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Abstract

An algebraic subgrid scale finite element method formally equivalent to the Galerkin Least-Squares method is presented to improve
the accuracy of the Galerkin finite element solution to the two-dimensional convected Helmholtz equation. A stabilizing term has been
added to the discrete weak formulation containing a stabilization parameter whose value turns to be the key for the good performance of
the method. An appropriate value for this parameter has been obtained by means of a dispersion analysis. As an application, we have
considered the case of aerodynamic sound radiated by incompressible flow past a two-dimensional cylinder. Following Lighthill’s acous-
tic analogy, we have used the time Fourier transform of the double divergence of the Reynolds stress tensor as a source term for the
Helmholtz and convected Helmholtz equations and showed the benefits of using the subgrid scale stabilization.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Acoustic waves propagating in a stationary background
media are solutions of the well-known wave equation.
Acoustic waves are generated by sound sources, which
may be considered as regions of space in contact with
the fluid (or subregions in motion of the fluid itself) where
energy of any origin is transformed into acoustic energy to
be propagated outward as sound waves. The wave equa-
tion can be easily derived from the continuity and Euler
equations for an isentropic flow, assuming quiescence
and neglecting all non-linear terms. In the case of waves
propagating in a flow with uniform mean speed, a con-

vected wave equation can be derived that is valid for
arbitrary values of the Mach number, up to transonic
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flows (see e.g., [17,26] and references therein). The con-
vected wave equation becomes of importance in many
practical problems in aeroacoustics involving aerodynamic
sound generated by aircraft engine fans and compressors
[17,26].

Just as significant as the wave equation is its time Fou-
rier transform: the Helmholtz equation, which gives the
spatial distribution of the acoustic field for a given wave-
number. Analogously, the time Fourier transform of the
convected wave equation describes the spatial distribution
of acoustic waves propagating in a background uniform
flow. This equation, known as the time-reduced version of
the convected wave equation, will be hereafter referred to
as the convected Helmholtz equation. It is the main purpose
of this paper to solve the convected Helmholtz equation for
a background flow of constant speed, in the framework of
finite element methods (FEM).

A large amount of work has been carried out to
find non-polluted numerical solutions to the Helmholtz
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equation using finite element methods. The pollution error
stems from the fact that the weak form associated to the
Helmholtz equation is not positive definite for large wave-
numbers, although it satisfies a Gårding inequality that
allows Galerkin methods to be applied to it [29]. However,
the inf–sup constant has an inverse dependence with the
wavenumber k that leads to a deterioration of the stability
and to the appearance of the pollution error for large val-
ues of k. A dispersion analysis of the weak form interior
numerical stencil reveals that this error is related to the fact
that discrete waves propagate with a discrete wavenumber,
kh, instead of the continuous one. The difference between
both wavenumbers, k � kh, increases for large k’s and a
phase error appears in the numerically solved waves (see
e.g., [21,22,3]).

In order to avoid this problem several methods have
been developed, some of them in the more general context
of the CDR (convection–diffusion–reaction) equations.
The basic idea of several of these methods is to add a sta-
bilizing term to the discrete weak form of the problem that
enhances the behaviour of the solution, diminishing the
pollution effects. This is the case in [21,22,46] where the
GLS (Galerkin Least Squares) was applied to the Helm-
holtz equation in one and two dimensions. An alternative
approach is the partition of unity method (PUM) [35,33]
in which the shape functions are multiplied by free space
homogeneous solutions of the Helmholtz equation. This
is also done in the GFEM (Generalized Finite Element
Method) developed in [2,1,30], although in this case only
the fine scales are multiplied by the free space solutions,
while standard shape functions are used for the coarse
ones. However, the GFEM is basically suitable for struc-
tured meshes. The SGS (Subgrid Scale) approach in
[27,28] was applied to the Helmholtz equation using differ-
ent models for the subscales [4,37] and motivated the inclu-
sion of the element boundary residues into the weak form
[39]. Other approaches to find improved numerical solu-
tions for the Helmholtz equation have considered the use
of bubble functions [13] or enriching the standard polyno-
mial field by means of plane waves. In the discontinuous
enrichment method (DEM) [12] standard shape functions
are used for the coarse scales while free space homogeneous
solutions are added to them representing the influence of
the finer scales. In [38,10] comparisons of the performance
of some of these methods can be found and in [20] a recent
and complete review of several finite element methods for
time harmonic acoustics is provided.

In contrast with the Helmholtz equation and as far as we
know, the convected Helmholtz equation has received
much less attention. In [25], some stabilizing methods for
the CDR scalar equation were readapted to include the
case of a production source term and, recently, an analysis
of the accuracy of the Galerkin solution to the convected
wave equation has been addressed in [15,16]. Dispersion
and amplitude errors for upstream and downstream prop-
agating waves using different finite element types have been
studied as well as their dependence on several parameters
such as Mach number magnitude and wave and flow
orientations.

In this paper, an algebraic subgrid scale finite element
method for the convected Helmholtz equation is proposed.
A stabilizing term is added to the discrete weak form of the
problem containing a stabilization parameter that is deter-
mined by means of a dispersion analysis. As we will deal
with selfadjoint operators, the herein proposed method
coincides with the GLS approach to the problem except
for a minus sign that can be included in the definition of
the stabilization parameter [20,5]. The GLS approach is
probably the cheapest and simplest way to provide stabil-
ization to the Helmholtz equation because its implementa-
tion is made at almost no computational cost [20]. In [10], it
was concluded that the GLS performed superior to resid-
ual-free bubbles (only effective in one dimension) but that
the QSFEM (Quasi Stabilized FEM) or increasing the
degree of the polynomial field were clearly better in lower-
ing the dispersion error. However, the QSFEM is rather
difficult to adapt to non-uniform meshes and irregular
boundary conditions, as already quoted in [10]. Some of
the methods cited in the above paragraphs can also yield
better results than GLS but usually at the cost of more
implementation difficulties and higher computational cost.
On the other hand, although it is often argued that the
GLS has the main drawback of its dependence on the direc-
tion of the plane wave used to derive the stabilization
parameter, it has been shown that some standard values
for this direction angle yield good results for very general
situations [46,47]. Actually, it has recently been checked
by means of numerical experiments that the GLS clearly
improves the Galerkin FEM results in intricate acoustic
fields such as e.g., the noise radiation in an automotive
interior or the scattering from a submarine-shaped obstacle
[23]. In addition, the stabilization parameters usually
derived for a particular mesh (e.g., a mesh of bilinear ele-
ments) still work when changing to unstructured meshes
[23,45]. As a consequence, we may conclude that GLS still
becomes an appealing option when considering its easy
implementation aspect and low computational cost,
together with the clear improvement of the standard Galer-
kin FEM results. It is worthwhile to mention that recent
work on GLS has involved adapting the stabilization
parameter for triangular and distorted elements [24,32].

The work presented in this paper for the convected
Helmholtz equation tends to confirm the general features
found in the GLS application to the Helmholtz equation.
A stabilization parameter is derived for a structured mesh
of quadrilateral bilinear elements, which yields exact nodal
values for a wave propagating at a given direction in a
background uniform flow of constant speed. This parame-
ter also performs well if we use, instead, a mesh of unstruc-
tured quadrilateral elements. We have decided not to work
with many simple problems with analytical solution (the
performance of the method in these cases could readily
be outlined from the herein presented results, the analysis
in [15,16] and the GLS application to the Helmholtz
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equation) but to address a more intricate case in the line of
what is done in [23]. The case of aerodynamic sound gener-
ated by flow past a two-dimensional cylinder has been con-
sidered using the Lighthill acoustic analogy approach [34].
A first incompressible computational fluid dynamic simula-
tion (not to be detailed in this paper) has been performed in
order to obtain the time evolution of the double divergence
of the Reynolds stress. This quantity has been time Fourier
transformed to the frequency domain and used as the
acoustic source term for the Helmholtz and convected
Helmholtz equation. Even though an unstructured mesh
of triangular elements has been used in this example, the
benefits of using the GLS stability parameter, derived from
a quadrilateral bilinear element mesh, become apparent
and the dispersion error in the outward generated waves
is clearly reduced.

