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Abstract. We present in this work shock-/interface-capturing numerical methods in the finite-
volume central-weighted essentially non-oscillatory (CWENO) reconstruction scheme on un-
structured grids for the simulation of multi-component or multiphase compressible flows. Us-
ing the five-equation interface capturing models of Allaire et al. and Kapila et al. in the
open-source unstructured compressible flow solver UCNS3D, we will demonstrate the capabili-
ties and robustness of the CWENO in capturing and resolving the material interface in multi-
component/multiphase flows in the presence of strong gradients and material discontinuities,
with oscillation free solutions and reduced numerical diffusion. To test our numerical methods, a
simple one-dimensional test case and a more sophisticated 2d underwater test case with cavita-
tion are considered. The numerical results of our study are compared with results from existing
high-order methods. The results show that the CWENO is less dissipative without the spuri-
ous oscillations that typically develop at material boundaries and also gives a high-resolution
description of the moving material interface with less artificial smearing than other high other
schemes.

1 INTRODUCTION

Every compressible multiphase fluid has a characteristic interface which separates the phases.
Unlike single-phase, compressible flows that involve only discontinuous waves, solving numeri-
cally multiphase compressible flow presents an additional discontinuity in the form of contact
waves corresponding to the material interface between the fluids. Therefore, an additional numer-
ical algorithm needs to be developed to treat the material interface of multiphase compressible
flows aside from the Euler or Naiver-Stokes equation.

The conventional methods for treating the interface involve eliminating the numerical diffu-
sion at the interface, which means the artificial mixing probable is also eliminated, often leading
to inaccurately predicting the position of the material interface and the shock wave when the
fluid features interact. These methods treat the interface as a sharp discontinuity (i.e. the phys-
ical shock structure is not resolved, making such methods referred to as the sharp interface
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methods SIM (also interface -tracking methods in some literature). Such methods include the
volume of fluid, level set, front tracking etc.

Another method is the diffused interface models (also referred to as the interface-capturing
method). This method has a set of governing equations that are unconditionally hyperbolic
systems of model that offer the advantages of utilizing the Godunov-type schemes and are very
conservative, leading to accurate and efficient computations for internal energies and temperature
at the interfaces [1]. Among the common DIM models are the Kapila’s et al [2], Allaire’s et al [3],
Saurel’s et al [4], Murrone’s et al. [5], Romenski’s et al. [6], which are all simplified models from
the full seven-equation models of Baer-Nunziato’s. The reader is referred to the work of Maltsev
et al. [7] for an up to date comprehensive review of the DIM models.

For multiphase compressible flows, high-order schemes offer an advantage over lower-order
schemes. They provide higher accuracy in the presence of shocks or discontinuities and higher
resolution in the smooth region. In recent times, high order methods have been extensively used
for compressible multiphase flow [8–10]. To provide non-oscillatory capabilities to a numerical
framework of multiphase compressible flow, commonly used high order methods are the Dis-
continuous Galerkin DG method for finite element [11], WENO for finite difference method
and WENO for finite volume methods [9, 12, 13]and also the MUSCL with the use of limiters.
Finite difference WENO schemes are only applicable on uniform meshes or smooth curvilinear
coordinates in multi-dimensional computation. This is a disadvantage of finite difference and
the significant benefit of the finite volume WENO schemes over the finite difference WENO for
compressible multiphase flow, even though Finite volume WENO schemes are computationally
expensive and more complicated to code than the finite difference WENO.

The WENO is often used with an HLL or HLLC Harten-Lax-van Leer Contact HLLC approx-
imate Riemann solver to upwind the fluxes. However, the discontinuous method for a finite ele-
ment is less complicated for unstructured or distorted mesh [14]. The finite volume higher-order
schemes such as WENO are more robust in the presence of strong shocks and computationally
cheaper than the latter. Dumbser et al. [15] first used a WENO variation named CWENO on
unstructured 2D and 3D meshes. CWENO one single set of linear weights and one set of valid
nonlinear weights for any point in a cell [15]. They differ from the classical WENO in that the
sectorial polynomials may have a smaller degree. Thus their stencil can be chosen inside the
stencil of the central optimal polynomial [15]. This reconstruction procedure reduces the size
of the directional stencils and, consequently, approximation from them. This simplicity offers a
reduced computational cost and is less complicated than the traditional WENO. The increased
compactness of this class of schemes makes them more suitable to be deployed for frameworks
such as DG, as seen in [16]. However, one of the most overlooked benefits is the robustness of
these types of CWENO schemes since the reduced size of the directional stencils translates to
a higher probability of at least one of them lying in a region with a smooth variation of data
compared to the traditional WENO schemes for unstructured meshes.

