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SUMMARY

A total Lagrangian formulation for the large displacement-
large rotation analysis of shells using finite elements is pre
sented. Different expressions for the strain matrix obtained -
using varicus displacement interpolation forms are discussed
and details of the obtention of the tangent stiffness matrix are
given, Simplifications of the general 3D shell formulation for
2D shells are also presented together with some examples of appli
cation.

i. INTRODUCTION

Extensive work has been reported in recent years for the
obtention of efficient formulations for the non linear analysis
of shells{1]~[4] . Many of the existing formulations allow to
follow the deformation of the shell up to large displacement le
vels but restrict the magnitude of the maximum rotations allowed,
However, in many practical engineering problems the large defor-
mation of shells,or shell-like structures,invelves very large
displacements and rotations and both effects must be properly
taken into account in the mathematical formulation. Examples of
such situations are very common in mechanical and aeronautical
engineering problems. Also, the increasing interest in the appli
cation of numerical methods to thin sheet metal forming problems
[22] increases theneed for reliable formulations which could handle
such a potentialy difficult problems in an easy and efficient
manner.

The work we present here is an extension of the finite ele
ment formulation developed by the authors for the large-displa-
cement-large rotation analysis of 3D and 2D shell structures
using a Total Langragian approach. Details of the formulation
can be found in references[11],[12],[13)and{14]. The formulation

uses “"degenerated" shell elements with a local set of Cartesian
axes based on the principal directions of the shell for the de-
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finition of stresses and strains. Special attention is focussed

in this contributior to the analysis of the expressions for the
strain-displacement relationship obtained using different fini-
te element interpolations for the basic displacement parameters.

The chapter is divided into the following parts: In the next
section details of the geometric and kinematic description for
the 3D shell formulation are presented. In section 3 the diffe-
rent interpolation alternatives and the corresponding strain-
displacement forms are discussed. Section 4 shows the obtention
of the tangent matrix. In section 5 the simplifications of the
3D formulation for axisymmetric shells and arches are presented.
Finaily, some examples of application are given in section 6.

2. 3-D SHELL FORMULATICN : GEOMETRIC AND KINEMATIC DESCRIPTION

2.1, Geometric description.

The middle surface of the shell can be expressed in parame
tric form as

IS

r0= [XO(P1_|!—lz), .VD(FH .F‘z)p ZO(IJ1 .Uz)

where u, and u, are the principal curvature lines at point O
of the shell midsurface (see Fig. 1).

Let a and b be unit vectors tangent to w and u, in O, res
pectively and n the normal vector to the middle surface in O.
Vectors &, b and & together with shell parameters r, s and t are
defined in Fig. 1.

A second sgt of orthogonal vectors 1, ™ and h is defined
at 0 such that 1 iz taken as parallel to the global plane xz and
also tangent to the shell middle surface, T is the normal vector
and ® = h ~'1 (see Fig. 2).

Vectors a ,-% , B define a set of local axes x' , y' , z'
associated w1th the principal curvature lines. On the other hand,
vectors 1 , &, T define a second set of local axes X , v , %
which is easily identified within the structure.

4 point of the shell, P , can be defined by a Vector.;
{see Fig., 1) such that we can write in matrix form

F = r = r, + tn (2)
P
where

r- x,y, 2" (3)
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Fig. 1 Definition of shell geometry

Using eq {2} and the relationships shown in Fig. 1 the fo-
llowing expressions can be obtained

2 oves) g (4)
3 (r,s,t)
with a - ﬁ(i ot ) o o
T
Tz[a,b,n]T and R = o (i—-—;—)o
o } (s)
Q o] i

as

b a Q
¥y ¥
(1,m,n]= 17T with T=|-a b 0 (6)
3 3 y y
0 0 1
T
in eq (6) 1 = [1 . l etc. and the QubbLNPtS %,y and

z denote components Xn thé global coordinate system.

It is now possible to define the shell geometry in an iso-
parametric form {16} as:
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where ¥ 4

fined as

where h is the shell thickness.

