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RESUMEN

Sec presenta en este trabajo una técnica para la evaluacién de las integrales singulares que
aparecen en el Método de los Elementos de Contorno en Elasticidad tridimensional, basada en
la utilizacién de transformaciones de coordenadas no lineales, tales como las utilizadas en el
caso bidimensional.

SUMMARY

A new technique for the computation of the singular integrals that appear in the
Boundary Element Method in 3-D Elasticity is presented. It is based on the use of non-linear
transformations of coordinates, as the ones used in the 2-D case.

INTRODUCCION

Uno de los aspectos esenciales para la aplicacién del B.E.M. en su versién directa lo
constituye el cdlculo preciso de las integrales que aparecen en los coeficientes del sistema
de ecuaciones resultado de la discretizacién del problema. Este cdlculo exigié desde el
principio la utilizacién de técnicas especiales, debido a las singularidades inherentes al
integrando (singularidades débiles o singularidades en el sentido de Cauchy).

En el caso de discretizarse con elementos planos con aproximacién constante o
lineal, es posible realizar estas integraciones analiticamente®. Sin embargo, la extensién
a elementos curvos es, en general, inviable. Otras muchas técnicas semianaliticas, como
la suma y la resta de la singularidad esencial, pueden utilizarse con una precisién
aceptable. Naturalmente, en este caso es necesario conocer el coeficiente de la
singularidad para cualquier tipo de problema e interpolacién, lo que exige un esfuerzo
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analitico inicial, y sobre todo la necesidad de incorporar programaciones diferentes para
cada tipo de problema perdiendo sistematizacién®.

Otra alternativa consiste en utilizar cuadraturas “ad hoc”?, o técnicas particulares,
siendo posible obtener ciertos elementos singulares mediante la consideracién de casos
especiales (desplazamientos como sélido rigido). De nuevo se encuentran dificultades
que surgen de la necesidad de utilizar distintos tipos de cuadratura para un mismo
programa, y a veces la imposibilidad o dificultad de encontrar o programar dichos
estados especiales de “deformacién”. Esta alternativa ha sido la mds utilizada.

La necesidad de estas técnicas ha sido cada vez més imperiosa, por cuanto las
técnicas de elementos de contorno adaptables han supuesto un gran salto cualitativo al
imponer funciones de aproximacién de alto grado y un gran nimero de nodos situados
en el interior de los elementos.

También seria deseable la extensidn de estas técnicas a situaciones quasi-singulares
como las que se producen cuando el punto de colocacion estéd muy préximo al elemento
sobre el que se integra, lo que ocurre en el caso de elementos contiguos con longitudes
muy distintas, en el cdlculo de variables en puntos internos préximos al contorno y sobre
todo en la versién p-adaptable donde los puntos de colocacién pueden ubicarse muy
préximos al contorno del elemento. La deseable completa libertad en la discretizacién
hace necesario plantearse también este problema como uno de los més interesantes a
resolver,

Por consiguiente, parece necesario buscar una cuadratura suficientemente robusta
capaz de acometer de forma precisa y eficiente la integracién de los términos
singulares de diversos tipos que aparecen en la formulacién del MEC, como los
correspondientes a las situaciones apuntadas anteriormente. En realidad, existen
cuadraturas especialmente indicadas para la integracién de distintos tipos de integrando
singular (Inr, 1/r, ...)?; sin embargo, seria necesario incluir gran cantidad de férmulas
de este tipo ya que en las mds precisas de ellas los pesos y abcisas dependen de la
posicién de la singularidad en el interior del intervalo (que es variable en la versién
p-adaptable, por ejemplo).

La ultima posibilidad consiste en utilizar cuadraturas estandar y transformaciones
no lineales del intervalo de integracién que conduzcan a integrandos mejor
condicionados o regulares. En problemas bidimensionales varias han sido propuestas®.
No obstante, todavia no se ha extendido su uso al caso tridimensional.

EVALUACION DE LOS COEFICIENTES SINGULARES

Al margen de ofro tipo de posibilidades para la evaluacién de integrales con
singularidad tipo Cauchy, la idea que se persigue con la transformacién no lineal que se
va a proponer es la de regularizar el integrando en las proximidades de la singularidad,
realizando una transformacién del espacio de integracién real (z,y) en otro espacio
(&,n) sobre la que se integra. Los objetivos de la transformacién son:

e Agrupar los puntos de integracién en torno a la singularidad (&,7s), para asi
evaluar mejor las contribuciones mayores de la integral.
e Aproximar el jacobiano a cero en las proximidades del punto singular (£, 7s).
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o Obtener variaciones suaves del jacobiano en el entorno del punto qlnguldr (&sy 773) :

