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In this study, we propose an adaptive path planning model and tracking control method for collision avoidance and lane-changing
manoeuvres on highways in rainy weather. Considering the human-vehicle-road interaction, we developed an adaptive lane
change system that consists of an intelligent trajectory planning and tracking controller. Gaussian distribution was introduced to
evaluate the impact of rain on the pavement characteristics and deduce adaptive lane-change trajectories. Subsequently, a score-
based decision mechanism and multilevel autonomous driving mode that considers safety, comfort, and efficiency were proposed.
A tracking controller was designed using a linearised model predictive control method. Finally, using simulated scenarios, the
feasibility and effectiveness of the proposed method were demonstrated. The results obtained herein are a valuable resource that
can be used to develop an intelligent lane change system for autonomous vehicles and can help improve highway traffic safety and

efficiency in adverse weather conditions.

1. Introduction

Weather is an important factor that affects traffic and road
safety. Nearly, 75% of all traffic accidents are caused due to
slippery pavement and around 47% of traffic accidents occur
on the rainy days of the year [1]. Rainfall has a significant
impact on vehicle manoeuvrability and is of particular
importance in path planning and control mechanisms in
autonomous vehicles, on account of the complex environ-
ment perception and manipulation coupling, along with
lower visibility and pavement adhesion. Therefore, an
adaptive lane change system that can achieve safe lane
changes in rainy weather is an important development goal.

An intelligent lane change system for autonomous ve-
hicles must address two critical issues—path planning and
tracking control. Path planning for lane changing is a

localised motion that occurs in real-time and is closely re-
lated to the vehicle dynamics and parameters relating to the
external environment, such as the decision time and ad-
hesion coefficient of pavement. Tracking control is based on
the goal defined by path planning and must provide tracking
accuracy and robust stability. Over the past few years, a
significant amount of progress has been achieved in this field
[2-4].

Classical path planning strategies using search-based and
random sampling methods, such as A = [5], D [6], and
rapidly-exploring random tree (RRT) [7, 8], have been
widely used in the field of robotics. Stentz demonstrated an
extension to the D # algorithm that can significantly reduce
the total time required for path planning. Search-based
methods achieve path planning using the target-oriented
heuristic method, and the D # algorithm is better suited to
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dynamic environments [9]. However, it is more suited to
single and discrete node states than to continuous vehicle
motion. Consequently, Frazzoli et al. proposed a rando-
mised motion planning architecture for dynamic systems
with fixed and moving obstacles, which describes a real-time
motion-planning algorithm by search tree. Nevertheless,
large oscillations and uncertain convergence rates exist in
the planning path, and the optimality cannot be guaranteed
[10]. In recent years, with the development of artificial in-
telligence (AI) technology, numerous advanced swarm in-
telligence methods have been applied to path planning in
autonomous vehicles, including ant colony, genetic, and
artificial neural network algorithms. Liu proposed an im-
proved ant colony algorithm to optimise path planning [11].
Engedy et al. verified that an artificial neural network al-
gorithm can be used to control an autonomous vehicle
[12, 13]. However, Al algorithms are complex, and the
problem of slow convergence is extremely prominent.
Moreover, if the dataset is insufficient, the neural networks
may cause deviations. Therefore, autonomous vehicles tend
to employ more practical path-planning methods, such as
the potential field and optimisation curves [14]. The basic
idea behind the potential field is to abstract the driving
environment of a host vehicle into a virtual potential field by
defining a potential energy function to ensure collision
avoidance and path optimisation [15, 16]. Although the
algorithm can clearly describe progressive states between
related vehicles, it is complex to compute. Consequently, the
real-time rendering and control of potential energy func-
tions cannot be achieved easily. In comparison, optimisation
curves are more attractive on account of their real-time
applicability and simplified vehicle dynamics, with typical
methods, including splines, Bézier curves, and geometric
functions. Gomez et al. generated an effective collision-free
path based on f-spline curves [17]. You et al. introduced
tracking-planning methods using polynomials for lane-
change manoeuvres [18, 19]. Kuniaki et al. presented an
optimised path generation method based on Bézier curves
for anticollision behaviour [20]. Geometric methods have
attracted significant attention as they provide real-time
computation, and the constant offsets are a good solution to
the problem of occupant comfort during vehicle lane
changes. Wang et al. proposed trapezoidal and sine func-
tions to describe lane-change trajectories [21]. A path-based
sine function is easy to calculate and has continuous cur-
vature, but the maximum values of the lateral acceleration of
the vehicle exist at the beginning and end of the path, which
is inconsistent with reality. Polynomial functions are ide-
alised, and yaw motion is neglected. Therefore, although
geometric curves can be parameterised easily, it is difficult to
describe a clear link between actual driving and vehicle
characteristics.

