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Abstract: In this article, a visual proof is given that for a certain simple, yet analytically
challenging mechanical system a unique solution exists, which can be found by simple
fixed-point iteration as easily to be performed by the reader. As turns out, this system
is mostly intractable by means of the finite element method, yet being easily manageable
by means of the distinct/discrete element method. Thus, this article gives evidence to
the assumption that systems exist which may yield almost arbitrarily wrong results when
treated with the finite element method, while giving arbitrarily accurate results when
handled by means of the discrete element or similar method.

Keywords. Discrete Elements, Finite Elements, Fixed-point Iteration

1 INTRODUCTION

When a decision has to be made about which of two numerical methods is more suit-
able to solve a certain class of problems, a point of comparison is needed to quantify the
goodness of the results of the respective methods. The more the methods in question
have to be considered as some kind of black boxes and the harder they are to understand
and to analyze, the simpler and clearer the referee has to be. Ideally, the decision-making
method is of purely analytical nature and has nothing in common with one of the methods.

As simple this principle may sound, as hard can it be put into practice at a certain
level of complexity. As can frequently be observed, when two methods A and B have to
be compared to each other, they are not confronted with an independent method C, but
the decision is made by consulting a method A′, similar to or even identical with method
A, plus a method A′′ similar to method A′, and so on.

In this article1, for one of the simplest possible mechanical systems revealing non-linear
system behavior, a referee is presented together with some 14 lines of code, providing the
possibility to make a decision between the standard Finite Element Method on the one
and the Discrete Element Method on the other side when it comes to non-linearity. This
may serve as an example the reader is encouraged to accompany by others.

1This work is based on Chapter 4 of the author’s PhD Thesis [1] (in German), submitted in 2021.
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2 A SIMPLE SYSTEM OF ELASTIC RODS

In the textbook on Numerical Mathematics by Engeln-Muellges et al. [2], the following
inconspicuous problem is presented, which, on closer examination, reveals a high degree of
non-linearity. The system, shown in Fig. 1, consists of two elastic rods fixed at articulation
points P and Q. An external force F is applied to a third, common articulation point R.
Initially, the rods are supposed to be of equal length L and cross-sectional area A, while
their stiffnesses E1, E2 shall differ by a certain factor κ,

E2 = κE1 ,

with κ being set to the value of 2 in the original textbook.
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Figure 1: A system of two elastic rods, loaded with external force F .
Initial configuration and loading are assumed to be symmetric. The more the rods are assumed to differ
by stiffness, the more the system reveals non-linearity.

The concrete values proposed in the textbook are L = 2 m, and α = 30◦. The
rods are supposed to have circular cross-section of diameter d = 10 mm, and stiffnesses
E1 = 100 GPa, E2 = 200 GPa. A force F = 10 kN is applied at articulation point R.
Below, we will keep L, α, d and F unchanged, while the values of E1, E2 may differ in a
broad range.

As simple as this system might appear, it turns out to become more and more in-
tractable by means of standard finite element analysis with increasing amount of asym-
metry with respect to their stiffnesses.
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3 HOOKE’S LAW IN VECTOR AND COMPLEX FORMULATION

When a force S is applied to an elastic rod of length L, having stiffness E and cross-
sectional area A, the rod is stretched by an amount of ∆l according to Hooke’s Law:

S =
E A

l0
∆l · n .

Here n denotes a unit vector, ‖n‖ = 1, directed along the rod’s axis.

With a0 and b0 denoting the rod’s endpoints if no force is applied, and a1, b1 denoting
its endpoints if the rod is stretched, this relation can be expressed, using the Euclidean
norm ‖ · ‖, as follows:

S =
EA

l0
· (l1 − l0) ·

b1 − a1

‖b1 − a1‖

=
EA

‖b0 − a0‖
· (‖b1 − a1‖ − ‖b0 − a0‖) ·

b1 − a1

‖b1 − a1‖

= EA ·
(‖b1 − a1‖ − ‖b0 − a0‖
‖b0 − a0‖ · ‖b1 − a1‖

)
(b1 − a1)

Further simplification yields

S = EA ·
(

1

‖b0 − a0‖
− 1

‖b1 − a1‖

)
· (b1 − a1) (1)

which can be considered the vector formulation of Hooke’s Law for the elastic rod.

