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Abstract: The accurate modeling of the charging behaviors for electric vehicles (EVs) is the basis for
the charging load modeling, the charging impact on the power grid, orderly charging strategy, and
planning of charging facilities. Therefore, an accurate joint modeling approach of the arrival time,
the staying time, and the charging capacity for the EVs charging behaviors in the work area based on
ternary symmetric kernel density estimation (KDE) is proposed in accordance with the actual data.
First and foremost, a data transformation model is established by considering the boundary bias
of the symmetric KDE in order to carry out normal transformation on distribution to be estimated
from all kinds of dimensions to the utmost extent. Then, a ternary symmetric KDE model and an
optimum bandwidth model are established to estimate the transformed data. Moreover, an estimation
evaluation model is also built to transform simulated data that are generated on a certain scale with
the Monte Carlo method by means of inverse transformation, so that the fitting level of the ternary
symmetric KDE model can be estimated. According to simulation results, a higher fitting level
can be achieved by the ternary symmetric KDE method proposed in this paper, in comparison to
the joint estimation method based on the edge KDE and the ternary t-Copula function. Moreover,
data transformation can effectively eliminate the boundary effect of symmetric KDE.

Keywords: electric vehicles; charging behaviors; kernel density estimation; optimum bandwidth

1. Introduction

Nowadays, a considerable part of the total emissions is due to contribution of road traffic [1,2].
For this reason, the development of the new technologies (as electric vehicles (EVs) and bicycles for
sustainable mobility) is necessary to reduce the emissions. Nevertheless, a huge amount of disorderly
EVs charging behaviors could pose a wide range of challenges to the safe, economic, and efficient
operation of the charging network (CN) with the large-scale development of EVs. As for a power grid
(PG), these challenges originate from the uncertain distribution of the EVs charging load [3–5]. In
terms of EVs, these challenges stem from the randomness of EVs driving and charging behaviors [6].
As a result, problems such as uneven EVs distribution in the CN, congestion in some charging stations
(CSs), and long waiting time for charging, and waste of charging resources are caused [7]. The above
problems raised in the operation of CN will become a "bottleneck" to the EVs development, which
should be solved without delay.

Fortunately, the distribution of EVs charging load is also characterized by flexible load with
a potential for regulation although it is uncertain. The potential can be found in two aspects. On
the one hand, the CN (as shown in Figure 1) integrates the attributes of a PG, a transportation network
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(TN), and an information network (IN), which allows EV users to select a CS base on bidirectional
information interaction with the help of the navigation system and the CS administration center, so as
to achieve the regulation of EVs charging load between CSs [8,9]. On the other hand, the advancement
of battery technology and charging facility technology, especially the emergence of multi-gun charging
piles can provide the necessary conditions for regulating EVs charging load in CSs [10]. Therefore,
the study of regulating EVs charging load distribution appears to be particularly important and will
create opportunities for the safe, economic, and efficient operation of the CN.

Figure 1. Diagram of the charging network (CN).

Modeling of EVs charging behaviors, charging load modeling, the charging impact on the PG,
orderly charging strategy, and planning of charging facilities have been focuses of domestic and foreign
studies concerning the regulation of EVs charging load distribution, and EVs charging behaviors should
be modelled accurately for the latter four research contents. It can be observed that the modeling study
of EVs charging behaviors is the key to the regulation of EVs charging load distribution. However,
with low popularization of EVs at the beginning, it was difficult to obtain the actual driving data.
Considering that drivers’ driving times and distances are constant, it is common to study the modeling
of the EVs charging behaviors with fuel vehicle data. From the perspective of modeling data, these
research data are derived from the national household travel survey (NHTS) data of America [11],
daily traffic flow data of Jiangsu Province of China [10], and daily traffic flow data of South Korea [12].
Characteristic parameters of fuel vehicles should be converted into characteristic parameters of EVs
charging via certain assumptions when the above data are applied in the actual study. For instance, it
must be assumed that the daily driving mileage is positively correlated with the charging time [13],
that the end time of the last trip is equivalent to the initial charging time [14], that the initial charging
time is independent of the charging time [15], and that the battery of each EV is fully charged [16].
These assumptions might lead to large deviations between Monte Carlo simulation results and
actual conditions.