Based on the lane-change path planning method, the
decision system determines a reasonable path, and a control
module executes the selected lane-change trajectory. A
significant amount of research has been conducted on
control methods [22, 23]. Classical control methods are
based on the steering mechanism. MacAdam proposed an
optimal single-point preview steering controller to ensure
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lateral trajectory tracking, and Sharp et al. designed a
multipoint preview steering controller using a linear qua-
dratic regulator (LQR) to improve the control effect [24-26].
Meanwhile, PID control is one of the most widely used
algorithms. Akash et al. designed a nested controller for
autonomous vehicles using double-integral action to min-
imise trajectory tracking errors [27, 28]. Although these
controllers employ simple and easy to implement structures,
they cannot be used in applications that require high
tracking accuracy. Sangeetha et al. developed an adaptive
integral backstepping control approach for unmanned aerial
vehicles to optimise lateral tracking, based on the Lyapunov
theorem [29]. Wang et al. presented a sliding mode variable
structure controller using an automatic steering control
algorithm [30]. These classical control methods are widely
used in autonomous vehicles on account of their high
theoretical maturity. However, owing to the high accuracy
requirements of the model, the control effect under complex
nonlinear constraints cannot be guaranteed. To adapt to
vehicle state time variants and multiconstraint sets, such as
actuator saturation of the steering system or roads with
unknown curvature and uncertain lateral wind forces, fuzzy
and model predictive control (MPC) have been applied to
improve the stability and robustness. Nguyen et al. proposed
a new constrained Takagi-Sugeno fuzzy model-based con-
trol method using a fuzzy Lyapunov control framework to
perform automatic lane-keeping under multiple system
constraints [31]. However, fuzzy rules rely on experience,
and the relevant theories must be further improved. In
contrast, an MPC controller can deal with uncertainties in its
prediction and optimisation ability. Che et al. presented a
robust MPC approach to control front steering [32]. Bascetta
et al. developed a novel methodology based on a linear
fractional transform (LFT) formulation of the system dy-
namics [33]. Still, linear control algorithms are inadequate
for actual vehicles, especially for those working in highly
nonlinear regions. Therefore, considering the complexity of
vehicle-driving scenarios and states, Mario et al. presented a
nonlinear MPC and moving horizon estimation for highly
nonlinear, constrained, unstable, and fast dynamic systems.
The performance of the proposed controller offered better
state prediction and tracking on a low-friction icy road [34].
Traditional methods of path planning and control have
played a positive role in the study of autonomous vehicles.
However, most existing models only consider vehicle dy-
namics and seldom consider the impact of the characteristics
of an intelligent driver and the road on driving safety in rainy
weather. Furthermore, previous studies have focussed pri-
marily on straight roads, without paying much attention to
curved sections. Vehicle lane changing on a curved highway
to avoid a collision is a relatively complex working condition
that synchronously involves both steady-state and transient
steering, coupled with a wide range of real-time state
changes. Therefore, it is prone to instability and can cause
chain rear-end collisions, especially in rainy weather.
There are three main considerations in this scenario: the
first is to determine the safe distance for lane changes on a
typical dangerous curved and slippery road section, which
clarifies the influence of the road environment on active
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obstacle avoidance and path planning; the second involves a
method to generate an intelligent decision, called hierar-
chical scoring, through which the system can make an
optimal driving decision, considering multiple and con-
flicting objectives; the third is a real-time trajectory planning
and following architecture that is designed based on dif-
ferent lane-change scenarios. Overall, we present a sys-
tematic approach from behavioural decision making and
path planning to control execution for autonomous vehicles,
based on Gaussian distribution, scoring, and convex opti-
misation, such that optimal paths and velocity profiles are
generated to safely execute vehicle movement. This study can
serve as a reference to develop the environmental suitability
of an autonomous vehicle control system and improve the
safety and efficiency of the advanced transportation system.

This study considers lane changing in an autonomous
vehicle on a curved highway in rainy weather, which is a
relevant real life situation. The rest of this paper is laid out as
follows: Section 2 provides a brief description of the in-
fluence of rainfall on lane change behaviour; the lane change
model is presented and validated in Section 3; Section 4
describes the design of a decision mechanism for collision
avoidance and a controller using model predictive control
(MPC); Section 5 lists the major conclusions; the conflicts of
interest and acknowledgements are listed in Section 6 and
Section 7, respectively.

2. Influence Analysis of Rainfall on Lane-
Change Behaviour

2.1. Driving Behaviour. tRainfall, especially moderate to
heavy rainfall, reduces visibility, blurring the sight of the
driver and increasing response time. According to [35],
there is a clear decrease in the frequency of speeds
>110km/h in the slow lane in rainy conditions, and the
median speed in the fast lane decreases by about 20% with
moderate rainfall. From a microscopic standpoint, this
indicates that drivers reduce their speeds in adverse
weather conditions and increase their headway and
spacing, as shown in Figure 1. Considering the envi-
ronmental adaptability of drivers and passengers, au-
tonomous vehicles must be able to adopt similar driving
modes to humans on rainy days.