The paper is organized as follows. In Section 2 the rela-
tions among the wave equation, the Helmholtz equation
and their convected counterparts are established. Fourier
transform pairs together with Galilean and Lorentz trans-
formations relate these equations. Change of variables by
means of these transformations offer a first possibility to
solve the convected Helmholtz equation. On the other
hand, appropriate boundary conditions are also given for
the latter. In Section 3 we present the weak form of the
problem and the subgrid scale finite element method pro-
posed to solve it. The dispersion analysis to find the value
for the stabilization parameter is carried out. In Section 4
we present the numerical examples. We first show how
the method yields an exact nodal solution for a wave prop-
agating in a mean flow of constant speed and we then pres-
ent the case of aerodynamic noise generated by flow past a
two-dimensional cylinder. Finally, conclusions are drawn
in Section 5.

2. Steady and convected wave and Helmholtz equations

2.1. Wave equation and convected wave equation

The inhomogeneous wave equation for the propagation
of pressure perturbations in a stationary, ideal medium is
given by (acoustic wave equation)

ðc�2
0 o2

tt �r2Þpðx; tÞ ¼ sðx; tÞ; ð1Þ
where p(x, t) stands for the acoustic pressure, s(x, t) is the
source term, c0 is the sound speed in the medium and $2

represents, as usual, the Laplacian operator. Here and in
the sequel we will denote by ot the partial time derivative
o/ot, by o2

tt the partial time derivative of order two o2/ot2,
by oi the spatial partial derivative o/oxi, i ¼ 1 . . . nsd ,
and by o2

ij the spatial partial derivatives up to order two
o2/oxioxj, i; j ¼ 1 . . . nsd . nsd denotes the space dimension
and we will take nsd = 3 in the exposition. As usual, we will
also identify x1 � x, x2 � y and x3 � z. The classical sum-
mation convention will be adopted for repeated indices.

For acoustic waves propagating in an homentropic,
irrotational flow, (1) is no longer valid and has to be
replaced by a linear equation for the time derivative of
the velocity potential or for the perturbation velocity
potential [26]. However, in the special case of a flow
with mean velocity U0(x) at a low Mach number
ðM2 � 1;M ¼ kMk;MðxÞ :¼ U0ðxÞ=c0Þ variations in the
mean density and sound speed can be neglected and the
acoustic wave propagation can be described by a relatively
simple equation, namely the convected wave equation

½c�2
0 ðot þU0ðxÞ � rÞ2 �r2�pðx; tÞ ¼ sðx; tÞ: ð2Þ
Remarks
• If U0 is constant (uniform flow) (2) becomes valid for
Mach numbers up to one (transonic flows). Then, Eqs.
(1) and (2) become equivalent as they are related by a
simple Galilean transformation of the coordinate-
system

x0 ¼ xþU0t: ð3Þ
Uniform flow will be assumed in what follows through-
out the paper.

• It is quite customary to use the material derivative
Dt :¼ ot + U0 Æ $ to rewrite (2) as

ðc�2
0 D2

tt �r2Þpðx; tÞ ¼ sðx; tÞ ð4Þ
showing the close resemblance with (1).
2.2. Helmholtz equation and convected Helmholtz equation

The time-reduced versions of (1), (2) are obtained by
taking their Fourier transforms. Assuming time harmonic
motion and replacing ot by �ix in (1) yields the Helmholtz
equation

ð�r2 � k2
0Þp̂ðx;xÞ ¼ ŝðx;xÞ; ð5Þ

with k0 = x/c0 being the wavenumber and x the radian fre-
quency. Analogously, replacing ot by �ix in (2) yields the
convected wave equation

�½r2 þ ðk0 þ iM � rÞ2�p̂ðx;xÞ ¼ ŝðx;xÞ; ð6Þ
with i ¼

ffiffiffiffiffiffiffi
�1
p

. We identify, for subsequent sections, the
Helmholtz and convected Helmholtz differential operators
as

LH :¼ ð�r2 � k2
0Þ ð7Þ

LCH :¼ �½r2 þ ðk0 þ iM � rÞ2�
¼ �r2 � k2

0 � 2ik0M � r þ ðM � rÞðM � rÞ
¼ �r � ð2ik0M p̂Þ � r � f½I � ðM �MÞ� � rp̂g � k2

0p̂;

ð8Þ

where in the last line of (8) we have used the fact that M
is constant and I stands for the identity. From (7) and (8)
it is quite straightforward to show that both, the Helm-
holtz equation and the convected Helmholtz equation
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correspond to particular cases of the more general Convec-
tion–Diffusion–reaction (CDR) equation. On the other
hand, note that disregarding the boundary condition
contributions, as it is common practice in the present
numerical context, both operators (7) and (8) are selfad-
joint i.e.,

Ly
H ¼LH; Ly

CH ¼LCH: ð9Þ
As for (1), (2), Eqs. (5) and (6) can also be related but

now via a full Lorentz transformation (also known as a
Prandtl–Glauert transformation in the aerodynamic con-
text). This offers a first possibility to solve the convected
wave equation by first converting it in the more simple
Helmholtz equation, then solving for it and finally revert-
ing to the original variables (see Fig. 1 for a schematic rep-
resentation of the relations among all Eqs. (1), (2), (5) and
(6)). The full Lorentz transformation relating (5), (6)
involves a rotation plus a boost in the x-direction. The
two changes will be briefly and independently presented
for clarity and given in a compact form at the end.
Rotation: Let us denote by R the rotation matrix that trans-
forms the Mach number vector M so that it only has
x-component in the new coordinate-system x 0, i.e.,
M 0 = RM with M 0 ¼ ðM ; 0; 0ÞT. If we apply the change
of coordinate-system x 0 = Rx to the convected Helmholtz
Eq. (6) and take into account that R is an orthogonal
matrix, we will observe that the spatial derivatives trans-
form as oi ¼ oix0ko

0
k ¼ Rkio

0
k. It then follows that (6) in the

new coordinates becomes

� ½r02 þ ðk0 þ iMo0xÞ
2�p̂ðx0;xÞ

¼ �ðr02 þ k2
0 þ 2iMk0o

0
x �M2o

02
xxÞp̂ðx0;xÞ ¼ ŝðRTx0;xÞ:

ð10Þ

Boost in the x-direction: We next perform a boost in the
x-direction to (10) consisting in taking x00 = Dx 0 with D
being the diagonal matrix D ¼ diagðb�1; 1; 1Þ and b being
defined as usual by b :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2
p

. We also take
k000 ¼ b�1k0 and p̂00ðx00; k000Þ ¼ p̂ðx0; k0Þ expðik000Mx00Þ. Again,
after some straightforward algebra we can obtain an
expression for (10) in the new coordinates x00:

ðr002 þ k0020 Þp̂00ðx00;xÞ ¼ eðik
00
0
Mx00ÞŝðRTD�1x00; bk000Þ: ð11Þ
Fig. 1. Equation
Remarks

• Eq. (11) is a Helmholtz equation with a source term
modified by an exponential factor. As the source term
is a known input quantity for the problem, it will have
to be expressed in terms of the new coordinates x00 to
solve (11).

