Bank.  

Gyimah-Brempong. 1987. Scale elasticities in Ghanaian cocoa production. Applied 

Economics, Vol. 19, pp. 1383-1390.  

IFA/IFDC/IPI/PPI/FAO. 2002. Fertilizer use by crops. 5th ed. Available at 

http://www.fao.org/fileadmin/templates/ess/ess_test_folder/Publications/Agrienvironme

ntal/FUBC5thEditioncomplete.pdf  

Jayne, Thomas, David. Mather and Elliot. Mghenyi. 2006. Smallholder farming under 

increasingly difficult circumstances: Policy and public investment priorities for Africa. 

International Development Working Papers 86. Department of Agricultural Economics, 

Michigan State University.  

Khandker, Shahidur, Zaid Bakht, and Gayatri Koolwal. 2009. The poverty impact of rural 

roads: Evidence from Bangladesh. Economic Development and Cultural Change, Vol. 

57(4), pp. 685-722.  

http://www.fao.org/fileadmin/templates/ess/ess_test_folder/Publications/Agrienvironmental/FUBC5thEditioncomplete.pdf
http://www.fao.org/fileadmin/templates/ess/ess_test_folder/Publications/Agrienvironmental/FUBC5thEditioncomplete.pdf


 - 26 - 

Kiiza,Barnabas, and Glenn Pederson. 2012. ICT-based market information and adoption of 

agricultural seed technologies: Insights from Uganda, Telecommunications Policy Vol. 

36(4), 253-259.  

Liu, Junguo, Liangzhi You, Manouchehr Amini, Michael Obersteiner, Mario Herrero, 

Alexander Zehnder, and Hong Yang. 2010. A high-resolution assessment of global 

nitrogen flows in cropland. Proceedings of National Academy of Sciences of USA, 107: 

pp. 8035-8040. 

Salami, Adeleke, Abdul Kamara, Zuzana Brixiova. 2010. Smallholder agriculture in East 

Africa: Trends, constraints and opportunities. Working Paper Series 105, African 

Development Bank.  

Shannon, Claude. 1948. A mathematical theory of communication, Bell System Technology 

Journal, Vol. 27, pp. 379-423.  

Shehata, Emad Abd Elmessih, and Sahra Khaleel A. Michaiel. 2013. SPTOBITSAC: Stata 

module to Estimate Tobit MLE Spatial Autocorrelation Cross Sections Regression. 

Available at http://ideas.repec.org/c/boc/bocode/s457723.html 

Tobler Waldo. 1970. A computer movie simulating urban growth in the Detroit region. 

Economic Geography, Vol. 46(2), pp. 234-240.  

Xu, Zhiying, Zhengfei Guan, T.S. Jayne, Roy Black. 2009. Factors influencing the 

profitability of fertilizer use on maize in Zambia. Agricultural Economics, Vol. 40, pp. 

437-446.  

You, L. and S. Wood. 2006. An entropy approach to spatial disaggregation of agricultural 

production. Agricultural Systems, Vol. 90(1-3), pp. 329-347. 

You, L., S. Wood, U. Wood-Sichra. 2009. Generating plausible crop distribution and 

performance maps for Sub-Saharan Africa using a spatially disaggregated data fusion 

and optimization approach. Agricultural System, Vol. 99(2-3), pp. 126-140. 

You, L., S. Wood, U. Wood-Sichra, W. Wu. 2014. Generating global crop distribution maps: 

From census to grid. Agricultural System, forthcoming.  

World Bank. 2009. World Development Report 2009: Reshaping Economic Geography. 

World Bank.  

World Bank. 2010. Africa’s Infrastructure: A Time for Transformation. World Bank.  



 - 27 - 

World Bank. 2012. Africa Can Help Feed Africa: Removing Barriers to Regional Trade in 

Food Staples.  

World Bank. 2013. Growing Africa: Unlocking the Potential of Agribusiness.  

Zanello, Giacomo. 2012. Mobile Phones and Radios: Effects on Transactions Costs and 

Market Participation for Households in Northern Ghana. Journal of Agricultural 

Economics, vol. 63(3), pp. 694-714.  