In this article, the CWENO will be used to simulate viscous compressible multicomponent
flow problems to test its advantages in the interface-capturing method’s finite-volume framework
using the five equations proposed by Allaire et al. [3]and Kapila et al. [2].

All the schemes are developed in the open-source UCNS3D solver [17]. We assess their per-
formance in terms of robustness, accuracy and computational efficiency for two test problems
while comparing them with other high-order schemes. The paper is organized as follows: Section
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2 introduces the governing equations that describe the five-equation diffused interface models
and the CWENO schemes’ reconstruction process while describing the chosen fluxes and tem-
poral discretisation employed. Section 3 presents the two test cases and their numerical results
obtained and compared against analytical and reference solutions whenever possible. Finally,
the last section describes the conclusions drawn from this study.

2 THE GOVERNING EQUATIONS.

2.1 The five-equations diffuse-interface model of Allaire et al.

The five-equations models are often referred to as the mechanical equilibrium models, i.e. we
assume that the momentum, energy, and mass transfer between the phases reach equilibrium
due to the thermodynamic difference between each component. The equations are presented
below:

∂(α1ρ1)

∂t
+∇ · (α1ρ1v) = 0, (1)

∂(α2ρ2)

∂t
+∇ · (α2ρ2v) = 0, (2)

∂ρv

∂t
+∇ · (ρvv + pI) = 0, (3)

∂E

∂t
+∇ · (E + p)v = 0, (4)

∂α1

∂t
+ v · ∇α1 = 0, (5)

where the subscript 1, 2 represents gas or liquid phase, respectively, ρ is the density, v = (u,
v, w) is the velocity, p is the pressure, E is the total energy and α is the volume fraction of each
component.

The total density, momentum, kinetic and internal energy of the mixture is stated below:

ρ =
∑N

i=1 αiρi : total density of the mixture.

ρV⃗ =
∑N

i=1 αi (ρiv⃗) : momentum of the mixture.

ρeK =
∑N

i=1 αiρie
K
i : mixture kinetic energy.

ρeI =
∑N

i=1 αiρie
I
i : mixture internal energy.

(6)

So the total energy can be expressed as:

N∑
i=1

ρeT =

N∑
i=1

(αi

(
ρie

I
i

)
+

ρi.V
2

2
)) (7)

3



E.M. Adebayo, P. Tsoutsanis, K.W. Jenkins

To determine the internal energy and put closure to the equations, it is convenient to use the
stiffened the EOS for both fluid component:

Pi = (γi − 1) ρiei − γiPc,i (8)

the internal energy ρiei can now be expressed as:

p+ γi.Pc, i

γi − 1
(9)

and the total energy below:

N∑
i=1

αi(
p+ γi.Pc, i

γi − 1
+

ρi.V
2

2
) (10)

The five-equations diffused interface model can be expressed into the following general form
of a non-linear system of PDE in multiple space dimensions:

∂Q

∂t
+∇ · F(Q) +H(Q)∇ · U = S(Q) (11)

Where Q is the vector of evolution variables (conserved and not conserved), F is a flux function,
U is the velocity field, and H and S are non-conservative quantities.

In a matrix form, the 5-equations model is presented below:

Q =


α1ρ1
α2ρ2
ρu
E
α1

 , F =


α1ρ1u
α2ρ2u
ρu2 + P
u(E + P )

α1u

 , H1 =


0
0
0
0

−α1

 (Allaire et al.), H2 =


0
0
0
0

−α1 − k

 (Kapila et al.),

(12)
The k function in the H non-conservative quantity differentiates Kapila’s model et al. from

the Allaire’s et al.The k function in Kapila’s et al. can be determined from the equation 13 where
the mixture’s speed of sound is gotten using the wood’s speed of sound as seen in equation 14.

k = α1α2

(
1

ρ1c21
− 1

ρ2c22

)
ρc2 (13)

where c1 and c2 is given as :

c1 =

√
γ1
ρ1

(p+ pc,1), c2 =

√
γ2
ρ2

(p+ pc,2) (14)

and the mixture speed of sound is given as:

1

ρc2
=

α1

ρ1c21
+

α2

ρ2c22
=

N∑
i=1

αi

ρic2i
(15)
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The non-conservative advection equation of the volume fraction in equation 5 is simplified
using Johnsen and Colonius [9] approach to obtain a quasi-conservative form:

For Allaire’s et al.
∂α1

∂t
+∇ · f = (α1)∇ · V (16)

For Kapila’s et al.
∂α1

∂t
+∇ · f = (α1 +K)∇ · V (17)

The K∇· u terms in Kapila’s model describe the thermodynamic properties (expansion and
compression of each phase) of the mixture region of the two-phase fluid [18].