As EVs have witnessed rapid growth in recent years, a higher accuracy can be gained from
the modeling of charging behaviors with the actual EVs data. In that case, studies on the modeling
of charging behaviors with the actual EVs operating data have been rising gradually. In terms of
modeling data, these research data are derived from charging data [3,4] of electric taxis in Shenzhen,
EVs charging data [17] in Kanagawa, EV parking and charging data [18,19] of CSs in Netherlands, EV
charging data [20] of CSs in UK, and EVs charging data [21] of CSs in Nanjing, etc. In terms of modeling
objects, these objects primarily consist of the arrival time (or initial charging time), the staying time (that
contains waiting time and charging time), and the charging capacity. Additionally, the charging capacity
modeling can be divided into three parts: the starting state of charge (SOC) modeling, the ending SOC
modeling, and the battery pack capacity modeling. In terms of modeling approaches, these approaches
are divided into two main categories: parametric estimation (PE) and non-parametric estimation (NPE).
When EVs charging behaviors are modelled with PE, the variable to be estimated conforming to a certain
known probability distribution should be presupposed before estimating parameters of the assumed
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probability distribution with EVs charging behaviors data for testing. Common PE methods are
composed of Gaussian distribution [6], mixed Gaussian distribution [4], mixed Beta distribution [19],
and Weibull distribution [22] etc. The premise of using the PE approach is to presuppose that
the probability distribution is approaching the actual situation. Otherwise, the established EVs
charging behaviors model might be significantly deviated from the actual situation. When EVs
charging behaviors are modelled with NPE, presupposition is not required. Instead, the probability
distribution of the variable to be estimated is gained directly under the drive of EVs operating data. In
this way, deviations caused by wrong selection of PE models can be effectively addressed.

At present, there are two approaches to EVs charging behaviors modeling by NPE. One uses
the unitary kernel density estimation (KDE) or the unitary self-adaptive KDE [23,24] for modeling
with taking no account of the correlation between variables, the other uses the estimation associating
the edge distribution function (common empirical distribution function or unitary KDE [25]) with
the Copula function [21] for modeling with considering the correlation between variables. In terms of
modeling accuracy, the second approach has higher modeling accuracy than the first one. Nevertheless,
in the second approach, errors can be found in the estimation of each edge distribution and the overall
relationship of describing ternary variables with the correlation. Consequently, the deviation of
the joint density estimation generated by the above errors is large, causing a large deviation between
the simulation results and the actual results. With this as the cutting point, this paper introduces an
accurate joint modeling approach of the arrival time, the staying time, and the charging capacity for
the EVs charging behaviors in the work area based on ternary symmetric KDE in accordance with
the actual data. The rest of the paper is organized as follows: a ternary symmetric KDE model of EVs
charging behaviors is built in Section 2. In Section 3, we solve the model with using KDE software
package and toolbox of MATLAB. In Section 4, the ternary symmetric KDE method, and the joint
estimation method based on the edge KDE and the ternary Copula function are investigated, and
the results are analyzed from the simulations. Finally, Section 5 concludes this paper.

2. Ternary Symmetric KDE Model of EVs Charging Behaviors

2.1. Data Transformation Model

There is a boundary bias in the symmetric KDE, namely, a large deviation will arise in the boundary
estimation [26]. In order to eliminate the boundary bias, Box-Cox transformation was selected in this
paper to transform EVs data in the work area from all dimensions. Its normal transformation and its
corresponding inverse transformation are expressed as Equations (1) and (2), respectively [27].

Ω′i =

 Ωλ
i −1
λ λ , 0

log(Ωi) λ = 0
, i = 1, 2, · · · , n , (1)

Ωi =

 (λΩ′i + 1)
1
λ λ , 0

exp(Ω′i) λ = 0
, i = 1, 2, · · · , n , (2)

where log(·) is the logarithmic function; exp(·) is the exponential function; n is the number of EVs
samples; λ is a parameter to be estimated. In this paper, the estimated parameter λ can be solved
with the maximum likelihood method [27] and the corresponding logarithmic likelihood function is
represented by Equation (3).

