


each point in space, σðxÞ, rather than at the particles, and is
thus more popular in fluid systems. The IK microscopic
stress is identified by invoking Eq. (1a), which is therefore
satisfied ab initio [34,35]. The potential component at
position x is given by

σVðxÞ ¼
�X

α;β>α

f αβ ⊗ rαβBðrα; rβ; xÞ
�
; ð3Þ

where rαβ ¼ rβ− rα, Bðrα;rβ;xÞ¼R
1
0 δ½ð1−sÞrαþsrβ−x�ds

is the bond function [35], and δðrα − xÞ is the Dirac delta
distribution centered at x. For two-body interactions
VI ¼ VαβðrαβÞ, we have f αβ ¼ V 0

αβr
αβ=rαβ, where rαβ ¼

jrαβj. In practice, space is subdivided into a grid and the
microscopic stress is evaluated at discrete positions [7].

There have been a number of extensions of the
IK framework to deal with multibody potentials
[12,15,16,18,19]. Some of these approaches fully retain
balance of linear momentum by construction [12,15,16], by
defining f αβ as the terms of a pairwise force decomposition
Fα ¼ P

βf
αβ satisfying f αβ ¼ −f βα, with Fα being the total

force acting on particle α. The indeterminacy of the local
stress tensor manifests itself in the IK definition because the
pairwise force decomposition is not unique for potentials
involving three or more particles. We consider initially the
so-called central force decomposition (CFD) [13,16] and
defer further discussion to later in this Letter.
We first consider a periodic graphene sheet with a Stone-

Wales defect as a model system to compare the atomic virial
and the IK stresses. The system is modeled with the force
field described in [36] involving up to four-body interactions
and simulated in aNVT ensemble at 300K [23].We compute
microscopic stresses here and elsewhere in the Letter with a
freely available implementation [7,37]. Figure 1(a) high-
lights the fundamental features of each stress definition. The
atomic virial stress is defined discretely at the atoms, while
the IK stress is continuous but exhibits marked concen-
trations along lines joining atomic positions, a signature of
the force decomposition. It is often convenient to spatially
average the discrete features in these fields with weighting
functions such as Gaussian kernels [13,23,38]. Figure 1(b)
shows that the spatially averaged fields σ according to both
notions of stress are qualitatively similar, although the atomic
virial stress exhibits smaller magnitudes.
We analyze next whether these fields are in equilibrium,

as physically expected. Importantly, it can be shown by a
simple calculation that σij;jðxÞ is the spatial average of
σij;jðyÞ [23]. Therefore, σij;j should be zero if the corre-
sponding microscopic stress σij obeys Eq. (1a). Strikingly,
the atomic virial stress is strongly out of equilibrium in the
vicinity of the defect, Fig. 1(c). In contrast, the IK stress
field exhibits nearly zero divergence (except from devia-
tions due to discretization and limited statistical sampling).
Thus, our results suggest that the atomic virial stress should
be employed only for visualization purposes.
We focus next on the various extensions of the IK stress

for multibody interactions. A generalization of the method

of planes has been proposed by Heinz, Paul, and Binder
(HPB) [18,19], which is consistent with the IK stress for
two-body potentials and also recovers the global virial
stress. We find that this method does not exactly satisfy
balance of linear momentum, albeit with a smaller error
than the atomic virial stress [23]. We examine next other IK
generalizations satisfying Eq. (1a) by construction. A
natural force decomposition satisfying f αβ ¼ −f βα was
proposed by Goetz and Lipowsky [15],