3 NUMERICAL METHOD

3.1 Spatial Disretisation

Consider a 3D domain Ω consisting of conforming tetrahedral, hexahedral, prism, and pyra-
mid cells each one of them indexed by a unique mono-index i, and the governing equations of
the five-equation model written in vector form as follows:

∂

∂t

∫
Vi

U dV +

∫
∂Vi

Fn dS =

∫
Vi

s dV (18)

where U = U(x, t) is the vector of conserved variables and the volume fraction of one species,
Fn is the non-linear flux in the direction normal to the cells interface as given below:

U =



a1ρ1
a2ρ2
ρu
ρv
ρw
E
a1


,Fn =



a1ρ1un
a2ρ2un

ρuun + nxp
ρvun + nyp
ρwun + nzp
un(E + p)

a1un


, (19)

where un is the velocity normal to the bounded surface area, defined by un = nxu+ nyv+ nzw.
The source term s is with regards to the term a1∇ · u of Eq. (5). Following the approach of
Johnsen and Colonius [?] the source term is numerically approximated as surface integral, rather
than a volume one, while using the same velocity estimate as the one used for the evaluation of
the fluxes as shown below: ∫

Vi

a1∇ · u dV ≈
∫
Vi

a1 dV ·
∫
∂Vi

(un)
Riem. dS. (20)
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Integrating Eq. (18) over the mesh element i using a high-order explicit finite-volume formulation
the following equation is obtained that incorporates the source term as previously defined:

dUi

dt
=

1

|Vi|

Nf∑
j=1

Nqp∑
α=1

(
Fnij

(
Un

ij,L(xij,α, t),U
n
ij,R(xij,α, t)

)
− ani,1 · uRiem

n (xij,α, t)
)
ωα|Sij |, (21)

where Ui is the volume averaged vector of variables

Ui =
1

|Vi|

∫
Vi

U(x, y, z) dV, (22)

and Fnij
is a numerical flux function in the direction normal to the cell interface between a

considered cell i and one of its neighbouring cells j. Nf is the number of faces per element,
Nqp is the number of quadrature points used for approximating the surface integrals, |Sij | is
the surface area of the corresponding face, and Un

ij,L(xij,α, t) and Un
ij,R(xij,α, t) are the high-

order approximations of the solutions for cell i and cell j respectively. α corresponds to different
Gaussian integration points xα and weights ωα over each face. ani,1 corresponds to the volume
averaged volume fraction of cell i at time level n. The volume, surface and line integrals are
numerically approximated by a suitable Gauss-Legendre quadrature.

The reconstruction process adopted in ucns3d [17, 19] follows the approaches of Tsoutsanis
et al. [20–23], Titarev et al. [24] that have been previously applied to smooth and discontinuous
flow problems [17,20–41].

3.2 CWENO high-order schemes

The CWENO scheme employed in this study follows the implementation of Tsoutsanis and
Dumbser [23]. It is the combination of an optimal (high-order) polynomial popt with lower-order
polynomials. The optimal polynomial uses the central stencil, while the lower-order polynomi-
als employ the directional stencils. When the variation of the solution is smooth, the optimal
polynomial is recovered and therefore, the desired order of accuracy is obtained, whereas at
the presence of discontinuous data, at least one of the lower-order polynomials arising from
the directional stencils could contain smooth data, hence essentially reducing the oscillations in
the computed solution. All the polynomials involved satisfying the requirement of matching the
cell averages of the solution. Therefore they are solved with the same constrained least-squares
technique. The directional stencils employ the Type3 definition which includes one directional
stencil per element face as detailed in the work by Tsoutsanis [40]. The optimal polynomial is
defined as follows:

popt(ξ, η, ζ) =

st∑
s=1

λsps(ξ, η, ζ), (23)

where s is the stencil index, with c = 1 being the central, c = 2, 3, . being the directional, st
being the total number of stencils, and λs being the linear coefficients for each stencil, whose
sum is equal to 1. The p1 polynomial is not computed directly but computed by subtracting the
lower-order polynomials from the optimum polynomial as follows:

p1(ξ, η, ζ) =
1

λ1

(
popt(ξ, η, ζ)−

st∑
s=2

λsps(ξ, η, ζ)