2.2. Road Adhesion Characteristics. In rainy weather, a water
film layer exists between the tyre and the pavement, de-
creasing the road adhesion coefficient, maximum lateral
force, and brake force. The thickness of the water film is
mainly affected by the rainfall intensity, slope length, slope
angle, and roughness of the road surface [36]:

h=0.1258 x 10.6715 % i—0.3147 % q0.7786 x TDO.7261) (1)

where F is the thickness of the water film (mm), /is the slope
length (m), i is the slope angle (%), q is the rainfall intensity
(mm/min), and TD is the roughness of the road surface
(mm). The road adhesion coefficient is closely related to
vehicle speed and is calculated as

140 —|
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100 —|
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[ No rain
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B Medium rain

FiGure 1: Distribution box diagram of vehicle speed in various
rainfall conditions.

y = 0.9458 — 0.0057V — 0.0108h, (2)

where p is the adhesion coefficient of the road, V is the
vehicle speed (km/h), and  is the thickness of the water film
(mm).

Setting V=108km/h, I=50m, i=3%, TD=0.55mm,
and g=1.0mm/min, the road adhesion coefficient is cal-
culated to be around 0.53, which is used as a reference
herein.

2.3. Vehicle Dynamics. Rain has a significant influence on
the adhesion coefficient of the road and the vehicle tyres,
which can decrease by about 60%. As a result, the tyre
saturated lateral force cannot supply the vehicle steering
centrifugal force. Consequently, sideslip is more to likely to
occur while steering on a highway. In general, the vehicle
acceleration threshold in rainy conditions is lower and can
be calculated as

amax = Aug’ (3)

where a,,,, is the maximum vehicle acceleration.
The typical performance when vehicle sideslip occurs is a
sharp turn, as shown in Figure 2.

3. Safe Lane-Change Model for
Collision Avoidance

3.1. Vehicle Lateral Dynamics. The plane movement of a
vehicle lane-change manoeuvre on a curved road is shown in
Figure 3. Unlike straight driving, there are initial and final
turns at the beginning and end of the curve, respectively. The
entire driving process can be divided into three steps,
namely, initial fixed radius steering, sinusoidal steering, and
final fixed radius steering.

As shown in Figure 3, the vehicle dynamics can be
defined by both a ground coordinate system XOY as well as a
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FIGURE 3: Plane movement of vehicle lane-change on curved road.

vehicle coordinate system xoy. The vehicle moves in a
variable curvature motion while turning and changing lanes.
Reference [37] has shown that a sine wave-shaped steering-
wheel movement can describe a lane change manoeuvre.
Moreover, the steering angle when driving on a curved road
with constant curvature is fixed. Therefore, for a lane-
changing manoeuvre on a curved road, the front wheel
steering angle can be approximated as

O () = 0y (1) + 0. (1) = C+ A sin(2nft),  (4)

where J;is the front wheel angle; 8, is the turning angle, which
can be considered to be a fixed value with invariant curvature;
O is the steering angle for a simple lane-change; A and fare the
amplitude and frequency of ¢, respectively; ¢ is the driving
time; and C is a constant value adapted to the road curvature.

The steering inputs can be divided into two separate
inputs: steady state cornering with fixed radius and transient
steering with variable radii. Based on this idea, the vehicle
lateral dynamics can be integrated by the turning motion
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and the lane changing motion, and the vehicle lateral ve-
locities in XOY are

Vy (t) = Vyo (£) + Vi (8), (5)

where Vy is the synthetic vehicle lateral velocity; Vyy and Vy.
are the lateral velocities of turning and lane changing, re-
spectively; and ¢ is the vehicle driving time.

In general, the minimum radius of a curve on highways
in plains and hilly areas is more than 600 m. Thus, the road
curvature and vehicle yaw angle while changing lanes at high
speed on a curved highway section are relatively small.
Introducing the improved Gaussian distribution from [21],
the vehicle lateral velocities can be calculated as

i Vy (t) = Vyo () + Vy. (1),

(a2t +2a,v,0t + vigt)
VYO (t) = >
4 R, (6)

2
d t—u
Vy () = N exp <( 202)/)
L y

>

y

where R, is the curve radius, defined as a constant value on a
regular curve; v, is the vehicle longitudinal initial velocity in
xo0y; a, is the longitudinal acceleration; and d, thys and o, are
fitting coefhicients, which are defined as

(d =B,

1 (7)
P=Plu,-do,<t<p, +Mo,} =),

. = ((1/f) +2ty)
- (7).

where B is the width of each lane, fis the steering frequency,
to is the decision time of the intelligent system, t4 is the
response delay time of the lateral velocity determined by the
vehicle dynamics, and P and A are the probability coefhi-
cients. A is generally set to 4~6 to ensure a high probability of
lane change completion in a steering cycle. In real-world
scenarios, it can be obtained by accurately fitting the lateral
velocity to vehicle dynamics and scenarios.