• The full Lorentz transformation can be set in a compact
form as

x00 ¼ DRx; k000 ¼ b�1k0;

p̂00ðx00; k000xÞ ¼ p̂ðRx;xÞ exp½ib�1k0ðRMÞ � ðDRxÞ�:
ð12Þ
2.3. Boundary conditions for the convected Helmholtz

problem and strong formulation

When solving (11) in an open domain X00ac, it has to be
completed with appropriate boundary conditions on oX00ac.
Considering Dirichlet, Neumann and Sommerfeld condi-
tions we are left with the strong or differential form of
the Helmholtz problem: find the acoustic pressure
p̂00 : X00ac 7!C, being X00ac � Rd a bounded domain with
smooth boundary oX00ac ¼ C00D [ C00N [ C001, such that

ðr002 þ k0020 Þp̂00ðx00;xÞ ¼ eðik
00
0
Mx00ÞŝðRTD�1x00; bk000Þ in X00ac;

ð13Þ
p̂00ðx00;xÞ ¼ p̂00DðRTD�1x00; bk000Þ on C00D; ð14Þ
r00p̂00ðx00;xÞ � n ¼ ĝðRTD�1x00; bk000Þ on C00N; ð15Þ
r00p̂00ðx00;xÞ � n ¼ ik0p̂00ðx00;xÞ on C001; ð16Þ

where n represents the normal pointing outwards of C00N and
C001 and ĝ : C00N 7!C is prescribed on C00N.

As earlier mentioned, solving (13) and reverting to the
original coordinate-system and variables is a suitable
option to find the solution of the convected Helmholtz
equation. However, if we are interested in directly solving
this equation we will need appropriate boundary condi-
tions for it. These conditions can be found by reverting
the Helmholtz equation boundary conditions (14)–(16) to
the original variables and coordinate-system through the
s framework.
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Lorentz transformation (12). This yields the following
results:

Sommerfeld’s radiation condition: The Sommerfeld’s
radiation condition for the convected Helmholtz equation
becomes

rp̂ðx;xÞ � n ¼ ik0aS p̂ðx;xÞ ð17Þ
aS :¼ b�1½1�Mb�1ðn � �MÞ�; ð18Þ

M being the normalized Mach number vector,
M ¼ ð1=MÞM .

Neumann boundary condition: The Neumann boundary
condition for the convected Helmholtz equation becomes

rp̂ðx;xÞ � n ¼ �ik0aN p̂ðx;xÞ þ ĝðx; k0Þ; ð19Þ
aN :¼ b�2ðn � �MÞ ¼ b�1 � aS : ð20Þ

Note that, as expected aS = 1, aN = 0 for M = 0.
Taking into account (17)–(20), the strong formulation

for the convected Helmholtz equation problem can be writ-
ten as: find the acoustic pressure p̂ : Xac 7!C, being Xac � Rd

a bounded domain with smooth boundary oXac = CD [
CN [ C1, such that

� ½r2 þ ðk0 þ iM � rÞ2�p̂ðx;xÞ ¼ ŝðx;xÞ in Xac; ð21Þ
p̂ðx;xÞ ¼ p̂Dðx;xÞ on CD; ð22Þ
rp̂ðx;xÞ � n ¼ ik0aS p̂ on C1; ð23Þ
rp̂ðx;xÞ � n ¼ �ik0aN p̂ðx;xÞ þ ĝðx; k0Þ on CN; ð24Þ

where n is again the normal pointing outwards of CN, C1
and g : CN 7!C represents a prescribed function on CN.

3. Subgrid scale stabilization of the convected Helmholtz

equation

3.1. Continuous weak form

In order to solve the differential convected Helmholtz
equation by means of a finite element method we first have
to obtain its continuous weak form. For this purpose, let us
first introduce the following functional spaces

W :¼ fp̂ðxÞ 2 H 1ðXÞ; p̂ðxÞ ¼ p̂ðxÞD on CDg; ð25Þ
W0 :¼ fqðxÞ 2 H 1ðXÞ; q ¼ 0 on CDg; ð26Þ

where H1(X) denotes as usual the first-order Sobolev space
of functions with square integrable derivatives of order up
to one. We also introduce the following notation: the scalar
products in L2(X) and L2(C) will be denoted by

ðv;wÞX :¼
Z

X
w	vdX ðv;wÞC :¼

Z
C

w	vdC; ð27Þ

with * standing for the complex conjugate. The duality
pairing between H 1

0ðXÞ and H�1(X) will be represented by
h�; �iX.

The weak form corresponding to the convected Helm-
holtz Eq. (21) with boundary conditions (22)–(24) can be
stated as: find p̂ 2W such that
aðp̂; qÞ ¼ lðqÞ 8q 2W0; ð28Þ
where aðp̂; qÞ stands for the sesquilinear form

aðp̂; qÞ :¼ �2ik0Mjðojp̂; qÞXac
þ ½dij �MiMj�ðoip̂; ojqÞXac

� k2
0ðp̂; qÞXac

� ik0aSðp̂; qÞC1 þ ik0aN ðp̂; qÞCN

ð29Þ
and l(q) is the antilinear functional

lðqÞ ¼ hŝh; qiXac
þ ðĝ; qÞCN

; ð30Þ
where we have considered ĝ in L2(CN).

3.2. Discrete weak form

Given a partition of Xac into finite elements fXegne
e¼1 and

the finite-dimensional subspaces Wh �W, W0;h �W0, the
Galerkin finite element approach to problem (28) consists
in finding p̂h 2Wh such that

aðp̂h; qhÞ ¼ lðqhÞ 8qh 2W0;h: ð31Þ
Note that by taking qh ¼ p̂h and ignoring the boundary
terms in the sesquilinear form we are left with the
inequality

krp̂hk2 � kM � rp̂hk2 � k2
0kp̂hk2

6 kp̂hkkŝhk; ð32Þ
which states that there is no control on the convective term
and that the discrete weak form (the same follows for the
continuous one) may become non-positive definite for large
wavenumbers (remember that M < 1 for our purposes).
This may lead to the appearance of stability problems
and, consequently, to the necessity of using some stabiliz-
ing techniques to solve (31). In (32), kÆk represents the
norm in L2(Xac).

3.3. Subgrid scale stabilization

To avoid the stability problems in (31), a subgrid scale
(SGS) finite element method will be used [27,28]. The key
idea of the SGS finite approach is to decompose the contin-
uous spaces W ¼Wh 
 fW;W0 ¼W0;h 
 fW0, being fW
and fW0 any continuous spaces to respectively complete

Wh;fW0 in W;W0. Then, any function in W can be split
as p̂ ¼ p̂h þ ~̂p, p̂h representing the part of p̂ that can be cap-
tured with the finite element mesh and ~̂p the subscale or
subgrid scale. Making the same decomposition for the test
function and substituting into (31), we obtain the following
two equations, respectively governing the large scales and
subscales behavior

aðp̂h; qhÞ þ að~̂p; qhÞ ¼ lðqhÞ 8qh 2W0;h; ð33Þ
aðp̂h; ~qÞ þ að~̂p; ~qÞ ¼ lð~qÞ 8~q 2 fW0: ð34Þ
The goal consists in finding an approximate value for the
subscales ~̂p (i.e., an approximate solution to (34)) and to
substitute it into (33) to account for their effects on the
large scales, resolvable by the finite element mesh. The var-
ious ways in how this can be done give place to different
subgrid scale stabilizing methods.
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If the algebraic subgrid scale (ASGS) approach is fol-
lowed, it can be shown that the large scale Eq. (33) is mod-
ified to (see e.g., [5])

aðp̂h; qhÞ þ ð�L
y
CHðqhÞ; sSGS½LCHðp̂hÞ � ŝh�ÞXac

¼ lðqhÞ;
ð35Þ

where LCH is the differential convected Helmholtz opera-
tor defined in (8) and sSGS is a stabilization parameter to
be determined below. The notation ð�; �ÞXac

stands for

ðf ; gÞXac
¼
Z

Xac

g	f ;
Z

Xac

:¼
Xne

e¼1

Z
Xe
: ð36Þ

It is expected that the modified sesquilinear form (35) to-
gether with an appropriate choice for the stabilization
parameter sSGS will avoid some of the stability problems
detected when solving the convected Helmholtz equation
[15,16].