 

 

 

  



 - 28 - 

ANNEX  
Annex Table 1. Comparison between SPAM 2000 and SPAM 2010 

Data type Resolution SPAM2000 SPAM2010 
Number of crops 
allocated 

N/A 20 crops and calculated rest 
(excluding pastures) 

42 crops (excluding pastures and 
fodder) 

Subnational crop 
statistics 

Level 1 or level 2 
administrative units 

Centered around 2000 Country statistics available on the 
web or from direct country 
sources; centered around 2010, or 
earlier year if not available 

National crop 
statistics 

Country level  FAOSTAT average 1999
last downloaded in May 2011 

-2001 
1 

FAOSTAT average 2009-2011, 
downloaded in August 2013 

Production system 
shares 

Country level or Level 
1 administrative units 

Various literature and expert 
judgments 

Same as for SPAM2000 

Irrigated areas 
(areas equipped for 
irrigation) 

5 deg min pixels Siebert, S., Döll, P., Hoogeveen, 
J. (2002). "Global map of 
irrigated areas version 2.1." 
Center for Environmental 
Systems Research, University of 
Kassel, and FAO. 

Same as for SPAM2000 

Landcover, 
agricultural areas 

5 deg min pixels Ramankutty et al. (2008), 
"Farming the planet: 1. 
Geographic distribution of global 
agricultural lands in the year 
2000", Global Biogeochemical 
Cycles, Vol. 22, GB1003, 
doi:10.1029/2007GB002952. 

S. Fritz and Linda See (2013). 
Ag-land surface, IIASA. 

Crop suitabilities 
(area and yield) 

5 deg min pixels GAEZ 2000, FAO/IIASA IIASA/FAO (2010). Global 
Agro-ecological Zones (GAEZ 
v3.0). IIASA and FAO, and 
HarvestChoice (2010) 

Rural population 
density 

5 deg min pixels Global Rural-Urban Mapping 
Project (GRUMP), v1.Center for 
International Earth Science 
Information Network (CIESIN), 
Columbia University; IFPRI; The 
World Bank; and Centro 
Internacional de Agricultura 
Tropical (CIAT). 2004. 

Same as for SPAM2000 

Crop distribution 5 deg min pixels CG centers, expert knowledge Same as for SPAM2000 
Crop prices Country level FAO International $ PPP avg 

(1999-2001), calculated from 
FAOSTAT in 2003 

FAO International $ PPP avg 
(2004-2006), calculated from 
FAOSTAT in 2013 

Boundaries of 
administrative units 

Country, level 1 and 
level 2 

GADM GAUL2008, version 2009 

1/ FAOSTAT updates its production time series not only for new years, but sometimes also backwards for past 
years. 
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Annex Table 2. Data sources of sub-national crop statistics 
Country Source Year 
Burundi Downloaded from CountrySTAT on 

May 7, 2013. Only production at Level 
1 administrative units. Yield taken from 
FAO. 

Avg 2004-2006 

Kenya The Kenya Agricultural Sector Data 
Compendium, Vol2, Jan 2009. Area 
and production at Level 1 and level 2 
administrative units. 

Avg 2004-2006 for 
main crops, and avg 
2009-2011 for 
horticulture 

Rwanda Downloaded from CountrySTAT in 
October 2012. Only production at 
Level 1 administrative units. Yield 
taken from FAO. 

Avg. 2006-2008 

Tanzania MoAG Tanzania, Agricultural area, 
production and yield by region and 
district (level 1 and level 2).  

Avg 2006-2009 

Uganda Uganda Census of Agriculture 2008-
2009. Level 1 and level 2.  