3.2. Vehicle Longitudinal Dynamics. Generally, a vehicle
brakes or changes lanes to avoid a colliding with an obstacle
or a slower vehicle. Changing lanes is better than braking as
it is more efficient. In addition, owing to the high speeds and
lower adhesion coefficient on highways during rainy
weather, a longer safe distance should be taken to avoid
collisions. Therefore, a combination of lane changing and
longitudinal speed control is a safer and more efficient al-
ternative. Two lane changing modes with constant speed and
deceleration are discussed herein.
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On account of the small yaw angle of the vehicle
(generally, < 10°), the vehicle longitudinal velocity in the
ground coordinate system XOY is regarded as the same as
that in the vehicle coordinate system xoy. The vehicle lon-
gitudinal velocity and displacement in the ground coordi-
nate system XOY at constant speed and deceleration are

Vi (£) = vyps
a, =0,
Sx1 () = vyt
8
Vs = Ve +ay (t =ty —ty)s (8)
a, <0,

X

1
Sxa = Vo (to + 1) + 5 (t-to - 1),

where Vy; and Vy, are the vehicle longitudinal velocities
with time under uniform motion and braking, respectively;

Sx1 and Sy, are the vehicle longitudinal displacements with
time; and ¢, is the braking delay time.

3.3. Vehicle Lane-Change Model for Collision Avoidance.
The safe distance is defined as the minimum distance re-
quired for the vehicle to safely change lanes or avoid a
collision with the vehicle or obstacle ahead. To calculate the
minimum safe distance, the critical lane changing state must
be analysed based on the critical position relationship with
the vehicle ahead, as shown in Figure 4.

As shown in Figure 4, the critical position relationship
corresponds to the critical time #. and the yaw angle of the
host vehicle @q(t.). If the ground coordinate system XOY is
rotated by ¢y(t.), a new coordinate system X'O'Y’ is ob-
tained, and the lateral displacement of the vehicle during a
lane change manoeuvre on a curved section is

Sye(to)
Sy (£) = Sye () + Sy (£.) = — + Sy (£), (9
Y(c) Yc(c)+ YO(C) COS¢0(tC) + YO(C) ( )
where
2
o d t-u) 1 /1 2 1
Sye (tc)zjo mayexp< Zaiy >dt>syo(tc)=R_0(Zaiti+§ax"xotc+§"io>tz> (10)

where Sy(t.) is the critical vehicle lateral displacement in
XOY; Syo(t.) and Sy(t.) are the critical vehicle lateral dis-
placements for the curvature and lane-change in XOY, re-
spectively; and S’y.(t.) is the vehicle lateral displacement for
lane-change in X’O’Y".

Figure 4 shows the critical state to avoid collision and
ensures that the vehicle is stable and safe during the lane-
change manoeuvre. The constraint conditions of a vehicle
lane-change manoeuvre for collision avoidance are

' % +(b+b)sin (¢, (2,)) + %cos(@ (£)) < Sye (£e),

204 Lsin (g, (1) + B cos (6. (6)) < Ly (£) <3 B
(11)

ay (t)max =

a(t)<a

max?

where B, is the width of the front obstacle or vehicle, B, is
the width of the host vehicle, b is the distance between the
centroid and the rear axle of the host vehicle, b’ is the rear-
overhang length of the host vehicle, L is the length of the
host vehicle, ¢.(t.) is the yaw angle of pure lane change at
time t., and a and a,,,, are the acceleration and allowed
maximum acceleration of the host vehicle in XOY,
respectively.

d x \? ox < 1
VIR (U +2t) F

_E> + ayg (t)max’

3.4. Minimum Safe Distance Model. The minimum safe
distance is defined as the longitudinal driving distance re-
quired to just complete obstacle avoidance. It is closely
related to the relative speed and the critical time ¢, and can be
calculated as

tC
Smin = J (VXr - VXf)dt + ls’ (12)
0
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Sy (tc)

FIGURE 4: Critical position relationship for safe lane change.

where S.;, is the minimum safe distance; [ is the conser-
vative safe clearance, set as 5m herein; and AV is the
relative longitudinal velocity between the host vehicle and
the obstacle ahead.

The relative speed can be obtained using GPS or sensors,
and consequently, the key to calculate the minimum safety
distance is to determine t.. According to equation (11), . is
determined by the minimum safe lateral displacement
S’y(t)min- As (b+b°) > By/2, in general, 8’y .(t)min is pro-
portional to the maximum yaw angle of the host vehicle
during lane change ¢.(f)m.x and can be conservatively
calculated as

Sy. Doy vy B,
Yc (tc)min - 7 + ( + )Sln (¢c (t)max) + 7‘205 (¢c (t)max)’
(13)
where @ (f.)max can be estimated as
¢c (t)max = [VYC (t)/VXc (t)]max' (14)

According to equation (6), when t = y,, the vehicle lateral
velocity is maximum Vy(f)max. If the vehicle is in the critical
position required for collision avoidance at this moment,
@()max can be calculated and Sy (t.),,;, can be obtained.
Subsequently, ¢, can be obtained through backward de-
duction, based on the vehicle lane-change trajectory.