)
. (24)
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The CWENO reconstruction polynomial is given as a non-linear combination of all the polyno-
mials in the following manner:

p(ξ, η, ζ)cweno =

st∑
s=1

ωsps(ξ, η, ζ), (25)

where ωs correspond to the nonlinear weights assigned to each polynomial, and in regions with
smooth data ωs ≈ λs, hence obtaining the high-order approximation from the central stencil, and
in regions of discontinuous solutions the reconstructed solution will be mostly influenced from
the lower-order polynomials of the directional stencils. where ãk are the reconstructed degrees
of freedom; and the non-linear weight ωs is defined as:

ωs =
ω̃s

st∑
s=1

ω̃s

where ω̃s =
λm

(ϵ+ SIs)b
. (26)

The smoothness indicator SIm is given by:

SIs =
∑

1≤|β|≤r

∫
V ′
0

(
Dβps(ξ, η, ζ)

)2
(dξ, dη, dζ), (27)

where β is a multi-index, r is the polynomial’s order, λm is the linear weight. The value set to
prevent division by zero of ϵ = 10−6 is used, with b = 4 and D being the derivative operator.
The smoothness indicator is a quadratic function of the degrees of freedom (ask) and Eq. (27)
can be rewritten as:

SIs =

K∑
k=1

ask

 K∑
q=1

OIkqa
s
q

 , (28)

where the oscillation indication matrix OIkq is given by:

OIkq =
∑

1≤|β|≤r

∫
V ′
0

(
Dβϕk(ξ, η, ζ)

)(
Dβϕq(ξ, η, ζ)

)
(dξ, dη, dζ), (29)

which can be precomputed and stored at the beginning of the simulation. We employ r = 1 to
obtain 2nd-order accuracy and any arbitrary order of accuracy for the polynomial associated
with the central stencil for the directional stencils and their corresponding polynomials. The
linear weights are computed by firstly assigning the non-normalised linear weight for the central
stencil λ

′
1 an arbitrary value, and then normalising this as follows:

λ1 = 1− 1

λ
′
1

, (30)

with the linear weights associated with lower-order polynomials being equal and provided by
the following expression:

λs =
1− λ1

st − 1
, (31)

where st is the total number of stencils. From this point forward the order of the scheme will
be defined by a number next to the type of the scheme, such as CWENO3 and WENO4 corre-
sponding to a 3rd-order CWENO scheme and a 4th-order WENO scheme, respectively [23].
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4 TEST CASES

Using the high order CWENO in conjunction with the 5-equation interface capturing schemes
models, two test problems were selected to test the proposed algorithm.

4.1 Advection of contact discontinuity

The advection test problem is frequently used for verification of the numerical accuracy, such
as the non-oscillatory properties and convergence of their proposed numerical scheme. Among
notables works are [8–10,42]. This multispecies test case describes the advection of an interface of
two inert gases; Nitrogen Ni and Helium He, respectively. The specific heat capacity of the gases
are 1.66 and 1.4, and the right side is the gas-Ni while the left side is the gas He. The temperature,
pressure and velocity of both components are constant across the material interface. The results
are accurate when the velocity, pressure, and temperature are maintained at equilibrium. The
robustness of the numerical framework for multiphase and multicomponent flow will be tested
using the traditional WENO and our CWENO high order schemes on unstructured meshes for
the 5-equation diffuse-interface multicomponent models of Allaire et al [3].

Using the initial data of Wong et al. [42], the computational domain is a square domain ϵ
[1.0m x 1.0m] and discretized using an hybrid unstructured mesh of triangular and quadrilateral
mesh elements of 80 edges per side resolution. The final time of the simulation is selected as t=
2ms with a CFL number of 0.6 and evolved with a constant time step of ∆t = 0.005. .
The initial physical parameters of each fluid:

(ρ, u, v, p, γ, α) =

{
(Ni : 10.0, 0.5, 0, 1/1.4, 1.4, 1) , 0.25 ≤ x < 0.75

(He : 1.0, 0.5, 0, 1/1.4, 1.66, 0) , x < 0.25 or x≥ 0.75
(32)

Using the HLLC Riemann solver to upwind the fluxes, reconstruction is done using primitive
variables in the classical WENO schemes and also the CWENO schemes. Using the third-order
WENO and CWENO schemes, results obtained for this gas-gas advection problem in density,
temperature, pressure and velocity are shown in Fig. 1.The results show the CWENO method
has better computational efficiency while maintaining it’s ability to avoid spurious oscillations in
the areas of contact discontinuities as compared to the traditional or classical WENO schemes of
the same order of accuracy for the same mesh size and type. In terms of computational resources,
the CWENO gives a reduced computational cost (Table 2) at about four times faster than the
corresponding WENO schemes, respectively, for the same grid size. This is explained as written
in the paper by Dumbser [43], the fact that the CWENO employs one single set of linear weights
and thus means that the output of the CWENO reconstruction is not given by some point values
like the WENO schemes from several stencils significantly makes WENO more expensive for the
same grid. These simple but substantial changes leaves the CWENO schemes a better choice for
multiphase/multicomponent compressible flow.