L(λ) = −
n
2

log
[
var

(
Ωλ
− 1
λ

)]
+ n(λ− 1)mean[log(Ω)], (3)

where var(·) is the variance function; mean(·) is the mean value function; Ω is the transformed data
of EVs.
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The parameter λ value is estimated as

λ̂= arg max
λ∈R

[L(λ)], (4)

where max(·) is the maximum function.

2.2. Ternary Symmetric KDE Model

The modeling object in this paper is ternary variables that involve the overall relationship among
the EVs arrival time, the staying time, and the charging capacity. In order to effectively describe its
overall characteristics, a ternary symmetric KDE model is established as follows.

Suppose that (X11, X12, X13), (X21, X22, X23), · · · , (Xn1, Xn2, Xn3) are n three-dimensional (3D)
samples of the EVs charging behaviors, where (Xn1, Xn2, Xn3) is the nth 3D sample, and the subscript n
of Xnd(d= 1, 2, 3) refers to the number of the samples; K(·) is a given Borel measurable function on R3;
hn1 > 0 , hn2 > 0 , hn3 > 0 are constants related to n, and when n is infinite, hn1 , hn2 , hn3 tend to 0.

f̂K(x, y, z) =
1

nhn1hn2hn3

n∑
i=1

K
(

Xi1 − x
hn1

,
Xi2 − y

hn2
,

Xi3 − z
hn3

)
, (5)

Equation (5) is called the ternary KDE of f (x, y, z) [23,24]; hn1 , hn2 , hn3 are bandwidths; (x, y, z)
are valued by dividing the cube space that is composed of the maximum values (Xmax1, Xmax2, Xmax3)

and the minimum values (Xmin1, Xmin2, Xmin3) of three dimensions in the given sample into m3

segments. Sequentially, (x, y, z) are taken as xi = Xmin1 + (Xmax1 −Xmin1)× i/m,y j = Xmin2 + (Xmax2 −

Xmin2) × j/m,zk = Xmin3 + (Xmax3 −Xmin3) × k/m; K(·) is a kernel function, which can be expressed
by the product kernel function [28].

K(·) =
3∏

d=1

Kd(·), (6)

where Kd(·) is unitary kernel function, which exerts no influence on the overall relationship of variables.
In order to ensure rational estimation, a symmetric unimodal probability density function centered on
0 is usually selected. Additionally, the same pattern is generally adopted [28].

Uniform kernel, Gaussian kernel, Epanechnikov kernel, and quartic kernel are common kernel
functions [23]. In this paper, the Gaussian kernel is selected as the kernel function of the ternary
symmetric KDE model, as expressed in Equation (7).

Kd(u) =
1
√

2π
exp

(
−

u2

2

)
, d = 1, 2, 3, (7)

The ternary symmetric KDE model for EVs arrival time, the staying time, and the charging
capacity is established as Equation (8).

f̂K(x, y, z) =
1

n
(√

2π
)3 3∏

d=1
hnd

n∑
i=1

exp

−
(

Xi1 − x
√

2hn1

)2

−

(
Xi2 − y
√

2hn2

)2

−

(
Xi3 − z
√

2hn3

)2
, (8)

2.3. Optimum Bandwidth Model

Selecting an appropriate bandwidth is extremely important for the actual use of ternary symmetric
KDE. When a small bandwidth is selected, the randomness effect will be prominent, resulting in
irregular shapes of estimation results. When large bandwidth is selected, the averaging effect will be
prominent, possibly causing the structural characteristics of data [29] to be masked and the over-slick
estimation result. Therefore, the least square cross-validation was adopted in this paper, so that
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bandwidths can be directly and automatically generated by data [23] to ensure the appropriateness of
the bandwidth. The integral squared error (ISE) between the ternary symmetric KDE and the true
density is defined as

ISE
(

f̂K
)
=

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

(
f̂K(x, y, z) − f (x, y, z)

)2
dxdydz, (9)

where the ISE reaching the minimum bandwidth is called the optimal bandwidth. To make it simple,
solving the optimal bandwidth of Equation (9) can be equivalent to solving the optimal bandwidth of
Equation (10).