3.5. Model Validation. The proposed model was validated
using the autopilot mode of a physics-based simulation
platform called PreScan, developed by Siemens, Germany.
As an active safety experimental platform, PreScan can build
scenes based on the actual road environment and sensor
model and is an advanced and professional development
tool. Therefore, it is widely used in the automotive industry
to develop Advanced Driver Assistance Systems (ADASSs)
and autonomous vehicles.

Using PreScan, a vehicle lane-change scenario for col-
lision avoidance was simulated, considering a two-way four-
lane highway with a curved section and moderate rainfall.
The vehicle and road parameters were set up as listed in
Table 1. Subsequently, critical samples were selected to
obtain the lane-change paths, considering a steering fre-
quency of 0.4 Hz and a decision making and execution time
of 0.5s. The minimum safety distances were calculated at a
constant speed and braking deceleration (2m/s*). Com-
parative verifications are shown in Figure 5.

As shown in Figure 5, the trends of the vehicle motions
and trajectories obtained using PreScan and the proposed
lane-change model are consistent. Related parameters such
as the maximum vehicle lateral acceleration, yaw angle,
critical time point for collision avoidance, minimum safety
distance, and mean square errors between the vehicle paths
were calculated as well and are listed in Table 2.

As shown in Figure 5 and Table 2, the trends of the
vehicle lateral velocities and trajectories obtained using the
proposed model are in good agreement with the PreScan
results. Specifically, the errors of the typical dynamic pa-
rameters, including the maximum vehicle lateral accelera-
tion, are less than 5% and are fairly consistent. Moreover, the
maximum vehicle lateral acceleration determined by the
lane-change model is about 3.5 m/s? which is much lower
than the critical value of road adhesion (about 5.2 m/s?).
Thus, the lane-change model can accurately describe the
trajectory and dynamics of a lane-change manoeuvre on a
curved road section and effectively express the vehicle
handling and lateral motion characteristics through a simple
fitting process.

4. Collision Avoidance Decision and Control

4.1. Decision Mechanism for Collision Avoidance. An au-
tonomous vehicle must be able to make the right decision



Journal of Advanced Transportation

TaBLE 1: Basic parameters of the simulation vehicle and road.

Road width (m) Road adhesion coeflicient

Curve radius (m)

Initial velocity (m/s) Vehicle width (m)

3.75 0.53 650 30 2
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FiGgure 5: Comparative verifications with different simulation tools.
trajectory at constant speed and 0.4 Hz steering.

TABLE 2: Detailed comparison

—— PreScan
- -~ Lane-change model

(b)

(a) Lateral velocity at constant speed and 0.4 Hz steering. (b) Global

by different simulation tools.

Mode Vo (M/s) R(m) to(s) a, (m/s>) A f(Hz) ay(Dmax (/) @(Bmax (rad) S'y(t)min (M) e (5) Smin (M)
PreSean 0 B 35110 0.0904 21151 252 80.5250
20 60 05 ) 04 3.5908 0.1020 21485 246 75.0523
Lane-change model : 0 54 3.3707 0.0736 2.0666 241 77.3690
8 2 53 3.4417 0.0849 2.0991 236 72.3509

4.00 18.58 2.29 437 3.92

0,
Error % 0.4 415 16.76 2.30 407 3.60

and plan a reasonable path according to the external situ-
ation detected by the perception sensors on the vehicle, such
as radar, CCD, and inertial gyroscopes. Consequently, the
decision mechanism must generate an appropriate path and
provide the basis for the control inputs, making it an im-
portant part of an autonomous driving system. Considering
driving safety, comfort, and efficiency, we propose a scoring
reference-based lane-change decision mechanism for colli-
sion avoidance on a curved road with low adhesion and
formulate a four-mode decision-making rule based on the
safe lane-change model.

Considering a relative velocity of 30 m/s between the
autonomous vehicle and the vehicle (or obstacle) ahead and
using simple driving modes (e.g., constant speed and
braking with a deceleration of 2 m/s?), we proposed deci-
sion-making scoring references, as listed in Table 3.

Table 3 shows the four scoring reference hierarchies for
decision-making. The first is safety, which is the most im-
portant consideration for determining the feasibility of the
drive mode. It is estimated based on the longitudinal
headway and the lateral acceleration. If the difference be-
tween the current headway and the minimum safe headway
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TaBLE 3: Hierarchical scoring reference with relative velocity of 30 m/s.

Maximum
acceleration,

Driving mode steering
frequency (Hz)/brake
deceleration (m/s?)