2.2. Kinematic description.

- 2t

h

n(g,n) (7)

is the nodal vector of a finite element mesh discre-
tizing the shell middle surface, n the number of nodes per ele-
ment, N, the shape function of node i andé and
sarametric coordinates, The third normalized coordinate T is qg

(8)

|
[
|
i
1 y
|
|
| -
| ixn
| .
I m=hxl
t

e =|[T]| = [{7l|= (1-n2)"

Fig. 2 Different coordinate axes

The displacement vector of & shell point is defined as

(see Fig. 3)

in (9) U is the displacement vector of point O obtained by pro
P over the shell middle surface ﬁL
ment vector of the end of the normal in 0 and t is the distance

jection o

- - d
u o= u, + tul

(9)

n the normalized iso

is the displace
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between points QO and P. The vector of "fundamental displacements"
is defined in wmatrix form as

uo_ T
P= ai = [uo . Vo PO s Uy Vi WJ (10)
where u_ , v_ , w_ are the components of u_in the global coor-
dinate system x , y , = and Ei , v, , W, are the components of

ﬁi in the local system X , ¥ , 2 {see Fig.3 ). The components
of p define the displacement of any point of the structure,

B

Fig. 3 Displacement vectors

Assuming that the lenght of the normal vector does not chan
ge during the deformation we can obtain the nodal components of
vector U, as .

T
- sin %i B4 ~ gin%: sin B
L = [ sin ®i cos Pi sinj sin P35 g ai_i ] (11)
i

e, e,
1 1

The relationships between angles ©; and Biand the two no
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dal rotations @z and ' @§;are shown in Fig. 4b. Note that
eiiand %}are the components of the rotation vector Bpwich

expresses the anticlockwise rotation of the normal at nede i,

Finally, it is worth noting that the definition of nodal rota-

tions is consistent with that of the work done by the bending

moments obtained as the scalar product of vector M, and '

{see Fig. 4¢c). Finally, the vector of displacementé for noée i

is defined as

T

a, = [UQ s Vg y W, ] 0= 3 5= {12)
i . . . z 7.
i i i i i
a) U, = -y e ~sin mﬂi% ~5ina sin]}.%f}
' «[eosa; -1IT;
/’u; B (i-n;{]‘“
! a; B
im //
B ol
________ / mife; mi ¥
iy /e, 0 -_“-—____
EL‘—f—ﬂrf//r ~—
4
- F
L4
’ 7
T 652 o conpy
llaillix%i’"aisinﬂi a"(%‘%fu

Fig. 4 Definition of nodal rotations

3. STRAIN-DISPLACEMENT RELATICNSHIP, DIFFERENT INTERPOLATION AL
TERNATIVES.

The vector of displacement gradients at a point can be de-
fined as

35
.-.L ul
g, x'
L L B 9! ut {(13)
By ¥
B W
gz'
with (14) .,
= 17 = 17 and g = K
g = a8 . 5] 8" g, + & g;] g.~[e, 8 g
In (13) u* = f{u' , v, w ]} T is the displacement vec-
tor of the point referred to the local axes x' , y' , z' of

Fig.2.

The Greer strain vector can be written (neglecting the con
tribution of the thickness strain in the deformation) as

€ g o+ Ael vgf v gl )
) 1 2 2 2 (15)
€y| g, + #lgl + g8 + g )
e=‘ Yyt b = 82t B0t A Y &g5+'&g6?
quzl Byt By t EEy t B8y t £ 8
‘Yylzl ga+ga + gl;g:r + gsga +gﬁg9

vector g can be obtained in terms of the fundamental displace-
ment vector as {12]

6T 2 1tc (A + T —2—)
r roy r 3y
= | = =[ L Llp= L
E=1cr jtc_ (4, +T > yle=lL . 0= kP (16)
s BS s dg
l —
0 | T |
with ¢ - 1 o= 1
1- x - _;%._
R, g
C n ~1 n c 0 (17)
¥
A= | -Nly 0 ) Y , A2=ﬁi— Oy n, -1
ri b ¥ 0 8 ~a, by O

The relationship between the strain vector and the vector
of nodal displacements depends on the finite element interpola-
tion used for the displacement field. Here different alternati-
ves are possible and some of these are discussed in next sections.
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3.1.0ption 1 : Interpolation of the vector of fundamental dig-

placements,

The six compenents of vector p of eq (10) can be interpola-
ted i,e. '

1
p = z N&Iﬁ (18)
T T -l

where p. = [1ki + Uy | are the nodal values of p, NE = N&G
and Ie is the 6 x 6 unit matrix.

