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Summary: Carbon fiber reinforced plastics are used in many applications. In recent publi-
cations, repeating unit cells (RUCs) undergoing localization phenomena are investigated and
homogenized. In this paper, aspects of the homogenization approaches are investigated analyt-
ically and numerically.

1. INTRODUCTION

The use of carbon fiber reinforced plastics (CFRPs) has increased over the past decades.
Due to their high specific strength and stiffness, the use of CFRPs and composite materials
in aerospace applications has increased trougout the years (see, e.g.[1]). Their high specific
stiffness and high specific strength make CFRPs an ideal material for light weight construction
(see, e.g.[2]).

CFRPs generally fail in a brittle manner (see, e.g. [3]). Therefore, high safety factors have
to be applied in the design phase of structures made of CFRPs. This remedy, together with the
high manufacturing costs, is assumed to be one of the main draw backs preventing a wide range
use of CFRPs as material of construction.

The micro and meso scale analysis using repeating unit cells (RUCs) has proven to give a
good insight into the phenomenon at the microscale and how they influence the macroscopic
response of the material. For instance, in a recent publication [4], an analysis of the elastic
and plastic response of CFRPs is given, where RUCs are used for homogenization at the fiber
level (micro scale) and the yarn level (meso scale). The numerical results are compared to
experimental data and show a good agreement. However, standard Hill’s approach ([5, 6]) is
used here for homogenization of the RUCs and a size convergence study is applied only for the
elastic response.

As shown in several publications (e.g. [7, 8, 9]), standard Hill’s approach breaks down at
the presence of strain softening as it is induced by damage and failure. As shown in [8], it is
not possible to determine a representative RUC size using Hill’s approach. It is concluded in
said publication that this remedy is caused by a mismatch of sizes of the localization band (i.e.
dissipative volume) and the overall size of the RUC (i.e. elastic energy volume), since the ratio
of dissipative volume and elastic energy volume is not constant but scales with 1/L of a typical
length scale of the RUC.
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As shown in [10], a representative RUC size can be found when applying the so called failure
zone averaging. A similar approach is used in [11, 12] for cracks within the RUC. However,
in [10] and following publications [13, 14, 15] only numerical evidence for the accuracy of the
failure zone averaging is shown.

In this paper, simulations of one exemplary RUC with a brittle damaging material model for
the epoxy matrix will be shown and the numerical evidence of [10] will be analyzed numerically
by means of a parameter study.

2. Material model

The material model used in this publication is based on the isotropic part of the material
model presented in [16]. In the following, the important aspects will be given, whereas the
details of implementation can be found in this publication.

2.1 Helmholz free energy

The material model used is a St. Venant-Kirchhoff type material model involving a brittle
damage function:

ψmech(E, D) = (1−D)nψe(E) = (1−D)n
(
E

2
tr[E]2 + µ tr[E2]

)
(1)

In equation 1, E is the Youngs’ Modulus and µ is the shear modulus. Variable D is the so called
local damage variable ranging from 0 (i.e. virgin material) to 1 (i.e. broken material, complete
loss of stresses and stiffness) and E is the Green-Lagrange strain tensor defined as

E =
1

2
(F TF − I) (2)

with F being the deformation gradient. Variable n is the damage exponent and generally is
given as a positive integer value. The most common choices are n = 1 for a strain equivalent
model and n = 2 for an energy equivalent model. The mechanical energy is then enhanced
with a damage hardening term (ψh) and two micromorphic terms (ψg and ψχ) as introduced in
[17, 18, 19]:

ψ(E, D) = ψmech(E, D) + ψh(D) + ψg(∇0D
χ) + ψχ(D,Dχ) (3)

Here, Dχ is the so called micromorphic damage variable which is introduced as an additional
degree of freedom and ∇0 is the spacial gradient with respect to the reference configuration. A
linear damage hardening function is chosen. Therefore, ψh reads

ψh =
K

2
D2 (4)

with K being a material parameter of choice.
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The micromorphic energies read

ψχ =
Hχ

2
(Dχ −D)2 and (5)

ψg =
El2

2
(∇0D

χ · ∇0D
χ) , (6)

respectively. As can be seen from Eq. (5), ψχ is a penalty energy which couples the local dam-
age variable D and its micromorphic counterpart Dχ. Parameter Hχ regulates the difference
between D and Dχ and is generally chosen quite large. Term ψg in Eq. (6) is the so called
gradient term and penalizes high gradients of Dχ. As in [20], the length scale parameter l is
introduced and scaled with the Youngs’ modulus. This yields the advantage of having a length
like variable control the width of the failure zone.

