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Abstract. The Localized Collocation Meshless Method (LCMM) is applied to the solution of 
a set of partial differential equations describing the diffusive transport of a dermally injected 
compound. This efficient and accurate numerical technique then provides the framework for 
the estimation of pharmacokinetic (PK) parameters by the comparison of two models, both 
containing information derived from experimental results, using the iterative Golden Section 
search algorithm. This comparison is quantified using a norm between the two solution 
spaces. While this method does provide an estimate of the effective-diffusion coefficient, it 
ultimately demonstrates that a simple, free-diffusion model is inadequate for quantifying the 
spatial and temporal distribution of a dermally-injected compound if elimination effects are 
not accounted for properly. 
 
1 INTRODUCTION 

Given the complexity of the skin structure, see Figure 1, there has been significant work in 
the characterization of the skin and its functionality, particularly as pertains to transdermal 
drug delivery (TDD) methods and systems. There are some typical simplifying assumptions 
and modeling methodologies that have been explored and validated to address some of these 
multiscale complexities[1]. For example, treating a skin layer as a homogenous medium, first-
order loss mechanisms, partitioning effects, etc[1–4]. In their 2008 work describing the 
diffusivity of skin permeants, Kretsos et al. outlined a regression-analysis based approach for 
the determination of coefficients that describe the transport of dermis-injected substances[5]. 
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Figure 1: Skin Cross Section[6] 

Here, the authors apply the Localized Collocation Meshless Method (LCMM) to the 
solution of a Fickian or diffusion-based pharmacokinetic model layers[2,5,7,8]. The advantages 
afforded by the LCMM provide an efficient framework for characterizing the transport 
behavior of permeants of interest. First, the LCMM allows for modeling the forward problem 
of quantifying the transport phenomenon of a compound delivered by injection into the 
dermis. This then gives way to the inverse problem of parameter estimation by identifying 
diffusion coefficients that characterize the rate at which this transport occurs. 

Thus, the need arises for several themes to be outlined. First, the PK model defining the 
transport behavior of a dermis-injected substance. Second, and of primary importance to this 
work is the numerical modeling strategy, the LCMM. Finally, the inverse method will be 
addressed in brief, describing the process by which a diffusion coefficient is found. 

2 TRANSDERMAL COMPOUND TRANSPORT MODEL 

In modeling the transport of a compound in the dermis, there are several multi-scale, 
biophysical effects to be considered, including adsorption[1,2,9,10], partitioning[3,11], metabolic 
reactions[7,12,13], and elimination[1,4,5]. Following prior work, an extension of Fick’s second law 
is implemented to account for these various biophysical effects[1,2,10,11]. 

2.1 Two-Compartment Model 

Following prior work, an extension of Fick’s second law is implemented to account for 
these various biophysical effects[1,2,10,11]. The one-dimensional flux per unit area, J , of a 
substance transported by diffusion within a solvent follows Fick’s first law, given as: 

c
J D

x


 


 (1) 

Where: D - diffusion coefficient 2[ / ]m s  and 

      c - compound concentration in tissue compartment 3[ / ]kg m  
Considering storage effects, that is, conservation of mass of the transported solute, one 

arrives at the one-dimensional transient diffusion equation, known as Fick’s second law: 
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This then defines the diffusion of the compound in the tissue compartment. To account for 
the second compartment, here, the blood domain, adsorption effects need to be considered. 
This is accomplished by assuming linear coupling between the substance concentrations that 
are bound to the tissue and blood compartments respectively; accomplished by a binding rate 
coefficient, normalized by the volume of the compartments to account for mass-
balance[9,11,12].  This introduces a second equation quantifying the storage of the compound in 
the blood compartment such that: 
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Where: bc - compound concentration in blood compartment 3[ / ]kg m  

            b - volume ratio, where: / 0.1b b tV V   [14] 

            ,t bV V  - volume of tissue and blood compartments 3[ ]m  

            12 21,K K - binding and unbinding rate coefficients [1/ ]s  

Additionally, there exist clearance effects such as metabolism and elimination which result 
in the active removal of the compound from the tissue and blood compartments, respectively. 
These clearance effects are typically accounted for using first-order processes[4,5,7,9,12,15]. 
Anissimov et al. suggest that the elimination rate constant is proportional to the blood flow 
rate per unit volume of dermis, bq [3,9,16]. These final effects result in the following addendums 

to the governing equations: 
2
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Where: ,m eK K - metabolic and elimination rate coefficients [1/ ]s  