Sum of last season in 
2008 and first season in 
2009 

 

 

 

 

 

 

 

 



 
Annex Table 3. OLS and spatial autocorrelation tobit estimation: Food crops, Burundi, Rwanda and Uganda  

  Rice       Maize       Cassava     Bananas     
  OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT 
lnA -0.011  0.002  0.300 *** 0.269 *** 0.016 *** 0.044 *** 0.036 *** 0.058 *** 
 (0.013)  (0.011)  (0.017)  (0.014)  (0.004)  (0.006)  (0.005)  (0.005)  
lnL 0.005  0.004  0.117 *** 0.104 *** 0.013  0.004  0.062 *** 0.061 *** 
 (0.014)  (0.014)  (0.015)  (0.012)  (0.013)  (0.013)  (0.015)  (0.010)  
lnR 0.629 *** 0.738 *** 0.960 *** 0.939 *** 0.986 *** 0.983 *** 0.957 *** 0.921 *** 
 (0.021)  (0.020)  (0.007)  (0.006)  (0.009)  (0.010)  (0.011)  (0.012)  
lnI 0.582 *** 0.768 *** 3.209 *** 0.001 ***        
 (0.031)  (0.034)  (0.341)  (0.000)          
lnF 0.002  0.007  -1.713 *** 0.226 *** -0.003  -0.018 *** 0.056 *** 0.068 *** 
 (0.011)  (0.011)  (0.210)  (0.040)  (0.005)  (0.007)  (0.003)  (0.004)  
lnT0 0.001  -0.010  0.019  0.011  -0.003  -0.005  -0.017 * -0.020 ** 
 (0.024)  (0.017)  (0.013)  (0.011)  (0.013)  (0.013)  (0.010)  (0.009)  
lnT1 -0.152 *** -0.117 *** 0.100 *** 0.028 * -0.058 *** -0.039 ** -0.009  -0.013  
 (0.032)  (0.024)  (0.018)  (0.017)  (0.020)  (0.019)  (0.015)  (0.013)  
constant 3.923 *** 5.823 *** 0.948 *** -32.599  2.208 *** 38.318  1.265 *** 42.531  
  (0.133)  (1.861)  (0.356)  (29.313)  (0.105)  (36.096)  (0.093)  (40.470)  
Obs. 964   2860   1669   2860   1409   2860   1486   2860   
Censored   1899    1341    1453    1396  
Uncensored  961    1519    1407    1464  
R-squared 0.7256  0.9009  0.9568  0.9486  0.9188  0.9692  0.9673  0.9901  
F-stat 139.72  3703.942  3942.42  7520.8  3402.56  14971.8  8586.94  47610.5  
auto-correlation parameters:              
lambda   -0.208 **   0.194 ***  -0.059    -0.059 * 
   (0.102)    (0.050)    (0.055)    (0.032)  
rho   0.714 ***  0.977 ***  0.974 ***  0.987 *** 
      (0.114)       (0.022)       (0.026)       (0.013)   
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Annex Table 4. OLS and spatial autocorrelation tobit estimation: Export crops, Burundi, Rwanda and Uganda  
  Coffee       Tea       Cotton       Tobacco     
  OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT 
lnA 0.084 *** 0.169 *** 0.129 *** 0.148 *** 0.295 *** 0.316 *** 0.147 *** 0.135 *** 
 (0.022)  (0.020)  (0.019)  (0.017)  (0.019)  (0.020)  (0.027)  (0.021)  
lnL -0.098 *** -0.079 *** 0.039 *** 0.020 ** 0.033 *** 0.041 *** 0.058 *** 0.035 *** 
 (0.011)  (0.009)  (0.010)  (0.009)  (0.007)  (0.008)  (0.009)  (0.011)  
lnR 0.715 *** 0.349 *** 1.069 *** 1.062 *** 0.973 *** 0.998 *** 1.130 *** 0.852 *** 
 (0.044)  (0.035)  (0.022)  (0.020)  (0.011)  (0.018)  (0.043)  (0.175)  
lnI                             
                             