f αβGLD ¼
XM
I¼1

1

nI

�∂VI

∂rβ −
∂VI

∂rα
�
: ð4Þ

This Goetz-Lipowsky decomposition (GLD) has been
widely employed to analyze MD simulations ([5,7,8]
and references therein), yet it produces noncentral forces;
i.e., in general f αβGLD is not parallel to rαβ. In principle, this
could lead to nonsymmetric stresses [12,16]. Recently, a
central force decomposition has been proposed by Admal
and Tadmor [13,16], which produces a symmetric stress
tensor by construction because f αβ is defined such that it is
always parallel to rαβ, see Eq. (3). By invariance with
respect to rigid body transformations, the additive potential
contributions can be represented in terms of interatomic
distances, ~VIðr12;…; rðnI 1Þ;nIÞ ¼ VIðr1;…; rnIÞ, leading
to the CFD pairwise forces

f αβCFD ¼
XM
I¼1

∂ ~VI

∂rαβ
rαβ

rαβ
: ð5Þ

The CFD andGLD force decompositions result in pairwise
forces with large differences in magnitude and direction [23].
To explore the features of each force decomposition,
we consider a lipid bilayer system of fluid DPPC

FIG. 1 (color online). Balance of linear momentum of the
microscopic stress in a graphene sheet with a Stone Wales defect:
comparison of the atomic virial (upper row) and the IK (lower
row) stress definitions. (a) Trace of the raw stress fields.
(b) Spatially averaged trace of the stress field. (c) Norm of the
divergence of the spatially averaged microscopic stress. Plots
focus on a small region near the defect in the x − y plane. Because
the system is quasi 2D, we only consider the in plane compo
nents and express stress in units of surface tension.
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(1,2-dipalmitoyl-sn-glycero-3-phosphocholine), which is iso-
tropic in the membrane plane (x − y) at the simulated temper-
ature (323 K). In addition to the conventional profiles of all
stress components across the thickness, we adopt an uncon-
ventional but intuitive method to visualize stress through the
traction vector, t ¼ σ · n, on a given internal surface with unit
normal n (Fig. 2). The traction can be decomposed into a
normal and a tangential component, t ¼ tnnþ τ. Here, we
consider a test cylinder, and represent the normal traction tn as
a color map and the tangential component τ using arrows.
In agreement with the symmetries of this system and the

fluidity of the bilayer, the CFD stress is diagonal with equal
lateral components (σxx ¼ σyy) and a normal constant
component across the bilayer [σzzðzÞ ¼ const.] as dictated
by Eq. (1a) [Fig. 2(a)]. We note that for a bilayer in the gel
phase, the off-diagonal components could be nonzero but
should nevertheless respect the symmetry of σ. In sharp
contrast, the GLD stress exhibits nonzero in-plane
off-diagonal components, which are antisymmetric
(σxy ¼ −σyx) and of significant magnitude [Fig. 2(b)],
hence violating Eq. (1b). Furthermore, CFD and GLD
produce significantly different lateral components, and,
hence, normal tractions (tn ¼ σxx ¼ σyy) [Fig. 2(c)].

Focusing on the tangential traction, we note that τ is
parallel to the bilayer plane with sense and magnitude given

by σxy ¼ −σyx. As expected, for CFD τ is nearly zero. For
GLD, however, it is clear from Fig. 2(c) that the non-
symmetry of the stress tensor introduces distributed torques
of opposite sign in each leaflet of the bilayer, since
σxyðzÞ ¼ −σxyð−zÞ. We hypothesize that such behavior
may be due to the internal structure of each lipid, since
the headgroup portion of DPPC contains a chiral carbon.We
test this hypothesis by comparing the stress tensors for three
systems with different mixtures of the two DPPC enan-
tiomers (L-DPPC and D-DPPC). Consistent with this
hypothesis, the torques induced in each monolayer accord-
ing to GLD adopt the same sign for a system with one
monolayer composed solely of L-DPPC and the second
monolayer composed solely of D-DPPC [Fig. 2(d)]. Mixing
equal numbers of each chiral lipid in bothmonolayers results
in nearly zero distributed torques according to the GLD
stress. Thus, the off-diagonal components of the GLD stress
tensor reflect the average chirality of the molecular compo-
sition. In contrast, we find that the CFD stress tensor is
essentially unchanged by the lipid chirality [23].
To physically interpret the GLD distributed torques, it is