R
(

f̂K
)
=

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

f̂ 2
K(x, y, z)dxdydz− 2

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

f̂K(x, y, z) f (x, y, z)dxdydz, (10)

In Equation (10),
∫
∞

−∞

∫
∞

−∞

∫
∞

−∞
f̂K(x, y, z) f (x, y, z)dxdydz = E

[
f̂K(x, y, z)

]
, so

n−1
n∑

i=1
f̂ (−i)
K (Xi1, Xi2, Xi3) is an unbiased estimation, in which

f̂ (−i)
K (Xi1, Xi2, Xi3) =

1

(n− 1)
3∏

d=1
hnd

n∑
j=1,i, j

K
(X j1 −Xi1

hn1
,

X j2 −Xi2

hn2
,

X j3 −Xi3

hn3

)
, (11)

By calculation

n−1
n∑

i=1

f̂ (−i)
K (Xi1, Xi2, Xi3) =

1

n(n− 1)
3∏

d=1
hnd


n∑

i=1

n∑
j=1

K
(X j1 −Xi1

hn1
,

X j2 −Xi2

hn2
,

X j3 −Xi3

hn2

)
− nK(0, 0, 0)

,

(12)
Taking Equations (6), (11) and (12) into account, the second term in Equation (10) is

−2

n(n− 1)
3∏

d=1
hnd


n∑

i=1

n∑
j=1

exp

 3∑
d=1

log
[
K
(X jd −Xid

hnd

)]− nK3(0)

, (13)

Additionally, the first term in Equation (10) can be calculated as

1

n2
3∏

d=1
hnd

n∑
i=1

n∑
j=1

exp

 3∑
d=1

log
[
K∗

(X jd −Xid

hnd

)], (14)

When the Gaussian kernel is selected as the kernel function, the K∗(·) can be expressed as

K∗(u) =
1
√

4π
exp

(
−

u2

4

)
, (15)

When n is large, n− 1 in Equation (13) can be replaced with n. In this way, a final scaling function
can be obtained by substituting Equations (13) and (14) into Equation (10).

M(hn1, hn2, hn3) =
1

n2
3∏

d=1
hnd

n∑
i=1

n∑
j=1

exp(
3∑

d=1

log(K∗(
X jd −Xid

hnd
))) − 2 exp(

3∑
d=1

log(K(
X jd −Xid

hnd
))) + 2nK3(0)

,

(16)
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The optimum bandwidth model obtained through verification using the least squares method can
be established as (

hopt1, hopt2, hopt3
)
= min

hn1>0,hn2>0,hn3>0
M(hn1, hn2, hn3), (17)

2.4. Estimation Evaluation Model

A ternary symmetric KDE model is constructed on the basis of the actual EVs operating data in
the work area. Moreover, the Monte Carlo method [30] is utilized to generate the simulation data of
the required scale. Then, simulation data and original data are presented in a 3D right-angle plane
using a 3D scatter density map. Three binary frequency histograms are selected to describe the overall
characteristics of the simulated data and the original data, so as to quantitatively evaluate the fitting
level of the estimated model. Meanwhile, corresponding frequency matrices can be also obtained. In
order to evaluate the difference of the frequency matrix, the similarity between the matrices A and B is
defined as

r =

n∑
i=1

m∑
j=1

(
Ai j −A

)(
Bi j − B

)
√ n∑

i=1

m∑
j=1

(
Ai j −A

)2
 n∑

i=1

m∑
j=1

(
Bi j − B

)2


, (18)

where A = mean2(A) and B = mean2(B); mean2(·) is the mean function of all elements in a matrix.
After obtaining the similarity of frequency matrix, the estimation model is defined to fit

the evaluation indexes concerning the advantages and disadvantages of original data. It is composed
of Equations (19) and (20).