Substituting eq (18) in (16) we have
n

I
g=L:Nipi=Z'Mipi (19)

where
Mi=LNiz[LiNi, LGi]=[mi,mi] (20)
The incremental form of eg (18) and (19) can be written as
oy 0
5pi= lo v, |88 = G 8ay (21)

n _ n n
bg= 7 M, 8P = M Csa =3 & da; (22)
where Gi = Mi C-l {23}

Finally, the incremental relationship between Green straing
and nodal displacements is obtained from egs (15) and (22} as

n n
- - - 24
se= A dg AZGi{Sai Zaisai (24)
where the strain matrix B=4 ¢ Explicit forms of matri-
ces M, | Ci , Gi , A and Bi can be found in references{i{ﬁaﬂd

2).

3.2. Option 2: Interpolation of global components of vectorp

The vector of fundamental displacements is redefined as

T
T T

b= [“os ud.] (25)

where U, refer to the components of vector‘ﬁﬁ in the global

coordinate system. The new vector of fundamental displacements
is interpolated as

n
= ZNi i (26)

It can be shown that the relationship between vector P and

o
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P is given by

p =28 (27)
where
I 0]
E] r 5
F - 17 (28)
0 mT
T
n

From eqs (16), (27} and (26) it can be obtained

nA -~ n/\ o~
6g=L6p=LT6p:~.LZT Niapi=EMi5pi (29)
where
#, = L (T N,) (30)
1 i

The incremental relationship between Py and the displace-
ment vector ai can be obtained as

~ AT ~T “ (31}
= = . = C. 8da,
wi"TiG% H_%Gal i Ti
where
& =1 (32)
i ii

Substitution of eq (31) in (29) yields

n
aon n
g =y HGC sa _ § G oa (33a)

with

8 - W6 (s30)

Finally, matrix Bi is obtained by

B, =AG (33¢)
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3.3. Option 3: Interpolation of the displacement vector,

Vector a of eq (12) can be interpolated as

n

a= ﬂiai (34)
with R = Ni I being I, the 5 x 5 unit matrix. Using eqgs (21)
and (35) we can write

5p = C ga = C IE N. § =~z (35)
= 83 =) Cisay
where
' . _ I3 0
= C Ni and C = o v (38)

Matrix Cof eq (36) is a generalization of ¢, of eg (21)for
any point of the structure. The explicit expression of V in(36)
can be directiy obtained frem that of V. given in reference[12]
simply substituting the nodal angles S by & , B respec-
tively. ot

From egqs (16) and (35) it can be easily found
noo_ n
g = Lép=3 L C, aaia}:c;i sa, (37)
where

(38)

Finally, matrix Eﬁ can be obtained fellowing identical steps
shown in eq (24) using matrix ti instead of G, .
i

3,4, Option 4: Interpolation of the three global displacements
and the two angles o and B8

We will finally considered here the option in which vector
U and the two angles & and B of Fig. 4 are interpolated., Thus
we define vector b as

T T o
b=1[u ,a, 8] = N, b, (39)
il
where p = T T
i [uoi, @, B ] and N, =NiI5

From the relationships in Fig.4 and eq (33) we can obtain
§ S &b 3 R .

= = 5 b, = =
p ENi b, SZ N.R, fa = Ecié a, (40)

where

11 {A1Y
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with
I, © i, O
5= and Ri: ) (42}
0 F ¢ H.
i
Matrices ¥ and H in (42) are given by
1 1. .
- — cos acos B 5 sina send cos 8. sin B,
e . i i
F=y _1 cososinB- m%—sina cos B|. Hi:
€ ? -8in Bi cos Bi {43)
-sina 0 4 i
Finally, from egs (16)and {40} we obtain
Sy . (44)
6 = = =~
g=174p L}:ciaai 56, 6a

and matrix Bi is obtained using GI instead of G.l in eq (24).