necessary to resort to an extended theory of continuum
mechanics. In micropolar continuum theories, these torques
can be balanced locally by invoking a couple stress fieldm,
which in equilibrium satisfies ϵijkσ

jk ¼ ∇lmil, where ϵijk is
the Levi-Civita symbol [12,39–41]. In our situation, how-
ever, there is no compelling physical justification for this
field since the primary objects of our model are achiral
point particles [41] and there is no apparent external source
for m. Thus, although the connection between the non-
symmetry of the IK-GLD stress and molecular chirality is
very appealing, this example undermines its mechanical
interpretation. The HPB stress [18,19] produces nonsym-
metric stresses very similar to GLD for this system [23].
The microscopic stress tensor not only serves as a tool to

explore the local distribution of forces, but can also provide
important material properties. For instance, the Gaussian
curvature elastic modulus of lipid bilayers can be computed
as κ ¼ R ½ðσxx þ σyyÞ=2 − σzz�z2dz, which is highly sensi-
tive to the features of the stress profile (see [6] and
references therein). For the three bilayer systems with
different chiralities in Fig. 2, we obtain κCFD ¼
ð−6.4;−6.7;−6.1Þ × 10 20 J, in agreement with the
common estimates of κ in the order of the negative of
the bending modulus ∼5–15 × 10 20 J [42]. Strikingly, we
find κGLD ¼ ð0.91; 0.57; 1.3Þ × 10 20 J, with the wrong
sign—suggesting that a DPPC bilayer would be unsta-
ble [43]—and widely varying magnitudes.
Taken together, these results show that the choice of

microscopic stress definition is not a mere theoretical
preoccupation. Our results strongly favor the IK-CFD
definition, which, unlike the atomic virial or the IK-GLD
stresses, identically satisfies Eq. (1) for a system in equi-
librium. However, CFD is not uniquely defined when
nI > 4. The geometric reason behind this ambiguity is that
the nIðnI þ 1Þ=2 interatomic distances ðr12;…; rðnI 1Þ;nIÞ

FIG. 2 (color online). Balance of angular momentum of the IK
stress in a planar DPPC fluid membrane, and influence of lipid
chirality. In plane components of the stress tensor analyzed with
CFD (a) and GLD (b). (c) Visualization of the normal and
tangential components of the traction vector along a cylindrical
surface perpendicular to the bilayer plane, for both CFD and
GLD. The effect of the lipid chirality on the GLD stress for the
two DPPC enantiomers, L DPPC and D DPPC, is shown in (d),
where we consider a lipid membrane composed of monolayers
with different chiralities (one with pure L DPPC and the other
with pure D DPPC, left), and a bilayer with both monolayers
having equal numbers of L DPPC and D DPPC (right).
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involved in a given multibody potential VI cannot be

arbitrarily chosen in DI ¼ RnIðnIþ1Þ=2
þ . There are geometric

conditions that make these distances realizable by a system
of nI particles, which define the so-called shape space
SI ⊂ DI . When nI > 4, the dimension of the manifold SI is
smaller than nIðnI þ 1Þ=2, and, therefore, the differential
calculus involved in Eq. (5) needs to be carefully considered
[44,45]. More practically, when nI > 4 there are infinitely
many different ways to express the potential, ~VI , in terms of
interatomic distances, each resulting in a different force
decomposition and microscopic stress [13,16].
In the spirit of [46–48], we propose an alternative

thermodynamic derivation of the IK microscopic stress,
which naturally and unambiguously extends CFD to multi-
body potentials. In analogy to the Doyle-Ericksen equation
of continuum mechanics [49,50], the stress tensor can be
defined from covariance arguments as