For planar problems, any vector v = (vx, vy)
T can be identified by the complex num-

ber v = vx+vy ·i, with i denoting the imaginary unit. By doing so, Eq. (1) reads as follows:

s = EA ·
(

1

|b0 − a0|
− 1

|b1 − a1|

)
· (b1 − a1) (2)

where the Euclidean norm ‖ · ‖ has been replaced by complex magnitude (or absolute
value) | · |.

With this in mind, the forces appearing in our system of rods can be expressed and
summarized as follows: Let the complex numbers p and q represent the articulation points
of the rods, r denote their common articulation point before loading; also, let z represent
the point of application of the external force F after the system has been loaded.

s1 = E1A1

(
1

|p− r| −
1

|p− z|

)
(p− z)

s2 = E2A2

(
1

|q − r| −
1

|q − z|

)
(q − z)
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Here, as before, E1, E2, A1, A2 are to be considered real numbers (or scalars), while p, q,
r, s1, s2 are complex numbers representing or being identified with vectors.

Equilibrium holds if
s1 + s2 + f = 0 ,

where f is a complex number representing or being identified with the external force ap-
plied at the common articulation point.

In the textbook’s example, both rods have equal initial length L and cross-sectional
area A. The rod to the right is considered to have twice the stiffness as the rod to the
left, E1 = E, E2 = 2E. Under this assumption, the condition for equilibrium is:

EA

(
1

|p− r| −
1

|p− z|

)
(p− z) + 2EA

(
1

|q − r| −
1

|q − z|

)
(q − z) + f = 0

becoming with L = |p− r| = |q − r|(
1

L
− 1

|p− z|

)
(p− z) + 2

(
1

L
− 1

|q − z|

)
(q − z) +

f

EA
= 0 . (3)

This is to be considered the condition of equilibrium for the system of two rods when
formulated in the complex plane.

Other than the vector formulation, which yields a system of two non-linear equations,
this is only one equation for one unknown complex number z, which can be solved and
analyzed by means of functional analysis as will be shown below.

4 SOLVING THE PROBLEM BY FIXED-POINT ITERATION

In order to tackle the problem numerically and/or analytically, it has to be transformed
to fixed point form, with unknown complex z standing alone at one side of the equals
sign. Multiplication yields:

1

L
(p− z)− p− z

|p− z| +
κ

L
(q − z)− κ q − z

|q − z| +
f

EA
= 0 .

Here, the special value of 2 was replaced by κ, making the problem more general than the
textbook’s original task. By equivalent transformations we obtain

1

L
(p− z) +

κ

L
(q − z) =

p− z
|p− z| + κ

q − z
|q − z| −

f

EA
,

yielding
1

L
(p+ κq)− 1

L
(1 + κ)z =

p− z
|p− z| + κ

q − z
|q − z| −

f

EA
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and

− 1

L
(1 + κ)z = − 1

L
(p+ κq) +

p− z
|p− z| + κ

q − z
|q − z| −

f

EA
.

Thus, we obtain Eq. (3) in fixed-point form:

z =
L

1 + κ

[
1

L
(p+ κq)− p− z

|p− z| − κ
q − z
|q − z| +

f

E A

]
. (4)

Note that the right-hand side contains only given geometrical values p, q, r (articulation
points), the initial length L, plus given mechanical parameters E, A and κ. Also the
external force F has to be considered to be given.

With a little luck we may succeed to solve the problem by simple fixed-point iteration,
i.e. by successively updating

zk+1 ← φ(zk)

until some kind of convergence can be observed.

A simple interpreted programming language can be used to give this a try, implement-
ing Eq. (4), using the textbook’s original values:

E = 100000;

kappa = 2;

L = 2000;

D = 10;

A = pi/4*D^2;

p = -1000 + 0*i;

q = +1000 + 0*i;

F = 0 - 10000*i;

z = 0.73-17333*i;

for k = 1:100

z = L/(1+kappa)*( (z-p)/abs(z-p) + ...

kappa*(z-q)/abs(z-q) + (p+kappa*q)/L + F/(E*A) )

end

z

Iteration starts at z0 = 0.73 - 1733 i, close to the textbook’s stated solution. Indeed,
the iterated values of z come closer and closer to some value of z∗, slowly converging
towards the value

z∗ = 0.7341601269 - 1733.323346 i ,
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in perfect accordance with the textbook’s result, which has been obtained by applying
the so-called Brown method for solving non-linear systems.

As turns out, it is not simply by chance that fixed-point iteration is successful when
applied to our problem.