2.2 Simple Diffusion 

It is suggested by Kretsos et al. that there exists a “free diffusivity” coefficient, freeD , that 

describes the freely diffusing concentration of a compound, freec [5]. This is juxtaposed to the 

total concentration in the dermis, dec , which is subject to partitioning and binding. This is 

effectively what is modeled in the above equations, given in equation (5) by the variable c , 
the concentration in the dermis; which can be bound, metabolized and adsorbed by the blood. 
In their work, an equation for the free diffusion coefficient, freeD , in units of 2[ / ]cm s , is 
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given as a function of molecular weight (MW) given in units of Daltons [ ]Da ,where[5]: 

log 4.15 0.655logfreeD MW    (7) 

This equation was extracted from a data reduction technique using results from various 
studies of physicochemical properties and pharmacokinetic parameters of selected compounds 
in mammalian dermis, primarily in vitro steady-state flux experiments[5]. The data collected 
for these experiments in mammalian dermis demonstrate a close correlation between the free 
diffusivity of a compound and its molecular weight, when neglecting the data from Tojo et al., 
indicated by the empty diamonds[17]. It is speculated that the differences in the data reported 
by Tojo et al. are caused by the methods in which the dermis was prepared[5,17]. 

 

Figure 2: Free Diffusivity 2[ / ]cm s  versus Molecular Weight [ ]Da [5] 

However, this free diffusion coefficient results in a slightly modified representation of the 
concentration field. Again, this free diffusion coefficient represents the transport of “freely 
diffusing” compound concentration and does not consider effects such as binding and 
partitioning[5]. Such a model would then take on the form: 

2
free

c
D c

t


 


 (8) 

By providing an estimate for a free diffusion coefficient, this allows numerical methods to 
identify other pharmacokinetic coefficients when only partial data exists for the total diffusion 
of a compound. This is the approach takin herein, where the free diffusion coefficient will 
supplement existing experimental data for partitioning coefficients and the like, such that the 
effective diffusion coefficient can be deduce inversely. Before such an effort can be 
undertaken, an appropriate modeling method must be established. 

3 MESHLESS METHOD 

The Localized Collocation Meshless Method is a numerical technique for the solution of 
partial differential equations (PDE’s), derived from an interpolation strategy utilizing radial-
basis functions (RBF)[18–20]. This method has several inherent benefits that make it preferable 
to traditional modeling techniques [19–23]. This is especially true in inverse problems, where 
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the iterative nature of the solution methods can leverage the pre-computing strategy of 
derivative interpolators in the localized method[24–26]. 

3.1 Domain Definition 

To begin, consider any generic domain, Ω , circumscribed by the boundary, Γ . This 
formulation defines a set of NC  data centers. A number of these are distributed within the 
domain, NI  interior data centers, and a number restricted to the boundary, NB  boundary data 
centers; where governing equations are applied to the former while boundary conditions to the 
latter. Note that there is no requirement for a regular or structured distribution of the data 
centers, given the implementation of radial-basis functions (RBF), which are supported on the 
global domain[18,27–29].  

 

Figure 3: Generalized 2D Meshless Domain, Ω , with Boundary   

3.2 Local Expansion 

For illustration, consider a general field variable in a generalized time and space coordinate 
system, ( , )x t , governed by an equation such as that of free diffusion given in equation 8, 
with an arbitrary diffusion coefficient, D . This field variable and governing equation are 
valid over the domain, Ω . 

2( , )
( , )

x t
D x t

t

 
 


 (9) 

While governing equation is valid over the domain, there is also a generalized boundary 
condition for the field variable, ( , )x t , specified on the boundary, Γ , such that: 

1 2 3
ˆ ˆ ˆ

n

   
 


 (10) 

This generalized boundary condition allows one t dictate the boundary condition type and 
constrain values by imposing the coefficients, 1 2

ˆ ˆ,  and 3̂ . 