3,5. Comparison of the different interpolation options.

It can be deduced from previous sections that for practi-
cal purposes the main difference between the four finite element
interpolations alternatives lays in the expression giving the
matrix relating the incremental form of the displacement gradient
and the nodal displacement vectors. A summary of the different
expressions for such a matrix obtained in previous sections are
given below

Qption 1
G = {L N.)C, (45)
i1
~ ~ AT (46}
G, =L (TN,) T.C,
i i i1
Option 3
& =L (CN) (47)
i i
Option 4
w = (48)
G. =L {STH R,
i i i

1t can be clearly deduced from above expressions that op-
zion 1 yields the simpler procedure for the obtention of matrix
G, since the gradient operator L is applied only to the shape
function matrix N.. All the other options imply the application
of I, to a non constant transformation matrix and additional ma-
trix multiplications which, in conclusion, make the computation
of @ more costly and complicated. Option 1, therefore, comes
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out as the most efficient procedure and it has been used for -
the examples presented in section g,

4. COMPUTATION OF THE TANGENT MATRIX.

The discretized equilibrium equations for the structure can
be obtained via the virtual work expression| 16 ]. Following stan
dard procedures we can write ia matrix form -

¥ (a) = pla) -T(a} =0 (49)

where ¥ (@) is the residual force vector and P (a) and r(a)
are the internal force and equivalent external nodal force vec—
tors, respectively. For %total Lagrangian probliems we can write
eq (49) for the ith node as

v (a) = jv B, odv -r (a) = 0 (50)

wvhere I% is the strain matrix given in eq (24), o is the se-

cond Piola-Kirchhoff stress vector and VW is the underformed vo-

lume of the structure, In this work we have assumed conservati-

ve loading, i.e.r, (a}) =r, , The expressions of ¥. for various
. i L. . 1

types of loading can be found in[12 ].

Eq {49} is a non liiear system of eguations which can be
solved using any of the existing iterative algorithms{ 15 ],
{16 ]. We have chosen here a standard Newton-Raphson procedurs
[16 )for which the displacement increment vector for the nth
iteration is given by

n
pal . _iigég_l_ v (a") - Ky (&™) ¥ (a") (51)

a4 1 Thenupdateg displacement field is then calculated as
a =a 4+ Aa , Tterations stop when eq (49) is satisfy (in
an error norm sense).

For conservative loading a typical submatrix of K linking
nodes i and j can be obtained by
3
Py

K, = —=
Tij ba, (52)

J
Tt can be shown that Kle can be given by [12 ]

L Ox Y
K = K., K, . .
Ty i * ij " KlJ (53)
where 1
K..=‘f B. DB, dv
1 ov (54)
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K* = J' al s 6, dv (55)
lj v 1 J
. 0 o
K® =0 for i#j and K,® = (56}
i ii o} Hi

In eq (54) D is the constitutive matrix relating the second
pPiola-Kirchhoff stress vector and the Green strain vector .,
On the other hand, matrix 5 of eqs (55) is given by

S = I I (57)

symm. 0

Flnally, matrix I* of eq (668) is obtained for option 1 of
section 3.1 as

Bv? av? (58)
. 1 1 +
! K SR S
v £ ¥,
with
= T
F, = M,A g (59)
i i
. IV, av,
Explicit expressions of matrices 1 and i
can be found in [11] ang [12] . 392i 39yi

All the integrais of the different tangent stiffness matri
ces have been evaluated using a Gauss-Legendre numerical 1ntegra
tion guadrature, Details of the numerical integration transfor-
mations and of the computation of the curvature radii and deri-
vatives of shape functions which appear in different matrices
can be found in[11], [12] .

5, SIMPLIFICATIONS FOR AXISYMMETRIC SHELLS AND ARCHES.

The general non linear shell formulation presented in pre-—
vious sections can be easily simplified for the analysis of ax1
symmetric shells or arch/frame type structures. Only details of
the main simplifications will be given here. More extensive de-
tails can be found in [13].
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5.1. Geometric description.