Para poder utilizar las transformaciones umdnnenmonales se deﬁne en prlmer
lugar un sistema de referencia en coordenadas cilindricas (rgy,f¢,) con centro en el
punto singular (Figura 1). La posicién de un punto cualquiera (£, 7) en este espacio de
integracién viene dada por

f :fs + ?”5770089577
n =1ns + Tepsen bgy

ey

Se logra con ello desacoplar el problema de integracién singular en un espacio
bidimensional en dos de espacio unidimensional, en el sentido de la variacién de las
coordenadas cilindricas definidas. Por otra parte la variacién para la coordenada
cilindrica vendra dada por ' -

0; - ; .
Oen = 0; + (1+><)f—2-~ o 4 (2

siendo 6;, 6 los dngulos inicial y final de las cuatro zonas en que los radio-vectores
que unen el punto singular con los vértices del recinto de integracién dividen el mismo.
Los recintos triangulares se estudian como cuadrildteros degenerados en uno de sus
lados, con lo que valen todas las consideraciones que aqui se tengan en cuenta, siendo
ahora tres el niimero de zonas. x es la.coordenada del punto de Gauss utilizado en la
cuadratura estandar, definida en el intervalo (—1,1).

'}

\
/

Figura 1. Espacio de integracién. elegido en la transformacién.

La va,rlaclon de la coordenada ra,dla,l por eJemplo en 1a forma

="A + B(1+ () + Cc(1+¢)?* + D(1+()~” (3)

se obtiene teniendo en cuenta los objetivos antes enumerados que se pretendian asegurar
para la transformacién no lineal. Las condiciones que se imponen a la transformacién
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anterior son, siendo { la coordenada del punto de Gauss utilizado en la cuadratura
estdndar y definida en el intervalo (—1,1)

o p(¢=-1) =0
o rg((=1) = Lgy

(d_rgd#l)@q -

e El término dominante en la transformacién no debe depender de 6¢,,.

Hay que ser riguroso en el tipo de exigencias que se le hacen a la funcién, ya que
transformaciones que obvian algunas de ellas, como se demuestra en (1], poseen errores
implicitos. Con estas premisas, los mejores resultados, dentro de las pruebas realizadas,
se han obtenido para la transformacién

r = Ca+0? + 220 oy )

que cumple las tres primeras condiciones y donde sélo falta caracterizar el valor de
C para que se cumpla la cuarta. Del andlisis de la funcién anterior, realizando su
derivada primera e igualando a cero, se obtienen dos extremos {maximos-minimos)
para los valores '

¢ =-1

—3Lg, — 4C
~ She— 20 6
3L¢, — 12C ©

Se desea que la funcién elegida no presente ningin valor extremo en el interior del
intervalo de integracién (-1 < ¢ < 1), condicién que debe cumplir el segundo de los
valores anteriores, de donde se concluye que el valor de C estd acotado entre 0. y 0.75.
Los mejores resultados en las pruebas realizadas se obtienen para valores de C = 0.75,
siendo éste el valor recomendado (Figura 2).

RESULTADOS

Con el método anteriormente descrito se evaluaron las siguientes integrales sobre
los dominios indicados en las figuras que se muestran a continuacién.

¢ Evaluacién de la integral [ %i-edﬁ sobre el dominio de la Figura 3.
Q
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Los resultados de la integracién con.el procedimiento descrito anteriormente se
comparan con los resultados calculados analiticamente en la forma siguiente

0 2r L 0 2 Ld
| Sran = [ S ar as = [ costas [ =
r 5 L r J T

Q 0

2T 27 2
= /0059 InrlF d§ = /cos flin L(9) —In €] dd = /cosG In L do (7)
0 0 0

Figura 2. Funcién de transformacién elegida dependiendo del valor C.

radio de la circunferencia = 1.
distancia del centro O al punto B =0.95

" Figura 3. Dominio de evaluacién de la integral.
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Esta ultima expresién se calcula siguiendo una regla trapezoidal de elevado niimero
de divisiones en direccién tangencial  y con una cuadratura estdndar, también con un
elevado n imero de puntos, en direccién radial . El resultado obtenido de esta forma
es —6.26227192682246.

A continuacién se compara el resultado analitico con el obtenido al realizar la
integracién con el método propuesto (y en este caso particular por ser el dominio
circular en direccién tangencial se considera una divisién de tipo trapezoidal, en vez de
gaussiana como la propuesta). Se adjuntan en la Figura 4 dos curvas de error:

Una de ellas considera un niumero de divisiones fijo en direccién tangencial
(nteta=100) y va variando el ndmero de puntos de Gauss en direccién de la
integracién radial.

— La otra considera un nimero de puntos de Gauss fijo en direccién de la integracién
radial (nrad=100) y va variando el niimero de divisiones de la regla trapezoidal en
direccién tangencial.

< nteta =100
- nrad =100

Error % 6 4

4_.
2_.
O_.
0 10 20 30 40
N¢ puntos

Figura 4. Error en la evaluacién de la integral.