2.2 Clausius-Duhem inequality

Inserting the given free energy terms into the Clausius-Duhem inequality yields an extended
version of the dissipation inequality.

−ψ̇ + S · Ė + aḊχ + b · ∇0Ḋ
χ︸ ︷︷ ︸

micromorphic extension

≥ 0 (7)

Here, the stress like counter parts a and b of the micromorphic damage variable (Dχ) and its
gradient (∇0D

χ) are given, respectively. Application of the chain rule to the free energy term
yields: (

S − ∂ψ

∂E

)
· Ė +

(
a− ∂ψ

∂Dχ

)
Ḋχ +

(
b− ∂ψ

∂∇0Dχ

)
· ∇0Ḋ

χ − ∂ψ

∂D
Ḋ ≥ 0 (8)

To ensure this inequality holds for arbitrary processes the braces are individually chosen to be
equal to zero, which yields the following relations:

S =
∂ψ

∂E
, a =

∂ψ

∂Dχ
, b =

∂ψ

∂∇0Dχ
(9)

The remaining dissipation inequality

− ∂ψ
∂D︸ ︷︷ ︸

=:Y

Ḋ ≥ 0 (10)

has to be solved. Here, Y indicates the damage driving force, which for the material model
presented reads

Y = n(1−D)n−1ψe +Hχ (Dχ −D)−KD. (11)
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From Eq. (11), the coupling of the local and micromorphic damage variable becomes apparent.
If Dχ is lower than D, the damage driving force is reduced, whereas for Dχ larger than D it is
increased. The remaining dissipation inequality is then fulfilled using a loading function

Φ(Y ) = Y − Y0 (12)

as well as loading and unloading conditions (see, e.g. [21]). Parameter Y0 in Eq. (12) is the so
called damage threshold comparable to the yield strength in plasticity. For the given damage
model the loading and unloading conditions, which are comparable to the Karush-Kuhn-Tucker
conditions, read:

Ḋ ≥ 0, ḊΦ = 0, Φ ≤ 0 (13)

2.3 Boundary value problem

As described earlier, the micromorphic damage variable Dχ is introduced as an additional
degree of freedom. Thus, an additional balace equation, the micromorphic balance equation, has
to be solved additionally to balance of linear momentum. The whole set of balance equations
read:

Div (FS) + f0 = 0 ; Div (b)− a = 0 in Ω0 (14)

Here, Ω0 describes the computational domain (i.e. the simulated body) at the reference config-
uration and f0 is the body force acting on the material point in the reference configuration. The
second balance equation can be expanded by applying Eq. (9) as well as Eqs. (5) and (4) and
then reads:

0 = Hχ(Dχ −D)− El2∇0 (∇0D
χ) in Ω0 (15)

As schown e.g. in [22] and [23], boundary conditions have to be applied to the mechanical part
as well as to the micromorphic part. Here, these boundary conditions read:

BC for balance of linear momentum: BC for micromorphic balance:

(FS)n0 = t̂0 on ∂Ω0,n ∇0D
χ · n0 = 0 on ∂Ω0

u = û on ∂Ω0,d

(16)

In Eqs. (16), t̂0 and û are the prescribed tractions and displacements at the boundary of the
undeformed body Ω0. From Eq. (16), the Neumann (∂Ω0,n) and a Dirichlet (∂Ω0,d) boundary
conditions for the balance of linear momentum become apparent. In case of the micromorphic
balance equation, only Neumann type boundary conditions are prescribed on ∂Ω0.

3. Power contributions

As referenced in Sec. 1, in [14] numerical evidence is given, that the Hill condition holds
for the failure zone averaging technique introduced in [10]. However, as seen in the previous
section, a micromorphic extension also contributes to the total energy. As shown in [23], the
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micromorphic virtual work vanishes when averaging over the whole body. In the following, a
derivation for the given material model following the steps in [23] will be shown.

