A second-order semi-Lagrangian particle FEM method for the incompressible Navier-Stokes equations

B. Serván-Camas ^{a,} Jonathan Colom-Cobb ^a J. García-Espinosa ^{a,b,} Prashant Nadukhandi

 ^a Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Division of Naval Research, Gran Capitan s/n, 08034 Barcelona, Spain
 ^b Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Campus Nàutica, Edif. NT3, C. Escar 6-8, 08039 Barcelona, Spain

^c Repsol Technological Centre, Paseo de Extremadura, Km 18, 28935 Móstoles, Madrid, Spain

С

VIII International Conference on Computational Methods in Marine Engineering Göteborg, Sweden13–15 May 2019

OUTLINE

✓ Introduction

- ✓ Semi-Lagrangian approach
- ✓ SL-PFEM

Verification and convergence analyses

- ✓ Taylor-Green vortex
- ✓ Lid driven cavity flow
- ✓ 3D flow past a cylinder
- ✓ Ongoing and future work
- ✓ Acknowledgements

INTRODUCTION

CIMNE SEMI-LAGRANGIAN APPROACH

Conceps of the Semi-Lagrangian particle Finite Element Method (SL-PFEM)

First introduced by: S. R. Idelsohn, N. Nigro, A. Limache, E. Oñate: Large time-step explicit integration method for solving problems with dominant convection. Computer Methods in Applied Mechanics and Engineering 217-220, 168–185 (2012). DOI 10.1016/j.cma.2011.12.008.

SEMI-LAGRANGIAN APPROACH

Integrating the particle's equation of motion

Let a(x, t) be an acceleration field and let $\{\lambda\}$ be a set of particles each of them identified with a label λ .

Particle's equation of motion: $d_{t}\boldsymbol{U}_{\lambda}(t) = \boldsymbol{A}_{\lambda}(t) = \boldsymbol{a}(\boldsymbol{X}_{\lambda}(t), t)$ $d_{t}\boldsymbol{X}_{\lambda}(t) = \boldsymbol{U}_{\lambda}(t)$

Velocity Verlet algorithm: $\begin{aligned} \mathbf{X}_{\lambda}(t^{n+1}) &= \mathbf{X}_{\lambda}(t^{n}) + \Delta t \mathbf{U}_{\lambda}(t^{n}) + \frac{\Delta t^{2}}{2} \mathbf{A}_{\lambda}(t^{n}) + O(\Delta t^{3}) \\ \mathbf{U}_{\lambda}(t^{n+1}) &= \mathbf{U}_{\lambda}(t^{n}) + \frac{\Delta t}{2} \left(\mathbf{A}_{\lambda}(t^{n}) + \mathbf{A}_{\lambda}(t^{n+1}) \right) + O(\Delta t^{3}) \end{aligned}$

SL-PFEM for the incompressible Navier-Stokes equations

Let u(x, t) be a fluid velocity field and let's define the acceleration field:

$$\boldsymbol{a} = \mathrm{d}_{\mathrm{t}}\boldsymbol{u} = \partial_{t}\boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla}\boldsymbol{u} = -\boldsymbol{\nabla}\left(\frac{P}{\rho}\right) + \nu\Delta\boldsymbol{u} + \boldsymbol{f}$$

$$X_{\lambda}^{n+1} = X_{\lambda}^{n} + \Delta t u^{n} (X_{\lambda}^{n}) + \frac{\Delta t}{2} a^{n} (X_{\lambda}^{n})$$
$$U_{\lambda}^{n+1} = \underbrace{U_{\lambda}^{n} + \frac{\Delta t}{2} a^{n} (X_{\lambda}^{n})}_{U_{\lambda}^{n+1/2}} + \underbrace{\frac{\Delta t}{2} a^{n+1} (X_{\lambda}^{n+1})}_{Implicit}$$