If instead of the ASGS method the GLS one is used, it
can be shown that (35) is modified to (see again [5])

aðp̂h; qhÞ þ ðLCHðqhÞ; sGLS½LCHðp̂hÞ � ŝh�ÞXac
¼ lðqhÞ: ð37Þ

Taking into account that the convected Helmholtz differen-
tial operator is selfadjoint (9), it follows that both methods
will yield the same results provided that the ASGS stabil-
ization parameter is identified with minus the GLS stabil-
ization parameter:

sSGS � �sGLS: ð38Þ
Fig. 2. Patch in a two-dimensional uniform mesh.
3.4. Stabilization parameter from a dispersion analysis

In what follows, we will obtain sSGS for the convected
Helmholtz equation in two dimensions. A dispersion anal-
ysis will be performed considering a uniform mesh of ele-
ment size h · h and the use of bilinear elements (see
[29,21,22,46]). Let us first explicitly write the stabilized
ASGS sesquilinear form (35) for the two-dimensional case
without considering the boundary terms, as we will be
interested in results concerning interior mesh nodes. This
form is given by

aSGSðp̂h;whÞ
¼ �2ik0Mx ðoxp̂h;whÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Cx

� 2ik0My ðoy p̂h;whÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Cy

þ ½1�M2
x � ðoxp̂h; oxwhÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Dxx

þ ½1�M2
y � ðoy p̂h; oywhÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Dyy

� 2MxMy ðoxp̂h; oywhÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Dxy

� k2
0 ðp̂h;whÞ|fflfflfflffl{zfflfflfflffl}

S

þ sSGS4k2
0M2

x

X
ne

ðoxp̂h; oxwhÞXe

þ sSGS4k2
0M2

y

X
ne

ðoy p̂h; oywhÞXe

þ sSGS8k2
0MxMy

X
ne

ðoxp̂h; oywhÞXe
� sSGSk4

0

X
ne

ðp̂h;whÞXe
;

ð39Þ
where we have used the fact that ðrp̂h;whÞ ¼ �ðrwh; p̂hÞ
and we have identified the terms Cx, Cy, Dxx, Dyy, Dxy

and S to simplify subsequent notation.
The nodal unknowns for interior nodes corresponding

to the patch in Fig. 2 can be represented by the 9-point dif-
ference star

½P int
ab � :¼

bP a�1;bþ1 bP a;bþ1 bP aþ1;bþ1

bP a�1;b bP a;b bP aþ1;b

bP a�1;b�1 bP a;b�1 bP aþ1;b�1

2
64

3
75: ð40Þ

Analogously, when considering bilinear shape functions,
the coefficients arising from Cx, Cy, Dxx, Dyy, Dxy and S

can be written in compact form for the 9-point difference
star in Fig. 2 as

Cint
x;ab

h i
:¼ h

12

�1 0 1

�4 0 4

�1 0 1

2
664

3
775; Cint

y;ab

h i
:¼ Cint

x;ab

h iT

; ð41Þ

½Dint
xx;ab� :¼

1

6

�1 2 �1

�4 8 �4

�1 2 �1

2
664

3
775; Dint

yy;ab

h i
:¼ Dint

xx;ab

h iT

;

Dint
xy;ab

h i
:¼ 1

4

1 0 �1

0 0 0

�1 0 1

2
664

3
775; ð42Þ

Sint
ab

� �
:¼ h2

36

1 4 1

4 16 4

1 4 1

2
664

3
775: ð43Þ

Taking into account the notation (40), (41), (10), (43), the
equation for the interior node ab (with no force acting on
it) of the algebraic linear system associated to the discrete
ASGS weak problem can be written as
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�2ik0Mx Cint
x;ab

h i
: P int

ab

� �
� 2ik0My Cint

x;ab

h i
: P int

ab

� �
þ ð1�M2

xÞ Dint
xx;ab

h i
: P int

ab

� �
þ 1�M2

y

� �
Dint

yy;ab

h i
: P int

ab

� �
� 2MxMy Dint

xy;ab

h i
: P int

ab

� �
� k2

0 Sint
ab

� �
: P int

ab

� �
þ sSGS4k2

0M2
x Dint

xx;ab

h i
: P int

ab

� �
þ sSGS4k2

0M2
y Dint

yy;ab

h i
: P int

ab

� �
þ sSGS8k2

0MxMy Dint
xy;ab

h i
: P int

ab

� �
� sSGSk4

0 Sint
ab

� �
: P int

ab

� �
¼ 0; ð44Þ

where : stands for a double contraction. If we now assume
a plane wave solution with an effective wavenumber vector
keff

0 ¼ ðkeff
0x ; k

eff
0y Þ (to be determined lately in this section) so

that at node mn

p̂mn ¼ exp½iðkeff
0x hmþ keff

0y hnÞ� ð45Þ

and substitute this expression into (44), a dispersion rela-
tion is obtained from which the following value for the sta-
bilization parameter sSGS can be derived by imposing that
the discrete equations are satisfied:

sSGS

¼
Anum þ BnumMx þ CnumMy þ DnumM2

x þ EnumM2
y þ F numMxMy

Aden þ BdenMx þ CdenMy þ DdenM2
x þ EdenM2

y þ F denMxMy

ð46Þ

with

Anum ¼ �
2

3
4� cos keff

0x h
� 	

� cos keff
0y h

� �h

�2 cos keff
0x h

� 	
cos keff

0y

� �i
þ k2

0h2

9
2þ cos keff

0x h
� 	� �n

�½2þ cos keff
0y h

� �io
; ð47Þ

Bnum ¼ �
2

3
k0h sin keff

0x h
� 	

cos keff
0y h

� �
þ 2 sin keff

0x h
� 	h i

; ð48Þ

Cnum ¼ �
2

3
k0h sin keff

0y h
� �

cos keff
0x h

� 	
þ 2 sin keff

0y h
� �h i

;

ð49Þ

Dnum ¼
2

3
2� cos keff

0x h
� 	

2þ cos keff
0y h

� �h i
þ cos keff

0y h
� �n o

;

ð50Þ

Enum ¼
2

3
2� cos keff

0y h
� �

2þ cos keff
0x h

� 	� �
þ cos keff

0y h
� �n o

;

ð51Þ

F num ¼ 2 sin keff
0x h

� 	
sin keff

0y h
� �

ð52Þ
and

Aden ¼ �
k4

0h2

3
2þ cos keff

0x h
� 	� �

2þ cos keff
0y h

� �h i
; ð53Þ

Bden ¼ 0; ð54Þ
Cden ¼ 0; ð55Þ

Dden ¼ 4k2
0Dnum; ð56Þ

Eden ¼ 4k2
0Enum; ð57Þ

F den ¼ 4k2
0F num: ð58Þ

It remains now to find the appropriate value for the effec-
tive wavenumber vector in (47)–(58). This can be done in a
quite straightforward manner by taking into account the
results from Section 2. Our objective is to find the effective
wavenumber for a plane wave propagating at an arbitrary
direction, say angle h with the x-axis, in a uniform flow
characterized by a Mach vector M being at an angle u with
the x-axis (see Fig. 3). All that we have to do is to revert the
full Lorentz transformation (12) for a plane wave

p̂00ðx00; k000Þ ¼ expðik000 � x00Þ: ð59Þ
Hence, the plane wave propagating in the uniform medium
will be given by

p̂00ðx; k0Þ ¼ expfib�1½Rk0 � k0RM � � ðDRxÞg
� expðikeff

0 � xÞ: ð60Þ

Inserting the rotation matrix

R ¼
cos u � sin u

sin u cos u


 �
ð61Þ

in (60) we arrive to the following values for the components
of the effective wavenumber vector defined in the last
equality of (60)

keff
0x ¼ k0b

�2½cosðh�uÞ cosu�Mx� � k0b
�1 sinðh�uÞ sinu;

ð62Þ
keff

0y ¼ k0b
�2½cosðh�uÞ sinuþMy � � k0b

�1 sinðh�uÞ cosu:

ð63Þ

Note that keff
0 is nothing but k000 expressed in the original

coordinates and variables. Expressions (62) and (63) are fi-
nally to be inserted in Eqs. (47)–(58) to find the appropriate
value for the parameter sSGS.