lnF 0.182 *** 0.724 *** -0.003  -0.043 ***    -0.215 *** 0.228  
 (0.051)  (0.040)  (0.004)  (0.004)      (0.058)  (0.154)  
lnT0 -0.032 *** -0.003  0.008  -0.013 ** 0.004  0.004  0.010  -0.014 ** 
 (0.010)  (0.007)  (0.008)  (0.007)  (0.010)  (0.009)  (0.009)  (0.007)  
lnT2 -0.089  -1.644 *** -0.318 * -0.254 *** -0.103  -0.647 *** -0.375  -0.831 *** 
 (0.287)  (0.097)  (0.172)  (0.030)  (0.155)  (0.027)  (0.278)  (0.262)  
constant -0.166  204.128  0.916  2.392 *** -1.527 * 9.255  2.213  1.735 *** 
  (1.694)  (224.014)  (0.927)  (0.244)  (0.837)  (7.020)  (1.371)  (0.280)  
Obs. 927   2860   1010   2860   753   2860   1160   2860   
Censored   1943    1856    2127    1754  
Uncensored  917    1004    733    1106  
R-squared 0.9265  0.4341  0.8297  0.789  0.9531  0.9779  0.8839  0.1565  
F-stat 3043.82  364.7999  655.98  1778.1  2972.94  25219.4  1245.18  88.2  
auto-correlation parameters:              
Lambda   -0.766 ***  -0.674 ***  -0.649 ***               0.240  
   (0.121)    (0.054)    (0.084)                (0.295)  
rho   0.988 ***  0.318 ***  0.903 ***               -1.276 *** 
      (0.014)       (0.091)       (0.084)                  (0.101)   
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Annex Table 5. OLS and spatial autocorrelation tobit estimation: Food crops, Kenya 
  Rice       Maize       Cassava     Bananas     
  OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT 
lnA -0.035 ** -0.058 *** 0.037 *** -0.050 *** -0.013 * -0.023 ** 0.046 *** 0.046 *** 
 (0.017)  (0.020)  (0.014)  (0.009)  (0.008)  (0.010)  (0.008)  (0.010)  
lnL -0.161 * -0.186 *** 0.175 *** -0.172 *** 0.013  0.015  -0.088 *** -0.090 *** 
 (0.092)  (0.071)  (0.028)  (0.019)  (0.012)  (0.014)  (0.020)  (0.023)  
lnR     0.962 *** 0.806 *** 1.067 *** 1.005 *** 1.061  1.034 *** 
     (0.029)  (0.025)  (0.018)  (0.025)  (0.016)  (0.015)  
lnI 1.134 *** 1.127 ***            
 (0.024)  (0.023)              
lnF     0.024 ** 0.074 ***        
     (0.011)  (0.011)          
lnT0 0.016  0.019  0.065 *** 0.020  0.029 * 0.022  -0.049 ** -0.049 ** 
 (0.042)  (0.032)  (0.017)  (0.013)  (0.018)  (0.017)  (0.021)  (0.019)  
lnT1 -0.137 ** -0.091 * -0.155 *** -0.142 *** -0.199 *** -0.169 *** 0.005  0.060 * 
 (0.069)  (0.053)  (0.033)  (0.023)  (0.028)  (0.028)  (0.035)  (0.032)  
constant 1.900 ** 7.162  -1.122 *** 81.113  1.820 *** 21.615  2.823 *** 36.163  
  (0.648)  (6.661)  (0.221)  (81.678)  (0.069)  (17.618)  (0.101)  (26.167)  
Obs. 87   2471   1611   2471   830   2471   733   2471   
Censored   2385    870    1645    1762  
Uncensored  86    1601    826    709  
R-squared 0.9552  0.9078  0.8183  0.9455  0.8943  0.9271  0.9148  0.8509  
F-stat 807.66  4851.845  2153.27  7130.38  1746.07  6274.23  1897.69  2813.3  
auto-correlation parameters:              
lambda   0.854 ***  0.861 ***  0.295 **   -0.171  
   (0.132)    (0.043)    (0.118)    (0.126)  
rho   0.735 ***  0.994 ***  0.949 ***  0.947 *** 
      (0.231)       (0.006)       (0.042)       (0.039)   

 
 
 
 
 
 