 $u(X_{\lambda}), a(X_{\lambda})$: Interpolated mesh velocity and acceleration

SL-PFEM for the incompressible Navier-Stokes equations

Projection onto FEM mesh to solve a^{n+1} on Eulerian description such that $u^{n+1}(x) = \mathcal{P}_{\{\lambda\}}^{n+1} \left[\left\{ U_{\lambda}^{n+1} \right\} \right]$:

$$\boldsymbol{U}_{\lambda}^{n+1} = \boldsymbol{U}_{\lambda}^{n+1/2} + \frac{\Delta t}{2} \boldsymbol{a}^{n+1} \big(\boldsymbol{X}_{\lambda}^{n+1} \big)$$
$$\boldsymbol{u}^{n+1}(\boldsymbol{x}) = \underbrace{\mathcal{P}_{\{\lambda\}}^{n+1} \left[\{ \boldsymbol{U}_{\lambda}^{n+1/2} \} \right]}_{\boldsymbol{u}^{n+1/2}} + \frac{\Delta t}{2} \mathcal{P}_{\{\lambda\}}^{n+1} \big[\{ \boldsymbol{a}^{n+1} \big(\boldsymbol{X}_{\lambda}^{n+1} \big) \} \big]$$

Coherence condition: $a^{n+1}(x) = \mathcal{P}^{n+1}_{\{\lambda\}}[\{a^{n+1}(X^{n+1}_{\lambda})\}]$

SL-PFEM

SL-PFEM for the incompressible Navier-Stokes equations

Remark: the coherence condition makes it unneccesary to iterate at the outter implicit loop.

Projection Minimization of the least square error (LSE).

 $\{\Psi_{\lambda}\}$: set of particles' values $\xrightarrow{Projection} \mathcal{P}[\{\Psi_{\lambda}\}] = \{\psi_{c}^{*}\}$ projected nodal values

Interpolated-projected values on particles: $\psi_h(X_\lambda) = \sum_c N^c(X_\lambda) \psi_c^*$

Square error: $\epsilon_{\psi} = \sum_{\lambda} (\psi_h(X_{\lambda}) - \Psi_{\lambda})^2$

LSE:
$$\frac{\partial \epsilon_{\psi}}{\partial \psi_{b}^{*}} = 0 \rightarrow \sum_{\lambda} \left(\sum_{c} N^{b}(X_{\lambda}) N^{c}(X_{\lambda}) \psi_{c}^{*} \right) = \sum_{\lambda} N^{b}(X_{\lambda}) \Psi_{\lambda}$$

Fulfils the coherence condition naturally $\Psi_{\lambda} = \psi_h(X_{\lambda}) \rightarrow \epsilon_{\psi} = 0$

Semi-Lagrangian approach for the incompressible Navier-Stokes equations

Equations in the Eulerian description:

$$\frac{\boldsymbol{u}^{n+1} - \boldsymbol{u}^{n+1/2}}{\Delta t} = \frac{1}{2} \underbrace{\left(-\boldsymbol{\nabla} \left(\frac{P^{n+1}}{\rho} \right) + \boldsymbol{\nu} \Delta \boldsymbol{u}^{n+1} + \boldsymbol{f}^{n+1} \right)}_{\boldsymbol{a}^{n+1}}$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u}^{n+1} = 0$$

Solved using FEM implicit scheme inspired in the fractional step method.

VERIFICATION AND CONVERGENCE ANALYSES

TAYLOR-GREEN VORTEX

CIMNE⁹

Taylor-Green vortex solution

$$u_x(x, y, t) = -\sin(x)\cos(y) e^{-2\nu t}$$

$$u_y(x, y, t) = +\cos(x)\sin(y) e^{-2\nu t}$$

$$P(x, y, t) = \frac{1}{4} [\cos(2x) + \cos(2y)] e^{-4\nu t}$$

TAYLOR-GREEN VORTEX

Case 32		
Number of elements	4096	
Number of Nodes	2113	
Number of Particles	12288	
Courant number	2.54	
Reynolds number	2000	
Number of time steps	500	
Simulation time	250 s	

CIMNE⁹

Case 128			
Number of elements	65536		
Number of Nodes	33025		
Number of Particles	196608		
Courant number	10.1		
Reynolds number	2000		
Number of time steps	500		
Simulation time	250 s		

CIMNE⁹

TAYLOR-GREEN VORTEX

Taylor-Green vortex decay

Particulars			
Maximum velocity (m/s)	1		
Reynolds number	3140		
Domain size (mxm)	(0,П) х(0,П)		
Courant number	0.5		
Simulation time (s)	10		

CONVERGENCE ANALYSIS

Taylor-Green vortex decay

Case	<i>∆x</i> (m)	Δt(s)	NΔt
8x8	$\pi/8$	0.2	50
16x16	$\pi/16$	0.1	100
24x24	$\pi/24$	0.0667	150
32x32	$\pi/32$	0.05	200
48x48	$\pi/48$	0.0333	300
64x64	$\pi/64$	0.025	400