5 ANALYZING THE FIXED-POINT ITERATION

The provisional nature of this section has to be emphasized. For more details, the reader must be

referred to the presentation, the author’s PhD thesis [1] and a future extended version of this article.

By moving the origin from the middle of P and Q to P , followed by scaling, it can be
achieved that p = 0, L = 1 and q = 1, whereby the dimensionless term f/EA will not be
affected.

This simplifies our fixed-point equation:

ζ =
1

1 + κ

[
ζ

|ζ| + κ
ζ − 1

|ζ − 1| + κ+
f

E A

]
.

For readability, the transformed ζ is again written as z, while f is written F as is usual
in most textbooks on Technical Mechanics. Now the condition of equilibrium reads as
follows:

z =
1

1 + κ

(
z

|z| + κ
z − 1

|z − 1| + κ+
F

EA

)
= f(z) . (5)

Note that this formulation is equivalent to the problem stated at the beginning, yet being
much easier to study and investigate.

This allows to make some observations, which may be of interest for any further ap-
proach to tackle the problem by means of Analysis and Functional Analysis.

In any textbook on Functional Analysis we can find an extremely fruitful theorem by
Stefan Banach; the following formulation is taken from a free encyclopedia:

Let (X, d) be a complete metric space. Then a map T : X → X is called a contraction
mapping on X if there exists q ∈ [0, 1) such that d(T (x), T (y)) ≤ q d(x, y) for all x, y ∈ X.

Banach Fixed-Point Theorem. Let (X, d) be a non-empty complete metric space
with a contraction mapping T : X → X. Then T admits a unique fixed-point x∗ in X,
i.e. T (x∗) = x∗. Furthermore, x∗ can be found as follows: start with an arbitrary element
x0 ∈ X and define a sequence (xn)n∈N by xn+1 = T (xn) for n ≥ 1. Then limn→∞ xn = x∗.

With this in mind, knowing that C is a complete metric space (and so is each closed
subset of C, in particular, a closed disk), Fig. 2 – for κ = 2 – provides a visual “proof”
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for the existence and uniqueness of a fixed-point inside of the dark blue disk which can
be determined by fixed-point iteration.
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Figure 2: Visual “proof” for existence of a fixed point of the function f described in Eq. (5)
Left: Outside of the yellow region function f is contractive. The blue disk centered at the lower articu-
lation point lies entirely inside of the area of contractivity. Function f maps the disk to the dark blue
region within, which resembles an airfoil. Thus, on the blue disk, function f matches the condition of
Banach’s fixed-point theorem.
Right: Function f can be proven (analytically) to be contractive outside of the circles (dashed, black) of
radius 1 centered at 0 and 1. The area of non-contractivity can be constructed by Monte-Carlo simula-
tion. Disks (blue) with their midpoints on the dashed black circles are widened and shrunk in a bisection
process up to a maximum of size no contraction could be detected within. The remaining region is to be
considered non-contractive. This is the region shown in yellow in the figure to the left.

Remark: Function f maps the entire complex plane to a region bounded by three “kissing circles”, a
figure whose upper or lower half is known as the Arbelos of Archimedes. This can be seen from evaluating
function f 1. for values far from the origin, 2. for values close to 0, and 3. for values close to 1.

1. If z is located far from the origin we have z/|z| ≈ (z − 1)/|z − 1|, thus:

f(z) ≈ 1

1 + κ

(
(1 + κ)

z

|z| + κ+
F

EA

)
≈ z

|z| +
κ

1 + κ
.

(In general, F/EA is small, and divided by 1 + κ it becomes even smaller.) Thus, the outer contour of
f(C) is the unit circle, shifted to the right by a distance of κ/(1 + κ).

2. For z close to zero we have:

f(z) ≈ 1

1 + κ

(
z

|z| + κ
−1

| − 1| + κ+
F

EA

)
≈ 1

1 + κ

(
z

|z| − κ+ κ

)
≈ 1

1 + κ

z

|z| ,
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describing a circle of radius 1/(1 + κ) with its center at the origin.

3. Correspondingly, for z ≈ 1 we obtain :

f(z) ≈ 1

1 + κ

(
1

|1| + κ
z − 1

|z − 1| + κ+
F

EA

)
≈ 1 +

κ

1 + κ

z − 1

|z − 1| ,

describing a circle of radius
κ

1 + κ
centered at (1, 0).