 - 33 - 

Annex Table 6. OLS and spatial autocorrelation tobit estimation: Export crops, Kenya   
  Coffee       Tea       Cotton       Tobacco     
  OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT 
lnA 0.307 *** 0.287 *** 0.291 *** 0.374 *** 0.229 *** 0.280 *** 0.282 *** 0.234 *** 
 (0.084)  (0.051)  (0.083)  (0.050)  (0.035)  (0.036)  (0.040)  (0.045)  
lnL 0.021  0.018  0.023  0.014  0.113 *** 0.061 ** 0.020  0.114 *** 
 (0.031)  (0.028)  (0.017)  (0.016)  (0.028)  (0.026)  (0.032)  (0.038)  
lnR 0.776 *** 0.673 *** 0.526 *** 0.585 *** 1.233 *** 1.172 *** 0.773 *** 0.709 *** 
 (0.022)  (0.026)  (0.053)  (0.048)  (0.027)  (0.030)  (0.024)  (0.032)  
lnI 0.186 *** 0.200 *** 0.107 *** 0.151 ***    0.324 *** 0.205 *** 
 (0.019)  (0.022)  (0.017)  (0.021)      (0.033)  (0.029)  
lnF 0.058 *** 0.067 *** 0.237 *** 0.233 ***                    
 (0.014)  (0.010)  (0.044)  (0.037)                      
lnT0 -0.070 *** -0.045 ** 0.019  0.029  -0.019  -0.020  0.045 * 0.090 *** 
 (0.025)  (0.018)  (0.030)  (0.024)  (0.021)  (0.021)  (0.027)  (0.030)  
lnT2 -1.304 ** -0.804 *** -0.652  -1.270 * -4.697 *** -4.623 *** 0.524  -3.312 *** 
 (0.642)  (0.094)  (1.019)  (0.767)  (0.351)  (0.340)  (0.543)  (0.634)  
constant 4.345  3.608 * 3.197  6.710 * 19.140 *** 14.963 *** -3.251  16.443 *** 
  (3.406)  (1.899)  (4.818)  (4.008)  (1.707)  (1.638)  (2.619)  (2.828)  
Obs. 579   2471   300   2471   454   2471   352   2471   
Censored   1984    2177    2032    2243  
Uncensored  487    294    439    228  
R-squared 0.9137  0.8555  0.8837  0.3395  0.9059  0.6033  0.9313  0.174  
F-stat 886.46  2083.836  165.03  180.826  858.63  749.749  852.04  86.4852  
auto-correlation parameters:              
lambda   0.257    -0.484 **   0.843 ***               0.502 * 
   (0.162)    (0.233)    (0.132)                (0.264)  
rho   0.489    0.124    -0.320 ***               0.133  
      (0.347)       (0.303)       (0.044)                  (0.096)   
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Annex Table 7. OLS and spatial autocorrelation tobit estimation: Food crops, Tabora Area, Tanzania  
  Rice       Maize       Cassava     Bananas     
  OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT 
lnA 0.251 *** 0.104 *** 0.131 *** 0.111 *** 0.238 *** 0.089 *** 0.154 *** 0.030  
 (0.045)  (0.018)  (0.029)  (0.023)  (0.037)  (0.014)  (0.037)  (0.034)  
lnL -0.004  -0.054 *** -0.005  -0.055 ** 0.031 * 0.006  -0.090 * -0.097 ** 
 (0.016)  (0.020)  (0.017)  (0.026)  (0.018)  (0.016)  (0.048)  (0.044)  
lnR 0.885 *** 0.977 *** 0.782 *** 0.756 *** 0.927 *** 0.934 *** 1.010 *** 1.042 *** 
 (0.021)  (0.020)  (0.027)  (0.028)  (0.017)  (0.017)  (0.018)  (0.020)  
lnI                 
                 