In the LCMM, a localized linear expansion is sought over a topology or group of influence 
points around each data center, such that each topology contains NF  influence points. This 
expansion takes the form: 
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( ) ( ) ( )
NF NP

j j j NF j
j j

x x P x    
 

    (10) 

In this expansion, ( )j x  are pre-defined functions chosen from the family of Radial-Basis 

Functions (RBF), given their favorable convergence criteria and proven performance in 
interpolation schemes[20–22]. These expansion functions are augmented by number of NP  
polynomial functions, ( )jP x , to guarantee the exact retrieval of constant and linear solutions. 

The expansion coefficients, j , are as of yet unknown, but will be quantified at each time 

level, as they evolve with the solution over time. Here, the inverse multiquadric RBF is 
selected and is given such that: 

3
2 2 2( ) ( )

n

j jx r x 


     (11) 

Where n  is any positive exponent, here ( 1)n  ,   is a shape parameter and ( )jr x  is the 

radial distance defined in the 2D Cartesian coordinate system as: 

   2 2
( )j j jr x x x y y     (12) 

To solve for the field variable,  , at the current time step, one begins with the known field 
solution from the time step prior. This known field solution is then collocated at points within 
the localized topology, resulting in the following set of equations given in matrix-vector form: 

    C   (13) 

Where the left-hand side known vector is given as: 
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And the resulting collocation matrix defining the system of equations is given by: 

 
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 (15) 

Note that this collocation matrix is unique to each topology and is dependent explicitly on 
the geometrical distribution of the data centers within said topology, and thus, can be 
calculated at the setup stage to then be implemented at all time steps. 
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Finally, the expansion coefficients, j , are determined such that: 

     1
C 

  (16) 

Noting the inversion of the collocation matrix, the selection of this shape parameter,  , is 
far from arbitrary; varying the shape parameter does improve the solution accuracy[21,22,27]. As 
the shape parameter increases, the interpolation becomes smoother and more accurate. 
However, this causes the collocation matrix to tend towards numerically-singular as the 
elements of  C  become dominated by the shape factor and sets within the matrix begin to 

lose linear independence[24,30–32]. Following Cheng, a simple optimization scheme is 
implemented to maximize the shape parameter on each topology, to improve accuracy, until 
the condition number of the collocation matrix is in the range of 1011-1012[26,27]. 

3.3 On Efficiency  

Meshless techniques utilizing RBF, particularly multiquadric RBF, benefit from spectral 
convergence in globally collocated methods[19,33]. Although the claim to spectral convergence 
is lost in localized collocation, local methods are less susceptible to ill-conditioning without 
the expense of domain decomposition and still retains a degree of accuracy unmatched by 
traditional meshed methods[23,24,30]. 

However, the real advantage of the localized method is the manner in which derivatives of 
the field variable are calculated at the data centers of each topology, cx . Take, for instance, 

any linear differential operator, L , to be applied over the field variable, valid on the domain 
under consideration. This differential operator can be applied over the localized expansion 
quite simply as: 

1 1

( ) ( ) ( )
NF NP

c j j c j NF j c
j j

L x L x LP x    
 

    (17) 

As the expansion and polynomial functions have been defined a priori, then the derivatives 
of these functions can be defined explicitly. Denoting the field variable derivative at a data 
center, ( )cL x , as, cL this can be written in matrix-vector form as: 

   T

c cL L   (18) 

Where: 

 
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 
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 
 
 
  





 (19) 

The expansion coefficients,   , can be substituted into this definition, having been 

defined in equation 16 such that: 
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     1T

c cL L C   (20) 

Casting the product of the expansion function derivates,  T

cL , with the inverse of the 

collocation matrix,   1
C


, as: 

      1T T

cL L C
  (21) 

Then the field derivatives can be reduced to: 

   T

cL L   (22) 

The vector  
,1NF

L  directly interpolates the derivative of the field variable,  , at the data 

center, cx , of each topology. Like the collocation matrix, this is dependent entirely on the 

geometry of the topology and so be pre-computed and stored for later use. This derivative 
interpolation definition can be applied to any derivative operator valid on the space, such as a 
simple 1D spatial derivative, / x  , to something more complex such as the Laplace 

operator seen in diffusion equations, 2 , even in higher dimensional problems. Rather than 
calculating derivatives with finite-differencing approximations and the concerns of spatial 
resolution, derivatives are quantified explicitly here and with greater accuracy, given the 
interpolation accuracy[20]. Additionally, the pre-built derivative interpolation vectors save 
considerably computation time over the course of the solution, especially in applications when 
a solution might be sought repeatedly, such as in inverse schemes. 