Como se puede apreciar en la gréfica a partir de 12 puntos de integracién los
errores son muy pequenos. En la Tabla I se muestra el error cometido para diversos
nimeros de puntos de integracién. Como puede observarse, se obtienen unos resultados
satisfactorios, habida cuenta de la cercanfa del punto de singularidad al contorno
exterior.
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nteta=nrad Error %
6 2.31517
8 1.90236
10 0.30117
12 0.22588
14 0.02881
16 0.02645
18 0.00176
20 0.00120

Tabla I. Error en los resultados segiin el niimero de puntos de Gauss en la integral 1.

¢ Evaluacién de la integral | %—edﬂ sobre el dominioc de la Figura 5.
Q

" S (5,5)
(-4,
)
X
(-3,-3} (3:-3)

Figura 5. Dominio de evaluacién de la integral.

Para un elevado ndmero de divisiones en direccién tangencial 6, se evalia el valor de
la integral de forma analitica como se hacia en el ejemplo anterior con una cuadratura
estdndar normal, también con un elevado nimero de puntos, en direccién radial r. El
resultado obtenido de esta forma es —2.2306592923069.

A continuacién se compara el resultado analitico con el obtenido al realizar la
integracién con el método propuesto. Se adjuntan en la Figura 6 dos curvas de error:

-~ Una de ellas considera un ndmero de divisiones fijo en direccién tangencial
(nteta=100) y va variando el nimero de puntos de Gauss en direccién de la
integracién radial.

- La otra considera un nimero de puntos de Gauss fijo en direccién de la integracion
radial (nrad=100) y va variando el nimero de divisiones de la regla trapezoidal en
direccién tangencial.
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Error %

1 & nieta = 100
- nrad =100

10 20 30
N2 puntos

Figura 6. Error en la evaluacién de la integral.

Si se toman diversos valores de nteta=nrad, se obtienen los errores que se muestran

en la Tabla II.
Se observa que también en este ejemplo los resultados son altamente satisfactorios.

nteta=nrad Error %
4 17.73531
6 1.69919
8 0.09135
10 0.060881
12 0.01174
14 0.000111
16 0.000077
18 0.000048
20 0.0000067
20 0.0000008

Tabla II. Error en los resultados segtn el nimero de puntos de Gauss en la integral 2.

El nimero de divisiones indicado en direccién circunferencial es el total, de manera
que el nimero de divisiones para cada zona es directamente proporcional al dngulo
subtendido por los radio-vectores que unen el punto singular con los vértices del recinto
de integracién. Se incluye la Figura 7 para nteta=1000 y nrad=5 que permite conocer
la transformacién utilizada sobre el dominio en cuestién en coordenadas paramétricas
¢,n y en coordenadas cartesianas x, .

Por 1ltimo, una posibilidad alternativa consiste (se muestra un caso extremo, con el
punto singular cerca del limite del recinto de integracién, en la Figura 8) en subdividir
el recinto de integracién, de forma que se realiza una integracién singular sobre el
cuadrado que tiene como centro el punto singular y se integra de forma normal sobre
los demés rectdngulos.
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Figura 7. Disposicion de los puntos de Gauss en la integracion singular.
8

§

&y XC o

g

Figura 8. Alternativa de subdivisién del drea clave para la evaluacién de la integral
singular.

Con esta alternativa, se obtienen unos resultados practicamente idénticos que con ¢l
enfoque anterior, si bien la algoritmica es mucho més compleja, dado que el nimero de
rectdngulos en que se subdivide el recinto de integracién puede ser variable, dependiendo
de la posicién del punto singular en el mismo (por ejemplo, si estd cercano a un extremo
y en ¢l punto medio de su longitud £ = 0.8, n = 0, el numero de rectangulos varia de 3
a b).

La técnica de integracién singular presentada en este articulo ha sido validada con
otros integrandos, aportando igualmente resultados satisfactorios e incorporada con
éxito en programas de elementos de contorno®. La simplicidad y eficacia de la misma
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puede ser comparada con otras aproximaciones tradicionales mucho més complicadas,
como las aportadas por Guiggiani y Gigante®, o la de Hayami®.

CONCLUSIONES

Se ha presentado un método general y a la vez eficiente para la evaluacién de las
Integrales singulares y cuasi-singulares que aparecen en el Método de los Elementos de
Contorno en Elasticidad fridimensional.

Frente a las técnicas habituales en Elasticidad tridimensional, se presenta como
mucho més simple y facil de programar.

La validez del mismo se ha verificado en base a una serie de ejemplos, algunos de
los cuales se han presentado en el apartado anterior.

La técnica descrita se ha incorporado a un programa de elementos de contorno,
proporcionando resultados completamente satisfactorios.
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