lnF 0.088 *** -0.046 ** 0.075 *** 0.059 **                     
 (0.024)  (0.022)  (0.026)  (0.027)                      
lnT0 -0.008  -0.013  -0.020 ** -0.019 ** 0.017  -0.002  -0.019  -0.011  
 (0.010)  (0.010)  (0.008)  (0.008)  (0.016)  (0.016)  (0.025)  (0.025)  
lnT1 -0.067 *** -0.100 *** -0.011  -0.048 *** -0.153 *** -0.207 *** 0.128 *** 0.005  
 (0.019)  (0.021)  (0.014)  (0.016)  (0.036)  (0.037)  (0.046)  (0.041)  
constant -1.227 *** 13.291  -0.240  18.985  -0.011  26.927  0.519 * 10.106  
  (0.395)  (12.155)  (0.336)  (17.524)  (0.354)  (19.760)  (0.322)  (6.630)  
Obs. 1116   2338   1134   2338   1123   2338   430   2338   
Censored   1247    1205    1217    1925  
Uncensored  1091    1133    1121    413  
R-squared 0.9513  0.9877  0.7943  0.9933  0.7957  0.9661  0.9518  0.9636  
F-stat 2253.05  31151.22  489.34  58032.2  1508.85  13274.3  1697.27  12335.3  
auto-correlation parameters:              
lambda   -0.223 ***  -0.281 ***  -0.334 ***               -0.503 *** 
   (0.042)    (0.037)    (0.051)                (0.131)  
rho   0.964 ***  0.977 ***  0.968 ***               0.847 *** 
      (0.036)       (0.023)       (0.025)                  (0.110)   
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Annex Table 8. OLS and spatial autocorrelation tobit estimation: Food crops, Mbeya Area, Tanzania 
  Rice       Maize       Cassava     Bananas     
  OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT 
lnA 0.256 *** 0.053 *** 0.381 *** 0.232 *** 0.182 *** 0.155 *** 0.082 *** 0.252 *** 
 (0.052)  (0.019)  (0.016)  (0.019)  (0.016)  (0.010)  (0.019)  (0.029)  
lnL 0.206 *** 0.063 ** 0.024 * -0.222 *** -0.190 *** -0.212 *** 0.024  -0.116 *** 
 (0.033)  (0.025)  (0.014)  (0.028)  (0.025)  (0.026)  (0.040)  (0.034)  
lnR 0.842 *** 0.770 *** 0.925 *** 0.742 *** 0.997 *** 0.968 *** 0.819 *** 0.727 *** 
 (0.025)  (0.027)  (0.018)  (0.028)  (0.019)  (0.021)  (0.015)  (0.019)  
lnI                 
                 
lnF 0.055 *** 0.045 *** 0.060 *** 0.082 ***                    
 (0.009)  (0.014)  (0.009)  (0.012)                      
lnT0 0.029  0.000  0.001  -0.021 ** -0.150 *** -0.134 *** -0.039  -0.040  
 (0.019)  (0.020)  (0.009)  (0.010)  (0.019)  (0.018)  (0.038)  (0.037)  
lnT2 -0.210 *** -0.244 *** 0.025 * -0.082 *** 0.072 *** 0.047  0.073  -0.042  
 (0.030)  (0.035)  (0.015)  (0.019)  (0.028)  (0.029)  (0.081)  (0.071)  
constant -1.388 *** 17.903  -3.106 *** 22.991  0.809 *** 21.577  1.795 *** 3.852 * 
  (0.512)  (16.913)  (0.211)  (22.467)  (0.165)  (19.933)  (0.222)  (2.127)  
Obs. 630   2675   856   2675   606   2675   296   2675   
Censored   2058    1826    2079    2393  
Uncensored  617    849    596    282  
R-squared 0.9086  0.9868  0.9355  0.9949  0.8942  0.9863  0.9214  0.8388  
F-stat 876.26  33322.05  1692.47  87072.8  1006.54  38501.6  963.44  2778.21  
auto-correlation parameters:              
lambda   0.283 ***  0.203 ***  -0.444 ***               0.668 *** 
   (0.089)    (0.070)    (0.097)                (0.208)  
rho   0.943 ***  0.971 ***  0.946 ***  0.484  
      (0.054)       (0.028)       (0.052)                  (0.303)   
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Annex Table 9. OLS and spatial autocorrelation tobit estimation: Food crops, Arusha Area, Tanzania 
  Rice       Maize       Cassava     Bananas     
  OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT 
lnA 0.139 *** -0.157 *** 0.465 *** 0.244 *** 0.301 *** 0.211 *** -0.036 *** -0.069 *** 
 (0.049)  (0.035)  (0.015)  (0.021)  (0.023)  (0.009)  (0.007)  (0.009)  
lnL 0.192 *** -0.029  0.074 *** -0.188 *** -0.050 *** -0.144 *** 0.058 *** -0.026 * 
 (0.029)  (0.051)  (0.011)  (0.021)  (0.010)  (0.018)  (0.014)  (0.014)  
lnR 0.565 *** 0.591 *** 0.777 *** 0.755 *** 0.888 *** 0.846 *** 1.024 *** 1.018 *** 
 (0.038)  (0.036)  (0.017)  (0.022)  (0.013)  (0.016)  (0.016)  (0.015)  
lnI                 
                 