σðxÞ ¼ 2

gðxÞp δA
δgðxÞ ; ð6Þ

where gðxÞ is the Jacobian determinant of the metric and δA
is the variation of the canonical free energy with respect to
an infinitesimal change of metric δgðxÞ resulting from a
change of coordinates. As fully detailed in [22], this
variational formalism identifies the covariant central force
decomposition (cCFD)

f αβcCFD ¼
XM
I¼1

ð∇SI
~VIÞαβ

rαβ

rαβ
; ð7Þ

where ∇SI
~VI is the covariant derivative of the potential

along the shape spaceSI . For four- or fewer-body potentials,
cCFD and CFD in Eq. (5) coincide. However, cCFD
circumvents the main limitation of CFD by providing a
unique expression for potentials with any number of
particles. In practice, ð∇S

~VIÞαβ can be computed by pro-

jecting ∂ ~VI=∂rαβ for an arbitrary extension onto SI [23].
Through a different rationale, the projection of the CFDonto
the shape space has been recently discussed in [51]. Our
assumption that the potential is additively decomposed into
a many-body expansion is appropriate for most classical
force fields. For semiempirical methods based on density
functional theory concepts, such as the embedded-atom
model [20], this additive structure is not apparent. We refer
the interested reader to [22,51] for further discussion.
We test the cCFD microscopic stress by considering a

coiled-coil structural protein, composed of two identical α-
helical chains that wrap around each other to form a super-
helix. The coiled-coil structure is a double “zipper,” with an
inner core of intercalating hydrophobic amino acids that are
flanked by opposing negatively and positively charged amino
acids, Fig. 3(a). We model this system as an infinitely long
periodic molecule with a widely used protein force field
(CHARMM22/CMAP) [21,52] involving up to five-body
interactions. We compare the tractions on the surface of the

coiled-coil protein, essentially exerted by the solvent, calcu-
lated with GLD, cCFD, and another seemingly reasonable
way to fix the indeterminacyofCFD(byminimizing the norm
of the force decomposition) that we call nCFD [23]. We find
that for GLD and cCFD, tn exhibits a similar pattern that
follows the left-handed helical structure, Figs. 3(b) and 3(c).
The zippered interface between the two chains is dominated
by outward tractions (red), which transition to inward
tractions (blue) at the periphery of the protein. In contrast,
nCFD produces spurious maps of tn [Fig. 3(d)], highlighting
the need for a physically meaningful method to fix the gauge
freedomofCFD [40]. Focusing on τ, cCFDpresents tractions
that locally equilibrate and do not produce net forces. GLD,
however, produces a predominantly leftward traction field
following the twist of the protein as a result of the non-
symmetric components of σ. Quantitatively, the GLD trac-
tions produce a net force per unit protein length along its axis
of 34 mN=m,whereas for cCFDwe have 0.35 mN=m. Thus,
the GLD stress again contains information about chirality but
produces tractions that cannot be physically balanced in our
periodic system, which does not undergo any translation or
rotation during the course of the simulation.
In summary, the ambiguity of the microscopic stress

acutely emerges when analyzing complex materials and
biomolecular assemblies. Strikingly, the widely used atomic
virial stress does not satisfy balance of linear momentum,
while a popular version of the Irving-Kirkwood stress does
not satisfy balance of angular momentum as a result of
molecular chirality. In contrast, Irving-Kirkwood stress fields
based on a covariant central force decomposition can be

FIG. 3 (color online). The IK stress for force fields beyond four
body interactions. (a) Ribbon representation of a structural
coiled coil protein simulated with the five body CMAP potential
(cross term energy correction map for adjacent dihedrals used
with the CHARMM22 force field). Tractions at the surface of the
protein are calculated with different variants of the IK stress:
GLD (b), cCFD (c), and nCFD (d, see text).
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rationally derived irrespective of themany-body nature of the
potential and satisfy by constructionmechanical equilibrium
in Eq. (1). This definition ofmicroscopic stress thus provides
a solid footing to systematically connectMDsimulations and
the mechanical behavior of materials at the nanoscale [6,53].
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