Let us consider an RUC with the computational domain Ω0. The Hill condition states, that
the virtual macroscopic work and the averaged virtual microscopic work are equal:

{S}Ω0 · {δE}Ω0 =
1

|Ω0|

∫
Ω0

(S · δE + a δDχ + b · δ∇0D
χ) dV (17)

Here, {∗}Ω0 denotes the volume average of a given quantity, i.e.:

{∗}Ω0 =
1

|Ω0|

∫
Ω0

∗ dV (18)

Application of the product rule to the last term of Eq. (17) yields:

Div(b · δDχ) = Div(b)δDχ + b · ∇0D
χ

⇔ b · δ∇0D
χ = Div(b · δDχ)− Div(b)δDχ (19)

The balance equation of the micromorphic extension (14) can be rewritten to get:

Div(b) = a (20)

As shown in Eq. (16), the gradient of Dχ has to vanish at the boundary. Having this in mind
and applying (9) to (16), a boundary condition for b can be derived:

b · n0 = El2 ∇0D
χ · n0 = 0 on ∂Ω0 (21)

Application of Eqs. (19) to (21) to the virtual work of the micromorphic extension leads to:∫
Ω0

(a δDχ + b · δ∇0D
χ)dV (22)

⇔
∫

Ω0

(a δDχ + Div(b · δDχ)− a δDχ)dV (23)

⇔
∫

Ω0

Div(b · δDχ)dV =

∫
∂Ω0

b · n0 δD
χdA = 0 (24)

From Eq. (24) it becomes apparent that the micromorphic energy has to vanish if integrated
over the whole volume of a the computed body. However it is questionable, whether this holds
true, if the failure zone averaging is applied and the integrated volume changes from Ω0 to Ωd

with
Ωd = {x ε Ω0 | Ḋ(x) > 0}. (25)
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In the following, this question is addressed by means of numerical results. For this, the
mechanical (Pmech) and micromorphic powers (Pχ or Pχ,d) are defined as follows:

Pmech =

∫
Ω0

(S ·∆E) dV (26)

Pχ =

∫
Ω0

(a∆Dχ + b ·∆∇0D
χ) dV (27)

Pχ,d =

∫
Ωd

(a∆Dχ + b ·∆∇0D
χ) dV (28)

In above equations, ∆ denotes the numerical differential with respect to the given time step (i.e.
∆(∗) = d ∗ /dt). For this, the micromorphic power is either integrated over the whole domain
or over the actively damaging domain giving Pχ or Pχ,d, respectively.

4. Numerical results

The material model introduced in Section 2 is implemented in the finite element software
FEAP by means of a user material and a user element. The material simulated is long fiber
reinforced plastic, where the fibers were assumed to be linear elastic. It shall be mentioned that
a pseudo viscosity term (as shown e.g. in [20]) was introduced to prevent snapback behavior.
The fibers were simulated as perfect cylinders with a diameter of 7 µm and were placed in a
regular grid into an RUC of size 60 µm× 60 µm× 1 µm. In total, 50 fibers were used which
results in a fiber fraction of approximately 54%. Periodic boundary conditions were applied and
the RUC is subjected to a far field strain of up to 5% in x-direction. The geometry is visualized
in Fig. 1.

Figure 1. Geometry used for RUC simulation; grey: resin matrix, black: carbon fibers

6



Lukas M. Poggenpohl, Jaan W. Simon

The material parameters used for fiber and matrix are summarized in Tab. 1. The mechanical
parameters were taken from [16]. Index 1 denotes material parameters which were associated
with the matrix material, while index 2 denotes material parameters which were associated
with the fibers. If no index is set, the material parameters were the same for fiber and matrix.
The micromorphic length l1 was chosen in a way, that a sufficiently large localization band
was formed. Pseudo viscosity η was chosen to be as small as possible while still achieving
numerical stability. The yield strength of the fibers was chosen numerical infinity (i.e. Y2 =
10× 108 MPa) and the micromorphic parameters of the fibers were chosen in a way that they
did not interact with the micromorphic field.

Table 1. Material parameters for the resin matrix (index 1) and carbon fibers (index 2).

Parameter Value Parameter value Parameter value
λ1 5308 MPa µ1 3538 MPa Y1 0.0672 MPa
l1 1.95× 10−2mm K1 0.205 MPa n1 2
Hχ

1 2× 104MPa

η 1× 10−3 MPa

λ2 423 077 MPa µ2 84 615 MPa Y2 10× 108 MPa
Hχ

2 1 MPa l2 0.0

In a mesh convergence study it was found, that a mesh size of 0.5 µm is sufficiently accurate.
In the following the results of a parameter study are given, where the micromorphic parameters
l1 and Hχ

1 were varied. For convenience, the prefactors α and β are introduced in this publica-
tion. The actual parameters for each of the simulations were lcomp = α · l1 and Hχ

comp = β ·Hχ
1 ,

respectively. The mechanical and micromorphic powers were computed for each gauss point
and integrated over the RUC (i.e. Ω0).