µr =
1
n

n∑
i

ri, (19)

σr =

√√
1
n

n∑
i=1

(ri − µr)
2, (20)

where µr and σr are the mean and the standard deviation of the matrix similarities corresponding to
the generated data and the original data after n times of simulations. The greater µr indicates the higher
the fitting level of original data of the model; while the smaller σr indicates the higher the stability of
the model fitting the original data.

3. Algorithm Flowchart

The data transformation model, the ternary symmetric KDE model, the optimal bandwidth model,
and the estimation evaluation model are established in this paper, of which, the data transformation
model and the optimal bandwidth model are unconstrained optimization models. Functions in Toolbox
are used in MATLAB to solve the unconstrained optimization model and the estimation evaluation
model. In addition, the KDE software package [31] is also used to model the ternary symmetric KDE.
The specific process is presented as follows:

Step 1: Extract effective data records of the EVs arrival time, stay time, and charging capacity in
the work area to conduct normal transformations on it with Equation (1) sequentially and
estimate the transformed parameters with the Equations (3) and (4) sequentially before
solving the parameter estimation model with the genetic algorithm (GA). Moreover, the data
transformation model is solved by using the GA function in Toolbox in MATLAB to obtain
the estimated value of the transformation parameter;

Step 2: Substitute the original data and the transformed data into Equations (16) and (17), respectively,
and solve the optimal bandwidth model through using the Fmincon function in Toolbox in
MATLAB to obtain corresponding optimal bandwidths;
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Step 3: After reading the original and transformed data and the corresponding optimal bandwidth,
model the ternary symmetric KDE on the original data and the transformed data distributions
through calling the KDE software package in MATLAB. At the same time, estimation modeling
is conducted on the original data and transformed data, respectively, by means of using
the Ksdensity function and the Copulafit function in Toolbox in MATLAB;

Step 4: Implement the Monte Carlo random sampling through calling the Sample function in the KDE
software package in MATLAB by setting the number of simulations and the sampling size,
and reading the results of the ternary symmetric KDE. Meanwhile, the Monte Carlo random
sampling can be implemented through calling the Copularnd function in Toolbox in MATLAB.
It should be noted that the random sampling of the transformed data estimation should be
inversely transformed in Equation (2);

Step 5 Read the frequency matrix of the binary frequency histogram of the original data and
the simulated data, and solve the frequency matrix similarity between the original data
and the simulated data through calling the Corr2 function in Toolbox in MATLAB. Besides,
results of the ternary symmetric KDE are compared with that of the joint estimation based on
the edge KDE and the Copula function to verify the effectiveness of the ternary symmetric
KDE model.

4. Numerical Simulation

4.1. EVs Data

More than 17,000 data records from September 1, 2016 to December 31, 2017 were extracted and
used in this paper from a EVs charging service company platform in Nanjing, each of which contains
the tab and the name of the CS, the arrival time, the departure time, the charging capacity, the charging
amount, the order type, the payment method, the order number and the order status, etc. This data
is a crucial support for the analysis of EVs charging behaviors. Four sets of data records, including
the name of the CS (it is used for dividing the charging area), the arrival time, the staying time (the
difference between the departure time and the arrival time), and the charging capacity were extracted
for the study. Apart from the abnormal data record that should be eliminated as required, there was
more than 14,000 effective data records.

The randomness is large since the data volume per day per station is small among the effective data.
In order to investigate the charging behaviors law of EVs, effective data records are aggregated from
space and time. First of all, every CS is classified into the work area, the residential area, the commercial
area, and other areas through searching the name of the CS from the map at the spatial dimension, so
as to spatially aggregate the effective data records. Next, the EVs arrival times of multiple days are
aggregated into one day at the time dimension, so as to carry out time aggregation on the effective
data records.