Remarks

• It should be noted from the above formulation that
while the flow orientation u is a given parameter, the
plane wave orientation h is an artifact of the analysis
whose ‘‘optimum’’ value may be unknown even after
the problem is solved (see discussion in next section).

• If there is no convection i.e., M = (0,0), it follows from
(62), (63) that

keff
0x ¼ k0x; keff

0y ¼ k0y ; ð64Þ
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which inserted in (61) yields

sSGS ¼
Anum

Aden

¼ � 1

k2
0

þ 6

k4
0h2

�
4� cos keff

0x h
� 	

� cos keff
0y h

� �
� 2 cos keff

0x h
� 	

cos keff
0y

� �h i
h
2þ cos keff

0x h
� 	ih

2þ cos keff
0y h

� �i :

ð65Þ

As expected, (65) is nothing but minus the stabilization
parameter found from the GLS stabilization of the
Helmholtz equation in [46].

• The one-dimensional counterpart of (61) can be obtained
e.g., by setting My = 0(u = 0) and k0y = 0(h = 0�) in it
and by taking into account that the effective wave-
number components (62) and (63) will become

keff
0x ¼

k0x

1þM
� keff ; keff

0y ¼ 0: ð66Þ

It then follows that sSGS is given by (we use M �Mx)

sSGS ¼
Anum þ BnumM þ DnumM2

Aden þ BdenM þ DdenM2
; ð67Þ

with

Anum ¼ 2 cos keff
0x h

� 	
� 1

� �
þ k2

0h2

3
2þ cos keff

0x h
� 	� �

; ð68Þ

Bnum ¼ �2k0h sin keff
0x h

� 	
; ð69Þ

Dnum ¼ 2 1� cos keff
0x h

� 	� �
; ð70Þ

Aden ¼ �
k4

0h2

3
2þ cos keff

0x h
� 	� �

; ð71Þ

Bden ¼ 0; ð72Þ
Dden ¼ 4k2

0Dnum: ð73Þ

• The non-convective one-dimensional case follows from
setting M = 0 in (67) and noting that now (66) yields
keff

0 ¼ k0. The stabilization parameter then becomes

sSGS ¼
Anum

Aden

¼ � 1

k2
0

þ 6

k4
0h2

½1� cosðk0hÞ�
½2þ cosðk0hÞ� ; ð74Þ

which is nothing but minus the sGLS obtained for the
one-dimensional Helmholtz equation in [21,22].

• In [5] a general stabilization parameter for the Convec-
tion–Diffusion–Reaction equation was proposed. Also
in [25] it was proposed to extend the stabilization
parameter in [14] to account for the whole range of
source terms (positive and negative). Although, as previ-
ously mentioned, the convected Helmholtz equation
constitutes a particular case of the more general Convec-
tion–Diffusion–Reaction equation, it has some impor-
tant particularities such as having a pure imaginary
complex advection velocity. Care has then to be taken
in the design of stabilization parameters for it. For
instance, it is clear that the application of the above
cited general stabilization parameters to the convected
Helmholtz equation cannot provide the right amount
of stabilization. This is so because these parameters only
depend on the modulus of the advection velocity but not
on its direction, whereas it is clear from Fig. 4a and
numerical experiments that very different stabilization
values are required e.g., for upstream or downstream
propagating waves.
In Fig. 4a we have plotted the dependence of �sSGS with
k0h for various Mach numbers in the one-dimensional case,
see (67). We can observe the role played by the Doppler
effect: for positive Mach numbers (downstream propaga-
tion) the effective wavenumber keff

0 is smaller than k0 (see
(66)) so that less stabilization is required and jsSGSj is smal-
ler than for the Helmholtz case (M = 0, Eq. (74)). On the
opposite, for negative Mach numbers (upstream propaga-
tion) the effective wavenumber is larger than k0 and conse-
quently more stabilization is required than for the
Helmholtz case.

In Fig. 4b we have plotted the dependence of �sSGS with
k0h for a plane wave having a wavenumber vector in polar
coordinates k0 ¼ ðk0; hÞ ¼ ð24; 50�Þ propagating in uniform
flows characterized by Mach number vectors M ¼ ðM ;uÞ,
with M ¼ f0:08; 0:16; 0:24g and u ¼ f30�; 210�g. sSGS has
been computed from (46) and compared with the non-con-
vected stabilization parameter given by (65). A very similar
behaviour to the one in Fig. 4a can be appreciated, jsSGSj
now being smaller because the projection of k0 onto M will
be always minor than for the one-dimensional case
(h � u = 0�) yielding to a less significant influence of the
convective term in (29).

3.5. Discussion

• It is clear that due to the Doppler effect different mesh
resolutions should be used to properly capture an acous-
tic field containing upstream and downstream propagat-
ing waves in a uniform mean flow. In [15] it was shown
that even if we were able to build a mesh keeping the
number of points per wavelength constant (hence avoid-
ing the lack of resolution due to the Doppler effect), the
pollution effects for the Galerkin finite element solution
of the convected wave equation still differ for upstream
and downstream propagation waves. It was also shown
that a large degree of anisotropy is detected when ana-
lyzing the dispersion and amplitude error dependencies
on wave and flow orientations [16]. As a conclusion, it
was suggested that the use of mesh adaptative strategies
based, for instance, on a posteriori error estimations,
may be useful to deal with complex acoustic fields with
waves propagating in many directions. Obviously, this
can be a good procedure although it requires either
the performance of several simulations (at least two)
or a previous knowledge of the resulting acoustic field
to build an adequate mesh. However, the former might
turn rather unpractical for large problems while the lat-
ter rarely occurs. An alternative (or complement) to the
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adaptative mesh strategy is the use of stabilization tech-
niques. If we were able to compute the right amount of
stabilization needed at each mesh zone to yield a good
solution, it would not be necessary to modify the mesh.
In the previous sections we have presented a finite ele-
ment method to do so.

• As pointed out in the first remark of Section 3.4, while
the flow orientation u is a given quantity, the wavenum-
ber direction h will be unknown prior to the solution of
the problem. The resulting sSGS will consequently
depend on the values chosen for h and the stabilization
effect may be significant for waves propagating in this
direction but much weaker or inexistent for other ones.
As already mentioned in the introduction, this is proba-
bly the main drawback of obtaining the stabilization
parameter from a dispersion analysis in the ASGS (or
GLS) stabilization for the Helmholtz equation.
Fig. 3. Scheme for a plane wave propagating with k0 in a uniform flow
characterized by M.
A considerable amount of literature exists with numeri-
cal simulations confirming that the GLS finite element
method with h ¼ 0�; 22:5� performs better than the
Galerkin method in a large variety of cases, not only
for the wave angles indicated. This is demonstrated for
example in [38], where it is shown that for a particular
value of kh and a uniform mesh the error of GLS is
indeed smaller that for the Galerkin method for all wave
angles. References [10,23,24,45,47] also support these
conclusions. However, given that a general proof show-
ing that this will always be the case cannot be probably
derived, some authors think that for some general
acoustic fields the GLS error may be as large as the
Galerkin one. For example, in [29, p. 164], it is claimed
that ‘However, a general signal consists of plane waves

going in an infinite number of directions [. . .] It is not

clear if the GLS leads to improved approximation of a

wave that is not dominant in the preferred direction. In

fact, numerical tests [. . .] show that the GLS-FEM has

the same error as the standard Galerkin FEM if the direc-

tion of the exact solution is different from the direction
chosen for the factor s’’ and the author refers to [46].
Nevertheless, our numerical experiments with the con-
vected Helmholtz equation, some of which are shown
below, seem to confirm that results are always better
using the stabilized finite element formulation, in spite
of the fact that the stabilization parameter is computed
for a given wave angle (0� in our calculations). However,
we do not intent to draw any general conclusion out of
this result, particularly considering the controversy men-
tioned above. In any case, it could be possible that at
some particular points the error may be locally higher
than the Galerkin one.