A global coordinate system is chogen such that the plane
which contains the middle line of the structure coincides with
the gleobal plane xz. For axisymmetric shells the middle line of
a meriditional section is considered (see Fig. 5)

ARCHES

AXISYMMETRIC SHELLS

FRAMES

Fig. 5 Axisymmetric shells, arches and frames

Vectors a and n of Fig., 1 are now defined by

a-= [cos ¢, sin ¢}T . b = [-sin$ , cos® ]T (80)

It can be seen that coordinates y and s of the general shell
formulation need not to be considered. Also local axes x' y' z!
and X ¥ Z of Fig. 2 coincide all now with the set of axes de-
fined by vectors & , b {not used) and n (see Fig., 6 ). Thus, di
rect use can be made of all geometrical relations given in sec—
tion 2.1 simply noting that coordinates y and s are not needed
and the coincidence of coordinate systems referred. In consequen
ce, matrices T , R and T of egs (5) and (6) are now obtained as
(- =) o

T = = T -
~3in ¢ cos¢ » R o 1|’ =1

cos ¢ sing

2 {81)

wuhere I2 is the 2 x 2 unit matrix,

N
1
i
1

Transverse section
for Arches / Frames

<5

Certer of curvature

i

=
ov|°*
<
n
1
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ol

R = Reference bre curvature rodius = %
pEx,—tengd

Fip, 6 Geometric description of reference line

L3

On the other hand, eq (7) is again valid with N, = N_ (&)

i

and the value of the normalised coordinate ¥ given by

forisymmetric shells Arches

! h, - h + 2t
2t 1 o
h h

where distances h 1and hO can be seen in Fig, 6 ,

6.2, Kinematic description.

(62)

Egqs (9) and {10) are again applicable {see Fig. 7) with

and

(63)

(64)
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The vector of displacements of node i is defined now as

T T
a, = [uO ' 8, ] (63)

W

Fig. 7 Definition of displacement field

6.3, Strain-displacement relationships.

Vector g is defined as

. - 2] (66)
el "
where g, = [8, &,] and g, =[ &, » B, ]

where g, , g, , g, and g, are the same as in eq (14). The Green
strain vector is obtained as

I
|
i
b
[

g5
Arches Axisymmetric shells
k] 2 2 3 h] 5
) (g,+ %el+ £5) | [ A eh L
A as .
&= = poE =0 = 2!
_ € BpthEs i
Yiizt] | B3% 87 818" Bgfg | A ’
(67)
with g, = and p is defined in Fig. 6.
P
It can be shown that {43 ]
with
(69}
d d I
Cp T g | €€ (A4 I, dr) 1
i
Ao | ’ LAS_
1% Lt
0 | 1 0,08} ,~ =B
| l 2 P 3 ? r P
with
0 -1 7
1 1
A= . C = —— (70)
R 1 0 r 1--%

The obtention of the different incremental relationships
between strains and displacements follows identical steps as
explained for 3-D shells. Options 1, 2 and 3 for defining the
finite element interpolation forms in sections 3.1 , 3.2 and
3.3 respectively are again possible. The obtention of the diffe
rent matrices follows the pattern described in those sections
and it will not be repeated here. More details of the resulting
expressions for %JA-and Iﬁ matrices can be found in {13 ].

6.4. Tangent matrix.
The different expressions for the tangent matrix are iden-

tical to those presented in egs {53) - {56) for 3-D shells.
However, matrix S of eq (5%) is now given by

Arches Axisymmetric shells
Ux‘ I2 Tx'z' I2 —éA o ‘1

sh - "= iL (71)
Sym ] 0 Oy' i
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and matrix H of eq (56) is obtained for both cases (using the
interpolation option 1 of section 3.1) as

48y T
Hi (1 X1)= —a'e—-‘— A Ud\f (72)
s i
where %‘is the last colum of matrix Gi {see ref.[13])

It is worth noting that the volume integrals of the. 3D for
mulation are now transformated into the following area integrals.

Arches Axisymmetric shells

j f{x , z) bda 21’\} f{x , z)pdaA
A A

where b is -the width of the arch {see Fig, 6).

Finally, the corresponding geometricaly non linear formula
tion, for framed siructures can be directly obtained from the
arch formulation simply making the curvature radius R equal to
infinity in the all appropiate terms of the finite element ma-
trices, However, direct use can be made of the arch formulation
for analysis of frames setting a cut off value for R in the nu-
merical computations.