After time-space aggregation, data records in the work area, the residential area, the commercial
area, and other areas are 11,740, 681, 1042, and 792, respectively. As can be seen from data, the work area
has the largest number of data records (up to 82%), while few records can be found in the residential
area, the commercial area, and other areas (accounting for less than 7.3%). In that case, in order to
guarantee the rational modeling, the combined distribution of the EVs arrival time (AT), the staying
time (ST), and the charging capacity (CC) were analyzed with the EVs operating data in the work area
as the original data (as shown in Figure 2) for concluding the charging behaviors law of EV users,
which can provide the basis for studying EVs charging load modeling, the impact of charging on
the PG, orderly charging strategies, and planning of charging facilities.
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Figure 2. Original data for electric vehicles (EVs) in the work area.

4.2. Results and Analysis

In order to verify the effectiveness of the method proposed in this paper, the joint estimation
method based on the edge KDE and the Copula function [21,25,28] was compared, defined, and
simulated in the following four cases:

Case 1: Ternary symmetric KDE was conducted on the original data, and simulation data were
generated with the Monte Carlo method;

Case 2: After conducting normal transformation on the original data, ternary symmetric KDE
was performed on the transformed data. Then, the simulated data that were generated by the Monte
Carlo method were inversely transformed as the final simulation data;

Case 3: Joint estimation based on the edge KDE and the Copula function was conducted on
the original data, and simulation data were generated with the Monte Carlo method;

Case 4: After conducting normal transformation on the original data, joint estimation based on
the edge KDE and the Copula function was conducted on the original data. Then, the simulated data
that were generated by the Monte Carlo method were inversely transformed as the final simulation data.

Furthermore, the simulation samples number can be set to 11,740, and the simulation times with
Monte Carlo method can be set to 10,000. The experimental platform was built in MATLAB (R2014a
64-bit), based on a Hewlett Packard personal computer (CPU: Intel Core i7-8700 3.2 GHz, RAM: 8 GB,
OS: Windows 10 64-bit).

(1) Data Transformation Analysis

In this paper, transformed parameters of the AT, the ST, and the CC were estimated with
the maximum likelihood estimation method. Estimated results of various parameters are shown in
Figure 3. When the parameter estimation results are taken as−0.5575, 0.2170, and 0.3992, corresponding
maximum likelihood functions are maximized. Based on this, the data transformation model was
utilized to perform normal transformations on the AT, the ST, and the CC in the original data,
respectively. The scatter density map (yellow means high density) of the transformed data (without
units) is shown in Figure 4. A total of 74.3% of the scattered points (with yellow) gather around
the center area in Figure 4, and 87.3% of the scattered points (with non-yellow) in Figure 2 are relatively
dispersed. Therefore, most of the scattered points in the 3D space gather around the center area after
the normal transformation of the original data.
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Figure 3. Estimated results of various parameters.

Figure 4. Transformed data for EVs.

In general, the skewness can be used to detect whether the data conforms to a normal distribution.
If so, it is equal to 0 [25]. In order to better illustrate the effect of data transformation, the frequency
histograms of the original data and the transformed data (without units) in all dimensions are given in
Figure 5. Additionally, the corresponding skewness results were calculated as (0.7994, 2.1144, 1.8073),
and (0.0830, −0.0062, 0.0192). Therefore, the distributions of the transformed data in all dimensions are
closer to the normal distributions than those of the original data, and a better normal transformation
effect can be observed in the ST and the CC data.
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Figure 5. The frequency histograms of (a) arrival time (AT) original data, (b) staying time (ST) original
data, (c) charging capacity (CC) original data, (d) AT transformed data, (e) ST transformed data, (f) CC
transformed data.

(2) Estimation Model Analysis

The optimal bandwidths of the original data and the transformed data were calculated with the least
square cross-validation method, as shown in Table 1. When the optimal bandwidths

(
hopt1, hopt2, hopt3

)
are taken as (0.5865, 0.0733, 0.2027) and (0.0069, 0.0456, 0.0908), respectively, the corresponding scaling
function can be minimized.

Table 1. Optimal bandwidths of the original data and the transformed data.