Hierarchy Performance

() max (m/s%)

Minimum safe
headway, Smin
(m)

Evaluation parameter Score

1 Overall — — — — S1=83 X (IX$3+%5s4)
A: difference between s5=1(A>0)
headway and
2 Safety o S@ymax ALZ Smin minimur};l safe 55=0(A<0)
headway

0.1/0 1.5973 192.5480 s3=10
0.2/0 2.0718 117.2420 $3=9
0.1/2 2.5900 146.2759 s3=8
0.3/0 2.7085 90.8600 s3=7

3 Comfort 0.2/2 2.9122 102.3528 Maximum $3=6
0.4/0 3.3707 77.3690 acceleration s3=5
0.3/2 3.3839 83.1736 s3=4
0.4/2 3.9806 72.1616 s3=3
0.5/0 4.2781 68.8610 s3=2
0.5/2 4.8007 65.1585 s3=1
0.5/2 4.8007 65.1585 s4=10
0.5/0 4.2781 68.8610 $4=9
0.4/2 3.9806 72.1616 54=8
0.4/0 3.3707 77.3690 S4=7

4 Efficiency 0.3/2 3.3839 83.1736 Minimum safe $4=6
0.3/0 2.7085 90.8600 headway s4=5
0.2/2 2.9122 102.3528 sy=4
0.2/0 2.0718 117.2420 s4=3
0.1/2 2.5900 146.2759 S4=2
0.1/0 1.5973 192.5480 s4=1

is above zero, the lateral acceleration is less than the
threshold and the manoeuvre is safe to carry out; if not, it is
dangerous. The second scoring reference is comfort, which is
determined by the acceleration of the vehicle; the smaller the
acceleration, the better the comfort, in principle. The third is
the efficiency; the smaller the minimum safe headway, the
higher the efficiency of changing lanes to avoid a collision. It
should be emphasised that even though the relative velocity
is assumed to be 30 m/s, it does not affect the decision-
making mechanism of lane changing, nothing but the
specific safe distance and lateral acceleration change with the
change in velocity. The overall decision-making score is

s;=85,X(iXs3+jXs,), (15)
where s, is the overall score of the driving mode; s,, s3, and s4
are the safety, comfort, and efficiency scores, respectively;
and 7 and j are the weight coefficients for comfort and ef-
ficiency, respectively. In this study, i=0.9 and j=0.1, which
indicates a much higher emphasis on comfort.

Based on the scoring references under specific circum-
stances, a four-level lane-change mode for collision avoid-
ance is proposed, as listed in Table 4.

Table 4 demonstrates the intelligent decision making and
the four-level lane-change mode generation processes, based
on the scoring method. First, the application conditions are
defined by the vehicle relationship relative to the typical
parameters, such as headway and relative speed. Second,
using the lane-change model, procedures are obtained based
on the minimum safe headway and maximum acceleration.

Third, the optimal procedures for different application
conditions are determined based on the highest score. The
basic principle is that safety always comes first, even if
comfort and efficiency are low. The weights of comfort and
efficiency have a significant influence on the optimal pro-
cedures. Therefore, the intelligent decision-making mech-
anism can be applied to different driving styles, including
those of robust and radical drivers.

4.2. Vehicle Control Model. Model predictive control (MPC)
was developed in the late 1970s and includes methods such
as dynamic matrix control (DMC) and model algorithmic
control (MAC). It is a well-known and effective control
algorithm and has found widespread acceptance in industry.
The major advantage of MPC is its ability to handle mul-
tivariable interactions and operating constraints in a sys-
tematic manner. Essentially, it is a type of optimisation
method based on objective functions, and rolling horizon
optimal control is achieved by model-based state prediction,
optimisation with constraints in a finite time domain, and
feedback correction. This section presents a detailed MPC
controller derived from a nonlinear four-degree-of-freedom
(4-DOF) vehicle model that can simultaneously track the
reference planned path and velocity.

Considering the longitudinal and lateral coupling
movement of a vehicle during typical steering dynamics, we
established a 4-DOF vehicle model based on reasonable
simplification, involving front wheel steering and vehicle
longitudinal, lateral, and yaw motions:
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TaBLE 4: Four-level lane-change mode for collision avoidance.

Host vehicle

Optional driving mode steering

Optimal driving mode steering

Mode initial velocity Application condition frequency (Hz)/brake deceleration Score frequency (Hz)/brake deceleration
(m/s) (m/s?) (m/s?)
0.2/0 8.4
0.3/0 6.8
0.2/2 5.8
1 AL+ [V yedt +1,2120 o " 02/0
0.4/2 3.5
0.5/0 2.7
0.5/2 1.9
0.3/0 6.8
0.2/2 5.8
30 0.4/0 52
2 100 <AL + [ Vyedt +1,<120 0.3/2 42 0.3/0
0.4/2 3.5
0.5/0 2.7
0.5/2 1.9
0.4/0 52
0.3/2 4.2
3 80 <AL+ [ Vyedt +1,< 100 0.4/2 3.5 0.4/0
0.5/0 2.7
0.5/2 1.9
4 66 <AL+ [ Vyedt +1, <80 0.5/2 1.9 0.5/2

X=fX)+gXnu,

X = [x1, X3, %5, X %5 ] (16)
. . T

= [VX) VY) ¢3 (/)) af) 6f] >

where Vx and Vy are the longitudinal and lateral velocities,
respectively; ¢ is the yaw angle; and J¢ is the front wheel
steering angle.