Figure 2. Mechanical and micromorphic power integrated over the whole computational do-
main; Parameters: α = 0.5, β = 0.02
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In Fig. 2 the mechanical and micromorphic powers are shown. It becomes evident that the
micromorphic power is zero when it is integrated over the whole computational domain. This
is in accordance with the theoretical results found in Sec. 3.

Figure 3. Mechanic power density of the computational domain Ω0 and micromorphic power
of the actively damaging domain Ωd plotted with respect to the average strain; Parameters:

α = 0.5, β = 0.02

In Fig. 3, a comparison of the mechanical power (Pmech) as shown in previous Fig. 2 and
the micromorphic power (Pχ,d) of the actively damaging domain are given. It can easily be
seen that the micromorphic power in its maximum exceeded the highest mechanical power by
several amplitudes in the means of absolute values. It shall be mentioned, that Pχ,d only is a
part of the overall power contribution. Therefore, it can be negative without harming the second
law of thermodynamics. Comparing Figs.3 and 2 it becomes apparent, that the micromorphic
power was the highest, when final load drop occurred (i.e. the final failure and crack open-
ing happened). This is strong evidence, that the micromorphic power contribution should be
considered, if failure zone averaging is applied.

In Fig. 4, the results of the parameter study are summarized. Here, the quotient of the overall
mechanical work (Wmech) and micromorphic work of the actively damaging domain (Wmic,d)
was used for comparison. The work was defined as the time integral of the power (W =

∫
P dt)

and numerically integrated via the mid point rule.
As can be seen from the results in Fig. 4, the quotient showed a strong dependence on low

values of parameter β where for high values, the results were almost the same. Lower constrains
on differences between the local and nonlocal damage value lead to a higher quotient. In case
of parameter α it can be seen that a value of 1 lead to the highest quotients where lower and
higher values of α gave lower quotients. Overall, a parameter combination of low values for β
and α = 1 gave the highest quotients of micromorphic and mechanical work. Lower values for
β were tested as well, but it was not possible to finish those computations.

From Figs. 4 it becomes apparent, that the overall micromorphic work was small compared
to the overall mechanical work. This is in contradiction to the results given in Fig. 3, where
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(a) c (b) c

Figure 4. Comparison of micromorphic work of the active damaging domainWmic,d and overall
mechanical workWmech for different parameter combinations.

the micromorphic power was two magnitudes higher than the mechanical power. In Fig. 5,
the same mechanical and micromorphic powers as in Fig. 3 are shown. Here, the powers were
plotted with respect to the normalized computational time. It can be seen, that the micromorphic
power showed significant values only for a short period of time when final failure occured,
approximately 1× 10−4 s. Before and shortly after the peak, the micromorphic power tended
to zero. If integrated over time, this short period of high power still is small.

5. Conclusion

In this publication, a parameter study of an RUC for long fiber reinforced plastics was
performed. Aim of the study was to determine whether the micromorphic power and work can
be neglected, when applying the failure zone averaging introduced in [10].

Following the derivations of [23] it was shown analytically that the micromorphic power
should vanish when it is integrated over the whole computational domain. Numerical evidence
supports this analytical derivation. However, strong evidence was found that the micromorphic
power does not vanish if the failure zone averaging introduced in [10] is applied. Investigation of
the mechanical and micromorphic powers showed that the latter one can be several magnitudes
larger for a short amount of time. A parameter study for the micromorphic parameters l and Hχ

was conducted and a parameter set for the highest quotient of micromorphic and mechanical
work is found. Overall, the mechanical work was still larger than the micromorphic work. It
was shown that the micromorphic power only shows high values for a short amount of time.
Even though the peaks are high, this leads to small numerical values when itegrated over the
whole computational time.
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Figure 5. Mechanic power density of the computational domain Ω0 and micromorphic power
of the actively damaging domain Ωd plottet with respect to the normalized computation time;

Parameters: α = 0.5, β = 0.02
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