Items
(
hopt1,hopt2,hopt3

)
Min(M)

Original data (0.5865, 0.0733, 0.2027) −0.0012
Transformed data (0.0069, 0.0456, 0.0908) −0.5371

Based on this, estimation results can be obtained by conducting the ternary symmetric KDE on
the original data and the transformed data. Estimation results that are four-dimensional data are
projected on three coordinate planes for output. The ternary symmetric KDE results of the original
data and transformed data in each coordinate plane are shown in Figure 6.
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Figure 6. Ternary symmetric kernel density estimation (KDE) results of (a) AT-ST original data,
(b) AT-CC original data, (c) ST-CC original data, (d) AT-ST transformed data, (e) AT-CC transformed
data, (f) ST-CC transformed data.

Moreover, the edge KDE should be given to the to-be-compared joint estimation model based on
the edge KDE and the Copula function. The edge KDEs of the original data and the transformed data
are shown in Figure 7. On this basis, an appropriate ternary Copula function was selected. The ternary
normal Copula function (TNCF) and the ternary t-Copula function (TTCF) are commonly ternary
Copula functions [25]. The linear correlation parameter matrices of the Copula functions of the raw
data and the transformed data are shown in Table 2.

Figure 7. The edge KDEs of the (a) AT original data, (b) ST original data, (c) CC original data, (d) AT
transformed data, (e) ST transformed data, (f) CC transformed data.
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Table 2. Linear correlation parameter matrices of the Copula functions of the original data and
the transformed data.

Items Original Data Transformed Data

TNCF

 1.000 0.1718 0.1520
0.1718 1.000 0.6557
0.1520 0.6557 1.000


 1.000 0.1561 0.1402

0.1561 1.000 0.6581
0.1402 0.6581 1.000


TTCF

 1.000 0.1600 0.1338
0.1600 1.000 0.7314
0.1338 0.7314 1.000


 1.000 0.1520 0.1318

0.1520 1.000 0.7276
0.1318 0.7276 1.000


As shown in Table 2, the original data are characterized by a good linear correlation in comparison

to transformed data. After that, the squared Euclidean distance between the Copula function and
the empirical Copula function [25] were calculated to evaluate their strengths and weaknesses.
Regarding original data, corresponding Euclidean distance calculation results are 3.4119 and 3.2634,
respectively; concerning transformed data, corresponding Euclidean distance calculation results are
3.2667 and 3.1489, respectively, which show that original data and transformed data can be better fitted
in the TTCF model. In this paper, the joint estimation model based on the edge KDE and the TTCF was
chosen as the comparison object.

(3) Evaluation Analysis for Estimation Model

A total of 10,000 simulation times were conducted to generate simulated data samples for
evaluating the fitting level of the ternary symmetric KDE model and the joint estimation model
based on the edge KDE and the TTCF. To make it simple, a simulation sample was selected. To
select the simulated data (whose structure is more similar to that of the original data), the axis
ranges of the scatter density maps were set to AT ∈ [6, 30], ST ∈ [0, 48], CC ∈ [0, 90], and
the radii of the benchmark spheres of the scatter density maps were set to 3.4066 according

to
√
[range(AT)/30]2 + [range(ST)/30]2 + [range(CC)/30]2, where range(·) is the function that is

the difference between the maximum value and the minimum value of the axis. The scatter density
maps of the simulated data in four cases are shown in Figure 8. The overall 3D structures of the original
data (as shown in Figure 2) and simulated data in case 1 and case 2 are approaching. In comparison,
the overall 3D structures of the simulated data in case 3 and case 4 are significantly different. In
conclusion, the joint estimation model based on the edge KDE and the TTCF might lead to a large
deviation between the simulation results and the actual results, while the ternary symmetric KDE is
more suitable for describing the overall relationship among the AT, the ST, and the CC, presenting
a high fitting level.
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Figure 8. Scatter density maps of the simulated data in (a) case 1, (b) case 2, (c) case 3, (d) case 4.