4. Numerical examples

4.1. Plane wave in a uniform mean flow

As a first numerical example we consider the case of
finding the acoustic pressure in a computational domain,
Xac ¼ ð0; 1Þ � ð0; 1Þ, with inhomogeneous Dirichlet bound-
ary conditions on oXac and normal surface vector n point-
ing outwards of the domain (see Fig. 3), such that

½r2 þ ðk0 þ iM � rÞ2�p̂ ¼ 0 in Xac; ð75Þ

p̂ ¼ exp i keff
0x xþ keff

0y y
� �h i

on oXac: ð76Þ

For the Mach number vector characterizing the mean flow
we take the values in polar coordinates M ¼ ðM ;uÞ ¼
ð0:6; 30�Þ and for the wavenumber vector we use k0 ¼
ðk0; hÞ ¼ ð24 m�1; 50�Þ to be inserted in (75), (76). The
effective wavenumber keff

0 ¼ ðkeff
0x ; k

eff
0y Þ in (76) is computed

from (62), (63).
The exact solution for the problem above is the plane

wave

p̂ ¼ exp ikeff
0 � x

� 	
ð77Þ

propagating with an effective wavenumber in polar coordi-
nates keff

0 ¼ ðkeff
0 ; h

effÞ ¼ ð16:35 m�1; 68:8�Þ. Hence, the
effect of the mean flow on the original wave, having wave-
number k0, is to reduce the modulus of the wavenumber
and to change its direction upstream.

If we now proceed to solve (75), (76) using the Galerkin
finite element method (31) on a uniform grid with elements
of size h · h, with h = 0.025, we will observe that even
though keff

0 h ¼ 0:4 (more than the recommended ten points
per wavelength), the method is unable to yield an accurate
solution for the problem. On the contrary, the stabilized
ASGS finite element approach using the modified weak
form (35) and the stabilization parameter (46) has been
designed to yield exact nodal values for this case. This
can be clearly appreciated in Fig. 5a and b where the imag-
inary part of the Galerkin and ASGS solutions have been
respectively plotted. It is apparent from Fig. 5a that the
Galerkin solution distorts the shape of the wave and yields
much higher amplitudes than the correct ones. This can
also be observed in Fig. 6, where the imaginary part of
the acoustic pressure in a one-dimensional cut of the
domain, Xacjx¼0:25 :¼ fð0:25; yÞj0 < y < 1g is plotted for
both cases, together with the exact solution.



Fig. 4. Stabilization parameter dependence with Mach number.

O. Guasch, R. Codina / Comput. Methods Appl. Mech. Engrg. 196 (2007) 4672–4689 4681
On the other hand, to make the stabilized ASGS method
useful in as many situations as possible, it should perform
well for other meshes than the structured bilinear quadri-
lateral elements for which the stabilization parameter sSGS

has been optimized. To check this point we have con-
structed an unstructured mesh of quadrilaterals elements
(see Fig. 7) and studied the dependence of the numerical
solution relative error in the L2-norm, kp̂h � p̂exactk=
kp̂exactk, when refining the mesh. p̂exact is given by (77) and
p̂h denotes the numerical solution obtained by either the
Galerkin method or by the stabilized ASGS one. Results
are plotted in Fig. 8a together with the �2 slope of the best
approximation solution. It can be clearly observed that the
ASGS stabilized solution improves the results of the
Galerkin method for all meshes. Moreover, we have plot-
ted the results of using the ASGS formulation with the sta-
bilization parameter, sSGS, corresponding to h = 0� instead
of h = 50�. It can be seen that the solution is also better
than the Galerkin one (and for some meshes even better
than the h = 50� one). However, this cannot be taken as
a general result stating that any value of h in sASGS would
result in an improvement of the solution (see the discussion
in Section 3.5).

Further tests are presented in Fig. 8b and c. In Fig. 8b
we have considered the same Mach number and meshes
than for Fig. 8a, but for a plane wave with wavenumber
k0 ¼ ð24 m�1; 80�Þ. This results in a free plane wave with
effective wavenumber keff

0 ¼ ð23 m�1; 116�Þ, i.e., almost



Fig. 5. Imaginary part of the Galerkin and ASGS finite element solutions
to problem (75), (76) in text.

Fig. 6. Imaginary part of the reference, Galerkin and SGS solutions for a
one-dimensional cut of the domain corresponding to the Dirichlet
problem (75), (76) in text.

Fig. 7. Unstructred mesh of quadrilateral elements.
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propagating in the normal direction to the mean flow. It
can be observed in In Fig. 8b that once the resolution
threshold is surpassed (h�1 J 50) the ASGS solution error
is clearly lower than the Galerkin one. The ASGS solution
taking h = 0� in the stabilization parameter also yields
better solutions. On the opposite, if using the ASGS stabil-
ization without taking into account convection (65), large
errors are encountered depending on the mesh, either
when setting h = 0� or h = 80� in the stabilization
parameter.

Next we have repeated the test but for a plane wave hav-
ing wavenumber k0 ¼ ð24 m�1; 190�Þ. Given that this will
result in a very large effective wavenumber modulus, we
have reduced the speed of the uniform flow in order to
achieve proper resolution using the same meshes of the pre-
vious examples. A flow with Mach number M ¼ ð0:2; 30�Þ
has been considered. The resulting free wave has an effec-
tive wavenumber of keff

0 ¼ ð29:7 m�1; 194�Þ, which is travel-
ing quite prone to the reverse direction of the mean flow,
210�. The numerical errors when using the various stabil-
ization and Galerkin methods are plotted in Fig. 8c. In this
case it can be also clearly observed how the ASGS method
gives a better solution than the Galerkin one, once the nec-
essary resolution threshold has been surpassed. It can also
be seen that the ASGS method taking h = 0�, and the
ASGS without considering convection for h = 0�, 190�
improve now the Galerkin solution.

On the other hand, note the disparity of errors for fixed
h in Fig. 8a–c (M = 0.2 for the latter) in accordance with
the highly anisotropic error values found in [16], when ana-
lyzing the error dependence on the flow and wave orienta-
tions. In this line, note that the improvement of the
solution when using stabilization in the analyzed cases
strongly depends on the relative direction of the wave with
respect to the mean flow. Better relative results have been
obtained when comparing with the Galerkin solution for



Fig. 8. Numerical solution error for propagating plane wave. (a) Dashed-dotted: Galerkin, dashed: ASGS with h = 50�, dotted: ASGS with h = 0�,
Continuous line: �2 slope. (b) Dashed-dotted: Galerkin, dashed: ASGS with h = 50�, dotted: ASGS with h = 0�, cross-dashed: ASGS (M = 0) and
h = 50�, cross-dotted: ASGS (M = 0) and h = 0�, continuous line: �2 slope. (c) Dashed-dotted: Galerkin, dashed: ASGS with h = 50�, dotted: ASGS with
h = 0�, cross-dashed: ASGS (M = 0) and h = 50�, cross-dotted: ASGS (M = 0) and h = 0�, continuous line: �2 slope.
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waves propagating close or reversal to the flow direction
than for waves propagating normal to it.