lnF 0.354 *** 0.318 *** 0.111 *** 0.066 ***                    
 (0.050)  (0.041)  (0.013)  (0.016)                      
lnT0 0.006  0.005  0.004  -0.008  0.009  -0.001  0.001  0.008  
 (0.022)  (0.021)  (0.009)  (0.012)  (0.015)  (0.013)  (0.017)  (0.015)  
lnT1 0.042  -0.125 *** -0.006  -0.203 *** -0.084 *** -0.109 *** 0.024  0.041  
 (0.040)  (0.044)  (0.017)  (0.027)  (0.028)  (0.030)  (0.037)  (0.028)  
constant -1.890 *** 27.605  -3.677 *** 23.680  0.084  21.548  1.466 *** 11.370  
  (0.493)  (24.998)  (0.158)  (23.728)  (0.204)  (21.563)  (0.083)  (9.465)  
Obs. 632   1979   772   1979   599   1979   370   1979   
Censored   1358    1216    1382    1609  
Uncensored  621    763    597    370  
R-squared 0.8064  0.9506  0.9522    0.9414  0.9844  0.97  0.9475  
F-stat 460.46  6323.41  1884.51    2807.05  24904.5  3398.25  7126.0  
auto-correlation parameters:              
lambda   0.052    0.239 ***  0.385 ***               0.894 *** 
   (0.140)    (0.058)    (0.085)                (0.072)  
rho   0.958 ***  0.975 ***  0.962 ***  0.900 *** 
      (0.038)       (0.025)       (0.038)                  (0.081)   
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Annex Table 10. OLS and spatial autocorrelation tobit estimation: Food crops, Coastal Area, Tanzania 
  Rice       Maize       Cassava     Bananas     
  OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT 
lnA 0.161 *** 0.017  0.333 *** 0.166 *** 0.210 *** 0.141 *** 0.165 *** 0.241 *** 
 (0.031)  (0.015)  (0.025)  (0.026)  (0.025)  (0.017)  (0.016)  (0.033)  
lnL -0.036 * -0.045 ** -0.058 *** -0.172 *** -0.032  -0.089 *** -0.078  -0.140 *** 
 (0.021)  (0.020)  (0.019)  (0.030)  (0.022)  (0.023)  (0.056)  (0.045)  
lnR 0.942 *** 0.968 *** 0.787 *** 0.703 *** 0.892 *** 0.883 *** 1.028 *** 1.032 *** 
 (0.017)  (0.018)  (0.019)  (0.022)  (0.022)  (0.021)  (0.022)  (0.019)  
lnI                 
                 