6 FINITE AND DISCRETE ELEMENTS

Now that we are provided with a point of comparison, different methods can be inves-
tigated with respect to the given non-linear system.

There are, principally, two approaches to tackle the problem, see Fig. 3. The first one,
being the structural engineer’s approach, is to look at the system as consisting of two
constructive elements, i.e. rods, that are fixed, joined and loaded at certain articulation
points, finding themselves in equilibrium after loading not asking what happened before
this state was reached.
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Figure 3: Two different points of view at a system of elastic rods
Left: From a structural engineer’s point of view, the system consists of two constructive – or finite –
elements. The engineer is interested in the state of equilibrium.
Right: From the physicist’s point of view, a mass point is attracted by elastic forces, if an external force
is applied. The mass point is called a discrete element. The physicist is interested in the mass point’s
trajectory on its way to equilibrium.

This point of view completely differs from the physicist’s, who is interested in the sys-
tem’s behavior after the load has been applied, until equilibrium is reached. Thus, the
physicist will not concentrate on the constructive elements, i.e the rods, but the element
the force is applied to, i.e. the articulation point which is assumed to be a mass point,
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fixed to the wall by two elastic rods (or springs).

Mathematically, the difference between both approaches is that the first one, i.e. the
engineer’s one, considers the problem to be a boundary value problem, while the second
one, i.e. the physicist’s one, is treating the problem as an initial value problem.

7 FINITE ELEMENTS

A system may consist of elastic rods, joined and articulated at points P1, P2, . . . , Pm,
while the whole system may be fixed at points Pm+1, . . . , Pn. Then, if external forces
Fi are applied at Pi (i = 1, . . . ,m), the displacements xj of articulation points can be
determined by

Fj =
∑
i∼j

ci,j
(pj − pi)

T(xj − xi)

(pj − pi)T(pj − pi)
(pj − pi), j = 1, . . . ,m ,

where ci,j refer to the elastic properties of the respective rods. Here, the notation i ∼ j
means that articulation points Pi and Pj are connected by an elastic rod. Articulation
points Pm+1, . . . , Pn are fixed, thus xj = 0 for j = m+ 1, . . . , n.

The assembly of the stiffness matrix and further proceeding is described in detail by
Nowottny[3], pp. 75–79; the script below can be considered the shortest finite element
program to be found in literature.

Remark: The terminology “finite element program” used for this code fragment is somewhat archaic;

the author is also aware of the existence of non-linear finite element approaches. Nonetheless, the above

view on finite element analysis is the one still used in many textbooks written for practitioners and engi-

neers. Elastic bars or rods as finite elements are still a common starting point in lectures on the basics

of structural analysis.

With the code given by Nowottny [3], the given problem can be tackled, obtaining the
solution

ux = 0.735105 , uy = -1733.32404 ,

which is in good, yet not perfect, accordance with the textbook’s solution of ux = 0.73416,
uy = -1733.32335.

8 DISCRETE ELEMENTS

The Discrete Element Method, applied to aour problem, is described by Newton’s
equation of motion:

m ẍ =
∑

F− δ ẋ ,
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E = 100000;

L = 2000;

d = 10;

A = pi/4*d^2;

alpha = 30;

x_1 = -L*sin(30/180*pi);

y_1 = 0;

x_2 = L*sin(30/180*pi);

y_2 = 0;

x_F = 0;

y_F = -L*cos(30/180*pi);

c_1 = E*A/L;

c_2 = 2*E*A/L;

P = [x_F x_1 x_2;

y_F y_1 y_2];

F = [ 0;

-10000];

A = [ 1 1;

2 3;

c_1 c_2];

network(P,F,A)

function X = network(P,F,A)

% Input: P ... Articulation points

% F ... External forces

% A ... Adjacencies

% Output: X ... Displacements

%

% Taken from Nowottny [3], pp. 77-78

[dummy,n] = size(P);

[dummy,m] = size(F);

[dummy,z] = size(A);

F = F(:);

M = zeros(2*n,2*n);

for k = 1:z

i = A(1,k);

j = A(2,k);

c = A(3,k);

Diff = P(:,j)-P(:,i);

denom = Diff’*Diff;

H = c/denom*Diff*Diff’;

H = [H -H; -H H];

index = [2*i-1 2*i 2*j-1 2*j];

M(index,index) = M(index,index)+H;

end

M = M(1:2*m,1:2*m);

X = M\F;

X = reshape(X,2,m);

where m is the mass of the imaginary mass point (or discrete element),
∑

F is the sum
of all forces applied to the mass point, and δ is a value to incorporate viscous damping
into the system. Without damping, the system’s motion would not come to an end.