3.4 Time Marching 

Given the form of the governing equations approximates: 

2D
t

 
 


 (23) 

Then an explicit, first-order finite-differencing scheme can be implemented to advance the 
solution at the data centers, such that: 

1 1 2( )k k k
c c cD t        (24) 

Where the superscript, k , indicates the time level of the solution and t  is the time step by 
which the solution advances.  

4 PARAMETER IDENTIFICATION: AN INVERSE TECHNIQUE 

As stated prior, Kretsos poses a mathematical relation between the free diffusion of a 
substance within the dermis and the molecular weight of the substance as seen above in 
equation 7[5]. By neglecting elimination effects and the bound mass of the substance in other 
compartments implies the simplified compound transport reported in equation 8. However, 
the transport of a compound in the tissue can be more fully represented by the two-
compartment model given as: 
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In many cases, the difficulties posed by measuring compound concentrations in vivo, leads 
to less reliable quantifications of effD  in the dermis. However, other pharmacokinetic 

parameters can be extrapolated readily by observing systemic effects[9,34–36]. 
Thus, the motivation to inversely identify effD  using numerical methods. This endeavor is 

made possible by: (a) the availability of other PK parameters in existing literature and (b) the 
free diffusion model against which the total or effective diffusion can be compared. 

4.1 Numerical Domain 

The free diffusion and effective diffusion equations are modeled on the same domain, 
given in Figure 4. This domain is 1 cm in width with a depth of approximately 1200 m , the 
average depth of the dermis and epidermis in facial tissue, a region of interest for the authors’ 
future work[37]. This domain begins with an initial concentration of 30 /mg mL having been 
injected by a 33 gauge needle into the dermal layers, as shown in Figure 4, and is allowed to 
diffuse through the dermis over an 8 hour time period. The data centers are distributed 
throughout this domain with an average spacing of approximately 0.01 cm . 

 

Figure 4: Initial Compound Concentration 

The inverse method is applied to the identification of the effective diffusion coefficient of 
verapamil, for which the PK coefficients are readily available. The PK coefficients for 
verapamil are as follows: 

Table 1: Verapamil PK Coefficients 

Parameter Value Units Parameter Value Units 
MW  454.6  Da  

eK  35 10  1 / s  

freeD  61.067 10  2 /cm s  12K  42.19 10  1 / s  

mK  45.61 10  1/ s  
21K  41.11 10  1/ s  
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4.2 PID: Golden Section Search 

The problem of inversely identifying the effective diffusion coefficient is one of 
minimization, that is, of minimizing the distance between the free diffusion solution and the 
effective diffusion solution. The two solution spaces can be sampled at the same points in 
time and space and compared using the 2L -norm to quantify the distance between the 

results[38]. Given some measurements from the free diffusion model, freec , and effective 

diffusion model, effc , then the 2L -norm is calculated such that[25]: 

2

2
1

1
( , , ) ( , , )

N

free i i i eff i i i
i

L c x y t c x y t
N 

     (24) 

Whereby N  is the number of sampled points from the field solutions. This objective 
function we seek to minimize is essentially 1D and presumably unimodal by definition, there 
will be one value for effD  that will create a spatial distribution most similar to that returned by 

the free-diffusion model. However, there is no analytical relationship between the objective 
function and the design parameter, effD , that is readily available for analytical or gradient-

based approaches. Thus, the Golden Section search algorithm is implemented for this 
minimization[39]. Golden Section search is technique similar to bisection; it evaluates the 
objective function at two locations and attempts to determine a bound on the domain within 
which the minimum exists. 