Setting Vi, Vy, @, and & as the control output variables
and applying the typical control strategies of active front
steering (AFS) and direct yaw control (DYC), the vehicle
control model can be expressed as

The function of a controller is to guarantee tracking and
robust stability considering the nonlinear effect of the
vehicle.

For an MPC controller, linearisation and discretisation
can be used to improve the real-time performance of the
controller. The nonlinear vehicle dynamic model can be
linearised as a linear time invariant (LTI) state space form,
using the first order approximation of the Taylor expansion.
Subsequently, the linearised model can be discretised as

X = AX(t) + Bju(t),
X(k +1) = A X (k) + Bpu(k),

X = f(X)+g(X)u, H (k) = C,G (k) + D, AU (k), (18)
JlZ=[VX Vy ¢ 8f]T) (17) {Ak:1+TAJ"
u:[ul U, U u4][Fxfc Froe M, 8fc]- BkZTBj:

where

r Z(k+1lk) 7
Z(k + 2]k)

HOO=1 7 e N

| Z(k + N k) |
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C(k) =

D(k) =

CraArk
CraArkAks1k
k+N.

Crk H Ak |
i=k
k+1\} p1
Crx Ak
L imk ]
CrBrk 0
CraArkBrk CriBrk

k+N. k+N_ -1
i=k i= k
k+N -1 k+N ,-2

L i=k i=k

CkkHAkkBkk Crk H AerBrx - -

P 4
Crx H AriBix Crk H AriBrx - -
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(19)

[ Xk k)
G(k) = -
| u(k-1lk)
- Au(k+11k) T
Au(k +2[k)

AURY = au(k+ N,K) |

Au(k N N, Ik) |

where, Aj, Bj, A, Bi Co and Dy, are the Jacobian matrices at
the working point; T'is the sample time; and N}, and N, are
the predictive horizon and control horizon, respectively.
While designing the controller, constraints must be set to
ensure that the autonomous vehicle can precisely and stably
track the trajectory references generated during intelligent
path planning. The constraints designed herein primarily
include two aspects—one related to the vehicle control
quantity and the other related to the vehicle state quantity:

min =

(20)
\lai( + af, <ug.

In addition to tracking the reference precisely and stably,
the controller must also keep the vehicle running at the
desired speed. The cost quadratic function is

N, 2 N.-1 2
J= 3 B (ke ilk) — Hk+ 0|+ Y 1AU K+ ik
i=1 Q i=0 R
N,-1 2
+ Y UK+l +pe,

i=0 s
(21)

where H,¢ is a matrix of the reference outputs and Q, R, S,
and p are the weight matrices for the system outputs H(k),
the control increment AU(k), the control inputs U(k), and
the relaxation factor e.

According to [38], the optimal problem for MPC can be
converted to a standard quadratic programming problem.
The decision variable is denoted by U, and the objective
function J and the constraints can be expressed as

1
Tin =5 AUMAU + G'AU, (22)

where M and G are compatible matrices and vectors in the
quadratic programming problem. The incremental control
inputs AU of the constraints are

AU ;. <AU<AU

min = max”*

(23)

The solution of the quadratic program problem can be
solved using quadprog in MATLAB, and the active-
set algorithm was chosen herein.

Figure 6 shows the structure of the safe lane-change
intelligent control system. Initially, the environment and
ambient obstacles are detected by on-board sensors (radar,
cameras, etc.). When obstacles are detected, specific
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information, such as the relative speed and headway, is set as
the input of the autonomous vehicle decision mechanism.
Feasible path planning and trajectory references (including
path and speed) are generated based on the decision
mechanism. Subsequently, using the linearised MPC algo-
rithm and the AFS and DYC strategies, the designed con-
troller determines the vehicle control inputs though
prediction and convex optimisation, to ensure that the
vehicle follows the planned trajectory.

4.3. Control Performance Validation. Two typical scenarios
were defined to verify the performance of the designed
controller. The first is a simple lane-change scenario to
evaluate the controller against other conventional methods,
such as single preview and PID. The second scenario is a
continuous curve with multiple lane-changes. The details of
the two scenarios are as follows:

(1) An autonomous vehicle travelling at 20 m/s, with a
steering frequency of 0.2 Hz and a decision time of
1.5s, on a straight highway.

(2) An autonomous vehicle travelling at 30 m/s, with a
steering frequency of 0.4 Hz and a distance of 80 m to
avoid collision with obstacles, on a continuous
curved road composed of three parts with circular
arcs of 600 m radii.

The control performance of the first scenario was verified
by comparing the proposed controller with conventional
control algorithms, such as a PID controller and a controller
without path planning, as shown in Figure 7.