Nonetheless, it is crucial to use a numerical scheme which does preserve energy in
a sense that no energy is lost by numerical errors. Thus, it is recommended to use a
numerical scheme that well suits Hamiltonian problems, as does, for instance, the well-
known velocity Stoermer-Verlet method:

xn+1 = xn + h

(
1− h

2m
δ

)
vn +

h2

2m
F (xn) ,

vn+1 =
1− h

2m
δ

1 + h
2m
δ
vn +

1

1 + h
2m
δ

h

2m

[
F (xn) + F (xn+1)

]
.

Again, performing the calculation in the complex plane simplifies the code by replacing
two equations to one.

A straight-forward implementation leads to a program that tracks the oscillatory mo-
tion (Fig. 4) of the articulation point R after force F is applied, which, due to damping,
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finally comes to an end at position

0.73415694448615 - 1.27257287220801 i ,

or – shifting it downwards by an amount of L cos 30◦ = 2000 ·
√

3 – at the position

0.73415694448615 - 1733.32338044108520 i ,

in excellent accordance with the textbook’s solution of ux = 0.73416, uy = -1733.32335.

bc

bc

0.5 1.0 1.5 2.0

−0.5

−1.0

−1.5

−2.0

xg

yg

Figure 4: Trajectory of articulation point R.
Here, the origin has been moved to the articulation point the external force is initially applied to. After a
somewhat unpredictable oscillatory motion the point the external force is applied at reaches equilibrium
in the center of the blue area where the system’s potential energy becomes a minimum.

A more detailed analysis shows that the point of equilibrium is located at the deepest
point inside of an oblong and very narrow valley. This makes it hard to be found by hand-
made methods such as the Newton or Golden Search methods. This may also explain why
the fixed-point iteration scheme takes about 100 steps to reach the solution.

9 COMPARISON OF SIMULATION RESULTS

The reader is invited to rerun the above MATLAB script to confirm the following ob-
servations: 1. For high values of E, i.e. for (very) small displacements, all three methods
provide the same solution, as given by the original textbook. 2. For decreasing values of
E, i.e. for larger displacements, the fixed-point and the discrete element solution are in
excellent accordance with each other, see Table 1. For decreasing values of E the finite
element solution more and more misses the correct solution.
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Table 1: Simulation results for fixed-point iteration, DEM and FEM
Identical results were obtained by the fixed-point iteration and the discrete element method at the given
level of accuracy. For FEM, the x-values do not change, but shift, revealing the method’s linear approach.

E Fixed-point Iteration & DEM FEM
[MPa] xg yg xg yg

1000 000 0.073501 -1732.178125 0.073511 -1732.178132

100 000 0.734160 -1733.323346 0.735105 -1733.324047

10 000 7.257087 -1744.714027 7.351051 -1744.783203

1 000 64.691468 -1853.282073 73.510519 -1859.374762

100 271.322121 -2742.273306 735.105193 -3005.290352

Remark: In Table 1, the FEM values for x, or their digits, do not change but shift, according to the

relation xg(0.1 ·E) = 10 ·xg(E). Similar is the case for the y-values, which can be seen by adding a value

of L cos 30◦ = 2000 ·
√

3 to all of them. This reveals the intrinsic linear nature of the finite element code

used here. It is recommended to the reader to compare the above results with the solution found by his

or her preferred finite element program, which may handle non-linearity in a better way. Note, however,

that the “finite element” code used here is far from being primitive, since vertex displacements are taken

into consideration.

10 CONCLUSION

Three completely different methods have been presented which allow to tackle one and
the same problem numerically. The problem itself has to be considered the prototype of a
whole class of problems being of both theoretical and practical interest. All three methods
are independent from each other, the first being of purely analytical nature, the second
being the well-established, static/stationary Finite Element Method. With the so-called
Discrete Element Method a third method has been introduced, which can be described
a dynamical method. The simulation results show that the analytical way can be taken
only for extremely simple configurations, while the Finite Element Method yields reliable
results in the – important – case of small displacements. The dynamical method may
become of broader interest in the near future, either been used as a reference or as the
method of choice for non-linear systems.
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