The search is fairly efficient; given a range within which the parameter exists, this method 
reduces this range by approximately 32% on each iteration. This means that in 10 iterations, 
the Golden Section search will have a ruled about 99.2% of the initial bounds within which 
the solution belongs to. That is, if one predicts that the value for effD  falls within the range of 

2[0,100] /cm s , within 10 iterations, this method will narrow down the selection to a range of 
20.813 /cm s . Here, the search is initialized with an estimate that effD  falls within the range 

of 9 5 2[1 10 ,1 10 ] /cm s    . This estimate stems from (a) the free-diffusion equation placing 

freeD  at 6 21.067 10 /cm s  , and, (b) a study that suggests that the effD  at 8 27.8 10 /cm s  [12]. 

5 RESULTS AND DISCUSSION 

The search algorithm converges on a value of 7 21.566 10 /cm s  for the effective diffusion 
coefficient for verapamil, with a minimum value of the 2L -norm of 0.145 /mg mL . However, 

plotting the concentration distribution resulting from free and two-compartment diffusion 
models, one notes a significant dissimilarity in the spatial variation of the solution. Take for 
example the solution space at time, 1t hr  . 
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Figure 5: Free-Diffusion versus Effective Diffusion for Verapamil at t = 1 hr.; 7 21.566 10 /effD cm s    

It appears that the diffusion coefficient is significantly smaller than it should be. To 
understand what is happening, we also produce a solution of a higher effective-diffusion 
coefficient, one that more closely approximates the observed spatial distribution from the 
free-diffusion model. This field solution was generated with an effective-diffusion coefficient 
of 7 210.001 10 /cm s   and returns an 2L -norm of 0.159 /mg mL . 

 

Figure 6: Free-Diffusion versus Effective Diffusion for Verapamil at t = 1 hr.; 7 210.001 10 /effD cm s    

Observing the scale of the solutions in Figure 6, one notes that the scale of the effective-
diffusion solution is approximately one order-of-magnitude smaller than that of the free-
diffusion solution. Recall that all the above solutions begin with the same initial mass of 
verapamil within the domain. The differences in the field solution arise from the elimination 
effects, which impose the removal of verapamil mass from the domain and which were 
ignored in the free-diffusion model. In the free-diffusion model, mass only exits the domain at 
the sink condition imposed at the lower boundary. 

Whereas, in Figure 5, the scale of the effective-diffusion solution is much closer to that of 
the free-diffusion solution. Thus, it can be inferred that the Golden Section Search is electing 
to minimize the effective-diffusion coefficient in order to minimize the quantity of verapamil 
escaping the domain at the sink boundary. This makes sense; given that the fitness/objective 
function is defined explicitly using the compound concentration. For future work, it would 
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then be imperative to consider the flux of the solution as part of the fitness of the design 
parameters. However, this might lead to competing objectives between the two aspects of the 
fitness definition. 

6 CONCLUSION 

The LCMM provides an efficient methodology for the solution of the governing equations 
at hand. The search algorithm is likewise efficient, given the lack of a direct functional 
relationship between the design parameters and the objective function. Also, it appears that 
the search algorithm is conducting its search as specified, however, in a roundabout, rather 
unanticipated manner. A future implementation would require incorporation of the flux of the 
field solution in the objective function in order to more accurately represent the spatial 
distribution of the concentration. 

Given the larger effective-diffusion coefficient, 7 210.001 10 /effD cm s   , the spatial 

variation of the effective-diffusion model does appear to very closely approximate that of the 
free-diffusion model. However, it is important to note the scale of the solution is off by 
approximately one order of magnitude. This, of course, is a consequence of the elimination 
considerations. The effective-diffusion model allows for metabolism and elimination effects, 
which allows for mass to leave the domain, whereas it would otherwise be contained within 
the domain free-diffusion model, excluding that which is lost at the boundaries.  

Thus, it is apparent from the results of the analysis that the free-diffusion model cannot 
approximate the solution of the total-diffusion model accurately without properly accounting 
for elimination effects. Metabolism and elimination allow for large quantities of the 
compound to exit the domain, significantly impacting the distribution accuracy of the field 
solution. It may be of possible to include a first-order elimination coefficient that accounts for 
both metabolic elimination in the tissue compartment and capillary clearance in the blood 
compartment, as a single term in sort of modified free-diffusion model. While this may seem 
to be regressing to a time before multi-compartment models, the ability to account for effects 
from multiple compartments using only the measurements from a single compartment may 
provide a step forward in the field of inverse problems for transdermal drug delivery. 
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