Figure 7 shows the control results of different models.
The proposed MPC controller has a better control effect than
the other control models. Figures 7(a) and 7(b) indicate that
the proposed controller has better tracking, and the lateral
error is around 0.02 m, which is better than that of the PID
controller (0.05m) and that of the model without path
planning (0.4 m). Figure 7(c) demonstrates that the lateral
velocity is precisely controlled, not only in terms of the
change tren, but also considering the value and real time
performance; the error is about 1%, while that of the PID is
about 5%, with a delay of about 0.1 s. Figure 7(d) illustrates
the yaw motion, and the proposed controller shows similar
characteristics, while the PID generates a larger error and
delay. Thus, the proposed MPC controller based on the 4-
DOF model offers better tracking and robust stability.

The multiple decision-making and anticollision control
performance of the MPC controller were verified based on
the second scenario. The simulation results are shown in
Figure 8.

Figure 8(a) and 8(b) illustrate the global continuous
overtaking trajectory and the tracking error of the auton-
omous vehicle; the absolute error is less than 0.04m. Al-
though the error of the combined procedure with lane
changing and turning exceeds 0.02 m, it still provides a good
tracking effect relative to the desired reference performance.
As shown in Figure 8(c) and 8(d), the longitudinal and
lateral motions of the vehicle are decoupled and controlled
reasonably well, despite small-amplitude longitudinal
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fluctuations that are slightly larger than the reference. The
lateral velocity is in a continuous large-scale form but is well
controlled. Figure 8(e) and 8(f) demonstrate that the sec-
ond-order dynamics also have good consistency with the
desired references, and the absolute error is less than 4%
with a delay of about 0.1 s. This indicates that the vehicle is
well controlled by the AFS and DYC. As shown in
Figure 8(g) and 8(h), the control inputs are continuous, and
the changing trend of the steering input is consistent with
the vehicle dynamics; the delay time is about 0.5s. Fur-
thermore, the vehicle lateral acceleration is less than 4.6 m/
s%, and the absolute longitudinal forces of the tractor and
semitrailer axles are below 1000 N, which is considerably
lower than the saturation forces of the tyres, even with the
low coefficient of adhesion due to rainfall. Therefore, the
vehicle is controlled with absolute stability during lane-
changing and cornering on a highway in rainy weather, and
the proposed controller is capable of obstacle avoidance on a
curved highway section.

5. Discussion and Conclusion

Based on the vehicle steering and lateral dynamics in rainy
weather, we introduced Gaussian distribution to the lateral
dynamics of an autonomous vehicle for decision making and
path planning. In particular, the scenario of an autonomous
vehicle travelling on a curved highway section in rainy
weather was considered herein. The main conclusions are

(1) The Gaussian distribution function could perfectly
describe the lateral dynamics of the vehicle. The
related parameters were easily fitted, and the char-
acteristics of autonomous vehicles, including reac-
tion, response, pavement condition, and lane-change
status, were accurately and quantitatively obtained.
The reaction time of decision-making and path
planning, steering frequency, delay times of vehicle
lateral dynamics, road adhesion coefficient, and
completion probability of lane change were deter-
mined as well. In a typical scenario, the proposed
lane-change model could be applied to the path
planning process of a vehicle lane-changing
manoeuvre.

(2) Based on the lane-change model, the minimum safe
distance for collision avoidance was obtained. The
lane-change decision mechanism utilises a scoring
system that considers driving safety, comfort, and
efficiency and serves as a reference for intelligent
path planning.

(3) Using convex optimisation, an MPC controller with
AFS and DYC was designed and verified. The results
of the typical scenarios considering an autonomous
vehicle in rainy weather demonstrated that the
proposed controller has good tracking and robust
stability. This study offers practical value as it con-
siders the cooperative relationship between humans,
vehicles, the road, and the environment and can
serve as valuable reference in the development of
autonomous driving systems.
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FIGURE 7: Model comparative study of controller. (a) Global path. (b) Tracking error. (c) Lateral velocity. (d) Yaw angle.

The results obtained herein are of significant importance
for numerous applications and provide a valuable reference
for future studies involving actual vehicles. Compared to
traditional studies on lane-change manoeuvres, the novel
trajectory model, decision mechanism, and control

algorithm proposed herein can describe the system char-
acteristics under various road alignments and operational
environments. However, considering the complex envi-
ronmental influences on man-machine interactions, further
research is required. The multifactor coupling characteristics
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FiGure 8: Control effects of specific modes for anticollision on a curved road. (a) Global path. (b) Tracking error. (c) Longitudinal velocity.
(d) Lateral velocity. (e) Lateral acceleration. (f) Yaw rate. (g) Control inputs of AFS and DYC. (h) Control inputs of longitudinal forces.
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of the environmental impact must be studied further.
Typical examples include the interference between the
perception sensors on the vehicle that detect the external
environment. Notably, human driving behaviour always
forms the basis for autonomous vehicle development.
Consequently, a systematic study of personified decision-
making is required to ensure coordination between humans
and the environment. Furthermore, considering the field of
cooperative vehicle-infrastructure systems, a cooperative
decision-making and control strategy with swarm intelli-
gence for multiple vehicles or vehicle fleets should be studied
in depth.
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