lnF 0.001  -0.019 * 0.107 *** 0.112 ***                    
 (0.009)  (0.011)  (0.013)  (0.017)                      
lnT0 -0.008  -0.025 * -0.001  -0.043 *** -0.002  -0.024  -0.002  0.010  
 (0.013)  (0.014)  (0.011)  (0.012)  (0.021)  (0.020)  (0.018)  (0.022)  
lnT2 0.007  -0.037  0.023  -0.068 ** -0.196 *** -0.252 *** -0.033  -0.109 *** 
 (0.023)  (0.028)  (0.025)  (0.028)  (0.033)  (0.038)  (0.036)  (0.034)  
constant -0.204  18.761  -1.991 *** 40.590  0.661 ** 13.058  1.134 *** 3.125 ** 
  (0.237)  (16.346)  (0.251)  (39.552)  (0.267)  (8.874)  (0.278)  (1.426)  
Obs. 837   2073   824   2073   845   2073   279   2073   
Censored   1239    1252    1233    1845  
Uncensored  834    821    840    228  
R-squared 0.9228  0.977  0.8808  0.9896  0.7679  0.9749  0.979  0.1515  
F-stat 1482.31  14625.73  1395.82  32883.4  450.25  16088.1  3914.71  73.7963  
auto-correlation parameters:              
lambda   -0.261 ***  -0.305 ***  -0.412 ***               -0.685 *** 
   (0.063)    (0.048)    (0.055)                (0.173)  
rho   0.965 ***  0.985 ***  0.908 ***  0.534 ** 
      (0.032)       (0.015)       (0.073)                  (0.269)   
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Annex Table 11. OLS and spatial autocorrelation tobit estimation: Export crops, Tanzania  
  Coffee       Tea       Cotton       Tobacco     
  OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT OLS   SPTOBIT 
lnA 0.193 *** 0.107 *** -0.024  0.072 ** 0.437 *** 0.374 *** 0.365 *** 0.346 *** 
 (0.024)  (0.029)  (0.016)  (0.032)  (0.023)  (0.045)  (0.017)  (0.017)  
lnL -0.111 *** -0.176 *** -0.086  -0.111 * 0.012  0.056 *** 0.171 *** 0.137 *** 
 (0.021)  (0.030)  (0.065)  (0.064)  (0.009)  (0.010)  (0.010)  (0.012)  
lnR 0.770 *** 0.581 *** 1.082 *** 0.900 *** 0.956 *** 0.959 *** 0.339 *** 0.521 *** 
 (0.019)  (0.039)  (0.036)  (0.038)  (0.011)  (0.020)  (0.020)  (0.020)  
lnI                 
                 
lnF 0.146 *** 0.193 *** 0.083 *** 0.120 ***    0.852 *** 0.507 *** 
 (0.015)  (0.022)  (0.008)  (0.011)      (0.037)  (0.030)  
lnT0 -0.064 *** -0.055 ** 0.009  -0.005  0.006  -0.009  -0.009  0.004  
 (0.021)  (0.023)  (0.026)  (0.032)  (0.012)  (0.012)  (0.010)  (0.008)  
lnT2 0.038  -0.437 *** 1.668 *** -0.218 *** -0.040  -0.853 *** 0.291 *** -1.157 *** 
 (0.028)  (0.076)  (0.250)  (0.060)  (0.075)  (0.077)  (0.042)  (0.039)  
constant -1.642 *** 29.206  -8.151 *** 4.312 *** -3.016 *** 14.075  -8.579 *** 49.392  
  (0.241)  (30.413)  (1.233)  (1.655)  (0.418)  (10.155)  (0.318)  (45.470)  
Obs. 687   2740   264   1882   1166   2721   1458   2816   
Censored   2169    1625    1587    1545  
Uncensored  571    257    1134    1271  
R-squared 0.8804  0.7536  0.8588  0.9471  0.9392  0.9479  0.9299  0.9139  
F-stat 1587.21  1392.791  160.72  5590.71  3457.67  9879.11  2058.46  4971.93  
auto-correlation parameters:              
lambda   0.341 **   -0.871 ***  -0.430 ***               -0.246 *** 
   (0.156)    (0.206)    (0.060)                (0.047)  
rho   0.949 ***  0.603 ***  0.946 ***  0.989 *** 
      (0.053)       (0.209)       (0.042)                  (0.010)   

 

 



Annex Figure 1. Comparison between actual and potential crop production areas (MT) 
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