As shown in Figure 9, the frequency histograms of the original data and the frequency histograms
(for describing four-dimensional data) of the simulated data in two cases in different coordinate
planes are presented to compare the accuracy levels of the ternary symmetric KDE in case 1 and
case 2. The frequency matrix similarities between the simulated data and the original data in each
coordinate plane in two cases can be shown in Table 3. The similarity between the frequency matrix
of the simulated data and the original data in each coordinate plane in the case 2 is higher than that
in the case 1. Meanwhile, the corresponding frequency histogram has a high goodness of fit. Hence,
the transformed data can eliminate the boundary bias of the symmetric KDE in a more effective way in
comparison to the original data, improving the fitting level of the ternary symmetric KDE model.
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Figure 9. Frequency histograms of (a) AT-ST original data, (b) AT-CC original data, (c) ST-CC original
data, (d) AT-ST simulated data in case 1, (e) AT-CC simulated data in case 1, (f) ST-CC simulated data
in case 1, (g) AT-ST simulated data in case 2, (h) AT-CC simulated data in case 2, (i) ST-CC simulated
data in case 2.

Table 3. The frequency matrix similarities between the simulated data and the original data in each
coordinate plane in two cases.

Items Case 1 Case 2

AT-ST 0.6805 0.8001
AT-CC 0.7102 0.8751
ST-CC 0.9530 0.9630

The mean and the standard deviation of the frequency matrix similarities between the simulated
data and the original data in two cases under 10,000 Monte Carlo simulations are shown in Table 4.
Compared with case 1, the simulated data and the original data in each coordinate plane have a higher
mean value of frequency matrix similarities and a lower standard deviation in case 2, that is, the ternary
symmetric KDE model has a high fitting level and stability under transformed data.
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Table 4. The mean and the standard deviation of the frequency matrix similarities between the simulated
data and the original data in two cases.

Mean Standard Deviation

Case 1 Case 2 Case 1 Case 2

AT-ST 0.7499 0.8256 0.0650 0.0461
AT-CC 0.7592 0.8612 0.0597 0.0321
ST-CC 0.9075 0.9130 0.0864 0.0815

5. Conclusions

An accurate joint modeling approach of the arrival time, the staying time, and the charging
capacity for the EVs charging behaviors in the work area based on ternary symmetric KDE was
proposed in accordance with the actual data. It can provide the basis for studying EVs charging load
modeling, the impact of charging on the PG, orderly charging strategies, and planning of charging
facilities. The main contributions of this paper can be summarized as follows:

• Effective data records are aggregated from space and time. On the one hand, every CS is classified
into the work area, the residential area, the commercial area, and other areas through searching
the name of the CS from the map at the spatial dimension. On the other hand, EVs arrival times of
multiple days are aggregated into one day at the time dimension.

• A ternary symmetric KDE model of EVs charging behaviors is established. A higher fitting level
can be achieved by the proposed ternary symmetric KDE method, in comparison to the joint
estimation method based on the edge KDE and the TTCF.

The main conclusions of this paper can be summarized as follows: (1) Through the Box-Cox
transformation, the original data can be transformed to make its distribution characteristic more normal.
(2) The deviation between the simulation results and the actual results can be effectively reduced by
the ternary symmetric KDE, in comparison to the joint estimation model based on the edge KDE and
the Copula function. (3) With the Box-Cox transformation, the ternary symmetric KDE model has
a high fitting level and stability, and its boundary effect can be effectively eliminated.

Simulated data samples of the arrival time, staying time, and charging capacity with the overall
relationship can be generated on a large-scale with the Monte Carlo method, and the charging behaviors
modeling results. The simulated data samples can be directly used for modeling the charging load
of a certain scale EVs in work areas, with the actual power data of the charging pile that needs to be
given separately since it is not stored in the platform. In the future, the charging behaviors modeling
results can be modified with the continual accumulation of the actual running data of EVs in other
areas, and the modified results can also be used for modeling the charging load of a certain scale EVs
in other areas.

It is worth mentioning that the original data drives the charging behaviors modeling to obtain
the modeling results that would otherwise be unavailable. Moreover, the waiting time has not been
added to the modeling in this paper due to the charging characteristics of EVs in work area. However,
the subsequent research will focus on the EVs charging behaviors modeling in highway fast-charging
stations where the waiting time is an important (and a new compared to refueling) factor in case of EVs.
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