In Fig. 2, we compare the results obtained for CWENO schemes(from third to sixth order
of accuracy) on the same plot and the exact solution using plots for density, the temperature
and the volume fraction. The relative error for the pressure and u-velocity variable is measured
and plotted in 2. It can be seen that both the velocity and pressure errors are close to machine
precision for all of the order of accuracy. The error in the pressure is in the range of [10−13]
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while that of the velocity-u and v profile contains an error in the range of [10−15].
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Figure 1: Advection of a material interface; the solid line is the exact solution;Plots of density and
temperature at t = 2 obtained with CWENO3 and WENO3 schemes using primitive variables
reconstructions shows that the the WENO3 produces oscillations near the material interface,
while they are absent from the CWENO3. reconstruction.

Table 1 shows the Normalised Computational time using both WENO and CWENO schemes.

CWENO WENO

Order 3rd 4th 5th 6th 3rd 4th 5th 6th

Time 1.00 1.41- 1.85 2.28 3.61 4.95 7.00 9.39

4.2 Underwater explosion near a free surface

We consider another multiphase/multicomponent test problem involving cavitation to test
the numerical algorithm for flows involving cavitation. Various authors have studied this work
numerically and used it to validate their numerical algorithms [10,44–46]. Using the initial data
of Shukla et al. [46], the computational domain is a square area [ 2, 2 ] × [ 1 . 5, 2 . 5 ]. A
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Figure 2: Temperature and density profile for the CWENO schemes third up to sixth order
of accuracy, the solid line is the exact solution. The bottom plot shows the errors in isolated
material interface problem at t= 2 using CWENO schemes for accuracy order from third to
sixth in the pressure and velocity profile where it can be seen that the minute oscillations are
close to machine precision.

high-pressure gas bubble of a diameter of 0.24 is placed at [0, -0.3]of the two-phase medium
with air-water interface positioned at the centre of the computational domain. The boundary
conditions of the lower surface are set up as reflecting, the lateral surfaces and the upper surface
as transparent boundary conditions. The final time of the simulation is selected as t= 1.2ms.
The initial physical parameters of each fluid are given as:

ρ, u, v, p, γ α) =


(
1.225, 0, 0, 105, 2.0, 0

)
, Air(

1250, , 0, 0, 109, 2.0, 1
)
, Explosive(

1000, 0, 0, 105, 7.15, 0
)
, Water.

(33)

As the air bubble explodes and evolves from a spherical shape into an oval formation, nu-
merical Schlieren obtained for density gradient in Fig. 4 shows that the CWENO4 is able to
capture the interfacial region between the bubble and the air-water medium with less smearing
or numerical diffusion without using interface sharpening [46] or anti-diffusion technique [47]
used by most authors to improve their results. As seen in in Fig. 3, for a similar mesh, the result
obtained in the form of a density plot at different instants (t=0.4ms and 0.8ms) shows good
agreement with the published result [47] where the anti-diffusion technique is used. The use of
interface sharpening or anti-diffusion technique often leads to a loss of discrete conservation,
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Figure 3: Density plot along horizontal axis x=0 for underwater explosion with free surface at
instants t= (0.4; 0.8)ms. Comparison are made with the results of Kokh et al [47].

Figure 4: Schlieren images of density gradient using a CWENO4 scheme(top) on a fine mesh at
t=0.16ms and 0.79ms in comparison with the images obtained by numerical studies of Shukla
et al. [48]in which an additional interface sharpening technique is used on similar grid to ensure
that the thickness of the artificial diffuse zone is kept to a minimum.

which many authors choose to forgo in favour of improved accuracy. The CWENO result can
give a good result without the challenge mentioned earlier.

5 CONCLUSIONS

The results from this paper demonstrate that the CWENO schemes can achieve high-order
accurate solutions in smooth regions while providing oscillation free solutions. They do that
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while exhibiting less numerical dissipation in comparison with existing high-order methods and
they provide a sharp description of the moving material interface with less numerical smearing.
Resorting to additional interface sharpening or interface compression technique could be explored
in the future in particular for up to 3rd-order methods where there is sufficient evidence in the
literature to support that these methods can benefit significantly.
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