6. NUMERICAL EXAMPLES

A series of examples which show the efficiency of the for
mulation developed are presented next. The elements used here
for the different structures analyzed are the eight noded isopa
rametric element which a 2 x 2 x 2 reduced integration rule for
the 3D shell example and the three noded isoparametric one dimen
sional element, alsc with a reduced 2-2 integration rule for the
axisymmetric shell, arch and frame examples. However, any of
the well know members of the *"thick shell element" famlly recent
ly developed [23 ],{24 ]could alzo be used.

6.1. 3D shells: Cylindrical shell under point load.

The cylindrical shell studied can be seen in Fig. 8. Note
that only four elements have been used to discretise one quar—
ter of the structure (due to symmetry). The shell is assumed to
be simply supported in its straight edges and free in the curved
ones. Fig. 8 also shows the load-displacement paths obtained for
two points A dnd B of the siructure for a sheil thickness of
12,7 mm. Good comparison with results reported by Sabir and Lock

[ 8] and Surana [ 7], also shown in Fig, 8 is obtained. Note
the unexpected good performance of the eight noded element for

!
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a relatively "thin" shell structure (t/R = 0,006 ). Similar gocd
results for this element obtained with the formulation presented
here have been recently reported by the authors[12].

6.2, Axisymmetric shells: Expansion below under end circular
point load,

4 segment of an expansion below under circular point load
acting at both ends has been analyzed with the axisymmetric for
mulation presented in section 5, The geometry of the cross sec—
tion of the segment analyzed, material properties and the two
meshes of 3 and 6 three noded axisymmetric elements used in the
analysis are shown in Fig. 9. Results obtained for the load-de
flection curve relating the vertical displacement § at the end
A& with the total circular load applied F are presented in Fig.9,
It can be seen that numerical results obtained with the 3 ele-
ment mesh are very accurate in comparison with those obtained by
Nayak [19 ] and Surana[ 20 ], also shown in Fig. 9, using a consi
derably higher number of elements.

6.3. Arches: Simply supported circular arch under point load,

The formulation for arches presented in section 5 has been
applied to the analysis of a circular arch under a vertical point
load acting at the center. The arch geometry, material proper-
ties and finite element mesh of 10 three noded elements used are
shown in Fig.40. Numerical results obtained for the load-central
deflection curve are also shown in Fig, 10. This problem presents
a bifurcaticn peint A shown in Fig.i0. The corresponding symme-
trical and non symmetrical deformation modes have been plotted
in Fig. 40 . Numerical results obtained for the two bifurcation
branches of the load-deflection curve {see Fig.10) compare well
with those reported by Huddleston [ 17 ]for the same problem.

6.4. Framed structures: Rectanpular frame under end point loads.

The arch formulation developed in section 5 can also be
applied to the case of framed structures as shown in this last
example. The geometry of the structure and details of the mate—
rial properties can be seen in Fig, 14, Only one quarter of the
structure has been analysed due to the symmetry of the problem.
10 onedimensional three noded elements have been used in the
analysis (see Fig. 11). Numerical results for the lcad-deflection
and central bending moment-deflectioa curves are shown in Fig,
11 where results obtained by Lee[ 18 ]Jfor %this problem have also
been plotted. Comparison between both set of results is good.

It is worth noting that an elastoplastic analysis has also been
carried out for this problem using the same one dimensional for
mulation derived in section 5. For the plastic properties a sim
ple von Mises non hardenning material has been assumed. The va

lue of the yield stress has been taken equal to 105 N/m2. Resuits
for the elastoplastic load and bending moment versus deflection
paths are also presented in Fig.4l . Finally, the spread of the
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plastic zones for a vertical deflection of 268.05 cm. is shown

in Fig. 12 More details about this problem can be found in re
ference [11]. -

53

include the obtention of & non linear formulation for spatial
rods which could also be obtained as a particular case of the
3D shell formulation presented in this chapter. An application
of the arch formulation to the non linear analysis of marine pi
pelines during laying operations has been recently published b;
the authors [21] .

B
f.
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