4.2. Aerodynamic sound radiated by flow past a cylinder

As a second numerical example, we will apply the
methodology presented in the previous sections to the
aerodynamic acoustic field generated by flow past a two-
dimensional circular cylinder. The purpose of this example
will be to check the performance of the stabilized formula-
tion in a somehow more intricate problem than the usual
benchmark tests. We will check if the stabilization formu-
lation derived in Section 3 is able to yield good results
for this case that contains waves propagating in several
directions that have been computed in an unstructured
mesh of linear triangular elements (again a different mesh
than the one used to optimize sSGS for a single propagation
direction).
4.2.1. The physical problem: Aeolian tones

Let us consider a two-dimensional cylinder with diame-
ter D embedded in a flow with uniform free stream velocity
in Cartesian coordinates U0 ¼ ðU 0; 0Þ and Mach number
M ¼ ðM ; 0Þ ¼ ðU 0=c0; 0Þ. The Reynolds number based on
these variables is given by Re = q0U0D/l, with l being
the dynamic coefficient of viscosity. The flow dynamics
behind the cylinder strongly depends on the Reynolds
number value. When increasing Re from an almost zero
value to larger and larger values of Re, a set of bifurcations
take place that bring the flow from a steady and totally
symmetric configuration to a fully developed turbulent
flow, probably following the Ruelle–Takens–Newhouse
route to turbulence (see e.g., [26,11]).

We will focus here on the problem once the flow first
loses its steadiness and a wake of alternating periodic vor-
tices is formed behind the cylinder. The set of these shed
vortices is known as the von Kármán vortex street. Vortex
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shedding induces lift fluctuations on the cylinder (drag fluc-
tuations also occur although they are much smaller, see
[42,18] c.f. [26,31]), which lead to the radiation of sound,
having a dipole pattern. Remember that the frequency of
the radiated sound is the same as the vortex shedding fre-
quency and is given by

fvsh ¼ StU 0=D; ð78Þ

where St is the Strouhal number that has the Reynolds
number dependency ([42] c.f. [26])

St ¼ 0:198ð1� 19:7=ReÞ; Re < 5� 105: ð79Þ

The radiated sound is known as an aeolian tone. In practi-
cal cases the cylinder can often vibrate as a reaction to the
changes in lift. This motion tends to correlate the vortex
shedding along the length of the cylinder (three-dimen-
sional case) resulting in a high level of radiated noise. If
in addition, the frequency of the vortex shedding coincides
with a natural mode of vibration of the cylinder, the mech-
anism is further reinforced. This mechanism is responsible,
for instance, of wire whistles when wind is blowing and is
of importance in some industrial problems such as noise
generated by the pantographs of high-speed trains or noise
generation from heat exchangers.

In order to compute the aeroacoustic source term we
have made use of Lighthill’s acoustic analogy [34]. Lighthill
reordered the continuity and momentum equations for a
compressible flow to obtain an inhomogeneous wave equa-
tion for the density fluctuations given by

o2
tt � c2

0r2
� 	

ðq0Þ ¼ ðr �rÞ : T: ð80Þ

In (80) q 0 :¼ q � q0 stands for the density fluctuations and
T is known as the Lighthill tensor, that has the expression

T :¼ qðu� uÞ þ ðp0 � c2
0q
0ÞI � r: ð81Þ

with u standing for the velocity vector, p 0 :¼ p � p0 for the
pressure fluctuations and r for the Cauchy stress tensor.
Fig. 9. Temporal evolution and spectrum
However, nothing is gained from (80), (81) unless T is
approximated somehow, because these equations retain
the full complexity of solving the compressible Navier–
Stokes equations. Consequently, the powerfulness of
Lighthill’s approach precisely relies in finding an appropri-
ate approximation for the tensor T, therefore simplifying
the original problem. For the case of incompressible flows
(M 6 0.3), Lighthill himself proposed to use the Reynolds
stress tensor

T :¼ q0ðu� uÞ; ð82Þ

where u is now the velocity resulting from the solution of
the incompressible Navier–Stokes equations (i.e., we take
$ Æ u = 0). The validity of such an approach was deeply
analyzed in [9] by the method of Matched Asymptotic
Expansions and more recently, e.g., in [43,44].

To compute the aeroacoustic field a three-step process
has been carried out, which is similar to the one in
[40,41]. This process will be only briefly outlined here and
it will be the subject of a forthcoming paper (some details
can be found for the moment in [19]). The first step of
the method consists of a time-dependent fluid dynamic
computation (CFD) of the incompressible flow impinging
on the cylinder that has served to obtain the solenoidal
velocity field on the computational domain. The incom-
pressible Navier–Stokes equations have been solved by
means of an algebraic SGS method (see e.g., [27,5–7]) to
circumvent the fulfilment of the inf–sup condition when
using equal interpolation for the velocity and pressure
fields, and to avoid the instabilities arising in convection
dominated flows. We have used the stabilization parame-
ters in [5] (see also [6] for a different derivation of these
parameters).

The second step of the method consists in computing the
aeroacoustic source term in (80) from the velocity field
of the first step and using the Reynolds stress tensor
approximation (82). As this source term contains a double
of the cylinder lift coefficient, CL.
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divergence, we have made use of the following approxima-
tion in order to use C0-continuous finite elements in the
computation:

ðr �rÞ : T 
 q0ðr �rÞ : ðu� uÞ 
 q0ðr � uÞ
: ðr � uÞT ¼: sLðx; tÞ; ð83Þ

where the incompressibility constraint $ Æ u = 0 has been
applied twice in the second equality of (83) and we have
denoted this approximated source term by sL(x, t). Once
(83) is computed, we have Fourier transformed it to obtain
its frequency domain counterpart.

The third step of the method finally consists in comput-
ing the acoustic field generated by the uniform flow of
speed U0 ¼ ðU 0; 0Þ impinging on the cylinder. We have
considered two cases: the first one corresponds to the
straightforward application of Lighthill’s acoustic analogy.
This has given the acoustic field as seen by an observer that
is at rest with the cylinder and feels the uniform inflow
impinging on it at speed (U0,0). Actually, we have been
interested in knowing the acoustic field spatial distribution
at the vortex shedding frequency, which is given by the time
Fourier transform of Lighthill’s equation
Fig. 10. CFD results.
� ðr2 þ k2
0Þp̂ ¼ ŝL in Xac; ð84Þ

rp̂ � n ¼ 0 on Ccyl; ð85Þ
rp̂ � n ¼ ik0p̂ on C1; ð86Þ

with k0 = x/c0 = 2pfvsh/c0, Xac � R2 being a bounded
domain, Ccyl the cylinder boundary and C1 the far field
boundary of Xac.

The second case has consisted in considering the acous-
tic field as seen by an observer at rest with the flow that sees
the cylinder approaching at speed (�U0,0). To obtain this
result we can perform a full Lorentz transformation of
Lighthill’s Eq. (84) (note that the source term is Galilean
invariant so it will not be affected by the uniform mean
flow). This results in the convected Helmholtz equation:

½r2 þ ðk0 þ iM � rÞ2�p̂ ¼ ŝL in Xac; ð87Þ
rp̂ � n ¼ �ik0aN p̂ on Ccyl; ð88Þ
rp̂ � n ¼ ik0aS p̂ on C1: ð89Þ

Notice that the low Mach number limitation for this exam-
ple does not arise from the convected wave equation, which
is valid up to transonic flows, but from the use of the Rey-
nolds tensor as an approximation for Lighthill’s tensor,
which is only valid for incompressible flows (M < 0.3).
Note also that the convected Helmholtz equation (87)–
(89) only applies to uniform flows, which is not the case
for the vortex street past the cylinder. However, Lighthill’s
acoustic analogy establishes a clear separation between the
acoustic source zone, where acoustic waves are generated
(in this case the boundary of the cylinder and the periodic
vortices past it) and the propagation zone (acoustic med-
ium) where acoustic waves are radiated and propagate (in
this case the remaining of the domain). Hence one can
imagine the problem as that of a set of acoustic sources
placed near the cylinder (with independence of the fact that
they have been obtained from a CFD computation of a
non-uniform flow) radiating into an acoustic medium that
may be at rest or moving e.g., at uniform speed. The con-
vected Helmholtz equation can be applied to this acoustic
medium.