CONVERGENCE ANALYSIS

Steady-state Taylor Green Vortex

Mass forces:

 $f_x(x, y) = -2\nu \sin(x) \cos(y)$

 $f_y(x, y) = 2\nu \cos(x) \sin(y)$

Analytical solution:

 $u_x(x, y) = -\sin(x)\cos(y)$ $u_y(x, y) = \cos(x)\sin(y)$ $P(x, y) = 0.25[\cos(2x) + \cos(2y)]$

Particulars			
Maximum velocity (m/s)	1		
Reynolds number	314		
Domain size (mxm)	(0,П) х(0,П)		
Courant number	2.04		
Simulation time (s)	400		

CONVERGENCE ANALYSIS

Case	$\Delta x(m)$	Δt(s)	NΔt
16x16	$\pi/16$	0.4	1000
24x24	$\pi/24$	0.2667	1500
32x32	π/32	0.2	2000
48x48	$\pi/48$	0.1333	3000
64x64	$\pi/64$	0.1	4000
96x96	π/96	0.0667	6000
128x128	π/128	0.05	8000
192x192	π/192	0.0333	12000

CIMNE

LID DRIVEN CAVITY FLOW

Lid velocity V	-1m/s
Reynolds number Re	1000
Domain size	$1m \ x \ 1m$
Domain discretization	80 <i>x</i> 80
Number of elements	25600
Number of nodes	12961
Particles per element	3
Mesh size $\Delta x = \Delta y$	0.0125
Time step ∆t	0.1
Courant number	8
Simulation time	$10^5\Delta t$
Sampling time	$10^2 \Delta t$

LID DRIVEN CAVITY FLOW

Velocity-streamlines

Second order Verlet Verlet SL-PFEM

CIMNE

First order in time Euler SL-PFEM

Pressure

LID DRIVEN CAVITY FLOW

Horizontal velocity and pressure profiles at the mid-section x=0.5. Solid line: Second Order Verlet-SLPFEM. Dash line: First Order in time Euler-SLPFEM. Red dots: spectral method (O. Botella and R. Peyret. Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids Vol. 27, No. 4, pp. 421-433, 1998)

Horizontal velocity evolution at (x,y)=(0.5,0.175) for the second-order Verlet -SLPFEM

3D FLOW PAST A CYLINDER

Mesh	$\Delta x(m)$	$\Delta t(s)$	N tetras	N Nodes	$N \Delta t$
1	0.1333	0.0667	62208	14487	1500
2	0.1	0.05	147456	33412	2000
3	0.08	0.04	288000	64185	2500
4	0.0667	0.0333	497664	109686	3000

Particulars	
Cylinder diameter (m)	1
Cylinder height (m)	1
Inlet velocity (m/s)	1
Reynolds number	200
Courant number	2

3D FLOW PAST A CYLINDER

Case	St	Error St	C _L
1	0.133	0.0630	0.177
2	0.162	0.0339	0.255
3	0.178	0.0184	0.246
4	0.186	0.0101	0.258
Ref. [*]	0.196		

CPU time in seconds per time step (mesh 2)		SL-PFEM		FEM	
Move		0.092			
Particles	Projector	Assembly	0.363	0.602	
		Solver	0.147		
Velocity solver		0.125		1.532	
Pressure solver		0.339		0.320	
Total		1.066		1.852	

* H. Jiang and L. Cheng. Strouhal Reynolds number relationship for flow past a circular cylinder. J. Fluid Mech. (2017), vol. 832, pp. 170-188

ONGOING AND FUTURE WORK

CIMNE® ONGOING AND FUTURE WORK

Ongoing Work

✓ FEM Enrichment for fluid interfaces

- ✓ Fluid solid interaction:
 - Advances in the simulation of ship navigation in ice (IS-Ships in ice, Room: Runan @ 16:00-17:40h)
- ✓ Free surface problems.

Future Work

- ✓ Solving submesh scales
 - Solve particle scale vorticity using a particle based vortex method.
- ✓ Turbulence modelling

The authors acknowledge Office of Naval Research Global for supporting this work. This work relates to Department of the Navy Grant N62909-16-1-2236 issued by Office of Naval Research Global.