4.2.2. Numerical results

For the numerical example we have considered a circu-
lar cylinder of diameter D = 0.3 in a circular computa-
tional domain XCFD of diameter 3 · 103D. We have taken
a dynamic viscosity coefficient of l = 0.006 and an imping-
ing flow velocity in Cartesian coordinates of U0 ¼ ð20; 0Þ,
leading to Reynolds and Mach numbers at the far field
(away from the cylinder) of Re = 103 and M ¼ ð5:83�
10�2; 0Þ, for a sound speed of c0 = 343 (all units are in
SI). The incompressible Navier–Stokes problem has been
solved in an unstructured mesh of triangular elements
ranging in size from 
3 · 10�3D near the cylinder surface
to 
30D at the far field.

In what concerns the acoustic field, computations have
been performed in the same domain used for the CFD
computation, i.e., Xac = XCFD. As there is no analytical



Fig. 11. Near field results for the imaginary part of the convected
reference acoustic pressure.
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solution for this problem, the Galerkin finite element
method has been first used to solve Eqs. (84)–(89) in a very
Fig. 12. Reference far field results for the imaginary part of the acoustic
pressure.

Fig. 13. FEM far field results for the imaginary part of the acoustic
pressure.
fine mesh that has a high resolution at the far field. It has
been checked that the obtained results show no appreciable
differences with the results obtained using the SGS stabil-
ization in the same mesh. The solution corresponding to
this fine mesh will be termed hereafter as reference solution
for the simplicity of notation and used to assess the perfor-
mance of the method in the line of what is done in [23]. In
order to verify the performance of the implemented ASGS
stabilization for the convected Helmholtz equation, prob-
lem (87)–(89) has been also solved in a rather coarse mesh
that has a resolution of 7–8 nodes per wavelength at the far
field. The Galerkin finite element method and the ASGS
stabilized finite element method have been used to solve
(87)–(89) in the coarse mesh and their solutions have been
compared with the reference solution to see which one per-
forms better.

Let us first have a look at the results from the CFD com-
putation. A periodic flow is established with vortex shed-
ding at a frequency of fvsh = 15.3 Hz (St = 0.229). This
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can be appreciated in Fig. 9a and b, where the temporal
evolution and normalized spectrum of the lift coefficient
are plotted. The lift coefficient has a mean amplitude of

1.36. The computed frequency and Strouhal number
are slightly higher than the ones obtained from (78), (79),
fvsh = 13 Hz (St = 0.194). This is in part due to the fact that
(78), (79) are valid for three-dimensional cylinders, while
we are performing two-dimensional simulations. The
three-dimensional effects begin to be significant for
Re > 300 and two-dimensional simulations tend to over
predict the values for fvsh and St (see [36] and references
therein).

In Fig. 10a we have plotted a snapshot of the isovelocity
contourlines at a given instant of time showing the von
Kármán vortex street. In Fig. 10b we present the contour-
Fig. 14. Imaginary part of the solu
lines corresponding to the acoustic source term sL =
q0($ � u) : ($ � u)T used as an approximation for Light-
hill’s tensor. It can be observed that the source term rapidly
decreases to zero when moving away from the cylinder sur-
roundings. The fast decay of the source term is of crucial
importance and in fact justifies the acoustic analogy
approaches. Otherwise, it would not be possible to distin-
guish between a source region and a propagating one (see
e.g., [9,8]).

In what concerns the acoustic results, the imaginary part
of the reference acoustic pressure for the convected Helm-
holtz Eqs. (87)–(89) in the near field is shown in Fig. 11.
It can be clearly observed that although there is sound gen-
erated at the wake of the cylinder, only sound having a
dipole pattern and generated by lift fluctuations on the
tions for one-dimensional cuts.
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cylinder propagates outwards, to the far field. In Fig. 12a,
where the reference far field solution is plotted, this becomes
fully evident. In Fig. 12b we have presented the results cor-
responding to the reference solution of the Helmholtz equa-
tion (84)–(86). By comparison with Fig. 12a, we can observe
as expected that the observer being at rest with the flow sees
the wave fronts bended upstream. This effect is not very
strong for this example because the Mach number is not
very high, but it is clearly visible e.g., near the boundaries
of the domain. While the solution in Fig. 12b is totally sym-
metric this is not the case for the solution in Fig. 12a.

In Fig. 13a and b we have respectively plotted the Galer-
kin solution and SGS solution corresponding to the coarse
mesh case. It can be observed that the Galerkin solution
presents pollution error, which manifests as a phase lag
in the wave fronts of Fig. 13a when compared with those
of the reference solution in Fig. 12a. This phase error is
considerably reduced when using the SGS stabilization,
see Fig. 13b. The situation becomes more apparent in
Fig. 14a where the results for a one-dimensional cut of
the domain Xacjh¼90� ¼ fðr; 90�ÞjD=2 < r < 1:5� 103g are
given. It can be seen that the ASGS stabilized solution
has almost the same phase as the reference one, while the
Galerkin solution clearly presents a phase lag. In
Fig. 14b, we give the results for another one-dimensional
cut, Xacjh¼135� ¼ fðr; 135�ÞjD=2 < r < 1:5� 103g, which is
near the limits of the silent cone in front of the cylinder.
In this case the ASGS stabilization is not able to fully
match the reference solution although it improves the
results from the Galerkin one. From Figs. 13 and 14 we
can then conclude that the ASGS stabilization yields a
solution much more prone to the reference one than the
Galerkin solution.

The results for the ASGS solution in this section have
been obtained using an angle of h = 0� in the effective
wavenumber components (62), (63), to be inserted in the
expression (46) for the stabilization parameter, sSGS.

5. Conclusions

In this paper we have presented an algebraic subgrid
scale finite element method to solve the two-dimensional
convected Helmholtz equation. The method does in fact
correspond to the application of the Galerkin/Least-
Squares approach with appropriate redefinition of its sta-
bilization parameter, because the involved convected
Helmholtz differential operator is selfadjoint. The stabiliza-
tion parameter has been derived from a dispersion analysis
and it reduces to well-known expressions for the one-
dimensional and two-dimensional Helmholtz equations in
the case of no convection.

As a first application, we have considered the case of a
plane wave propagating in a uniform flow. It has been
shown that the proposed subgrid scale stabilized method
yields exact nodal solutions, while the Galerkin method is
unable to give a valid solution for the plane wave.
Improvements have been also obtained for non-structured
meshes different to the one used to derive the stabilization
parameter and for waves propagating in different directions
with respect to the mean flow. As a second example, we
have considered the case of aerodynamic sound generated
by flow past a two-dimensional cylinder. We have limited
to subsonic cases and made use of Lighthill’s acoustic anal-
ogy. Although a non-structured mesh of triangular ele-
ments has been used for this problem, it has been shown
that using the subgrid scale stabilization to find the solu-
tion of the convected Helmholtz equation clearly improves
the results that otherwise would have been obtained using
the Galerkin finite element method.

As a general conclusion we may say, on one hand, that
the herein presented ASGS stabilized method could prove
very useful for problems where we have a certain degree
of a priori information on the wave propagation directions.
This would be the case, for instance, of duct acoustics (note
that in this case two optimum stabilization parameters
respectively accounting for upstream and downstream
waves could be easily implemented). On the other hand,
we have also checked that the method could also be useful
in much more involved problems such as the generation of
aeolian tones described above.
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