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Abstract

Lambert’s problem is the two-point boundary-value problem resulting from a

two-body orbital transfer between two position vectors in a given time. It lies

at the very heart of several fundamental astrodynamics and space engineering

problems and, as such, it has attracted the interest of scientists over centuries.

In this work, we revisit the solution of Lambert’s problem based on Levi-Civita

regularization developed by Carles Simó in 1973. We offer an exhaustive deriva-

tion of the theory, including proofs of all the results and the formulae employed,

and we extend the algorithm to deal with multi-revolution transfers. Then,

after investigating a range of initial guess search techniques and testing differ-

ent numerical methods to approximate the solution, we propose a procedure

in which the initial guess is assigned very efficiently by querying a pre-defined

interpolating table. Then, in order to achieve both speed and robustness, we

combine Newton-Raphson with safety checks to avoid out of boundary devi-

ations to approximate the solution. We validate the method through several

tests and applications, and we assess its convergence and performance. The

algorithm presents no singularities, converges in all realistic scenarios and its

computational cost is comparable with state of the art algorithms.

Keywords: Two-body problem, Lambert’s problem, Levi-Civita regularization

∗Corresponding author: elena.fantino@ku.ac.ae (E. Fantino)

Preprint submitted to Acta Astronautica September 17, 2018



1. Introduction

Lambert’s problem, also known as Gauss’ problem or two-body orbital boundary-

value problem, is the problem of determining the Keplerian orbit connecting two

positions in a specified time (Fig. 1). It arose in the 18th century as a core com-

ponent in the determination of an orbit from three observations of direction5

alone, the central observation being used as a source of the missing distance

data for the other two observations. Hence, the solution of Lambert’s problem

was essential for obtaining the elements of the orbits of planets, asteroids and

comets. The problem is associated with the name of Johann Heinrich Lambert

(1728-1777) because of his fundamental contributions to the topic, including the10

statement of the theorem that bears his name: The transfer time ∆t of a body

moving between two points r1 and r2 on a conic trajectory is a function only of

the sum r1 + r2 of the distances of the two points from the origin of the force,

the linear distance c between the points, and the semi-major axis a of the conic

section:15

∆t = f(r1 + r2, c, a). (1)

a is the quantity to be determined, i.e., the unknown.

Eq. 1 constitutes the general, implicit form of the transfer-time equation,

the explicit layout depending on the way in which the assigned geometry (the

set of r1, r2 and the transfer angle ∆θ) is represented and on the choice of

the unknown, i.e., a or any other parameter from which the orbital elements20

or the initial velocity v1 can be deduced. The solution of the transfer-time

equation cannot be expressed in closed analytical form and, therefore, must be

numerically approximated.

Nowadays, Lambert’s problem has important applications in trajectory de-

sign and navigation, being keystone in computations of rendezvous and inter-25

ception, missile and spacecraft targeting, interplanetary transfers design and

orbit determination. The transfer-time equation has attracted the interest of

mathematicians of all times, whereas from the engineering view point its solu-

tion calls for accuracy, speed of convergence, robustness and formulations valid
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Figure 1: The geometry of Lambert’s problem: the occupied focus F (position of the primary),

the start (r1, P1) and end (r2, P2) position vectors, the transfer angle ∆θ, the chord c and the

conic section that solves the problem (in the example shown it is an elliptical orbit). In the

multi-revolution case, the secondary completes n revolutions (dashed line) around F starting

from P1, and eventually describes the arc (solid line) from P1 to P2, so that the total transfer

angle is 2πn+ ∆θ.

for all types of conic sections (universality). As a result, Lambert’s problem is30

certainly one of the most investigated topics in Celestial Mechanics and Astro-

dynamics. This explains why over the years several solution techniques have

been developed, which can be grouped based on the choice of the unknown pa-

rameter. The most common representation is based on universal variables, with

other major groups of methods solving with respect to the semi-major axis, the35

semi-latus rectum, the transverse eccentricity vector or the flight path angle.

Levi-Civita [1] regularization of the equations of motion allows a representation

of the transfer-time equation as a function of the eccentric anomaly difference

between the two boundary positions on the solution curve.

In the present contribution, we revisit the solution of Lambert’s problem40

by Levi-Civita regularization. The fundamental work of Simó [2] has been our

reference throughout. In his original publication, he developed an elegant

derivation of the regularized equations of motion, the corresponding expression

for the conservation of energy and a formulation of the transfer-time equation
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in terms of Stumpff functions. The argument of the series, the unknown param-45

eter, is the product of the specific two-body energy and the square of the new

(regularized) time coordinate, and such product is equivalent to the square of

half the variation in eccentric anomaly on the conic section that solves a given

Lambert’s problem. Simó’s method addresses all the issues that may arise when

dealing with the solution of Lambert’s problem: singularities, differences among50

the three types of conic section, degeneracies (most noticeably, the rectilinear

orbit), choice of the initial guess, numerical divergence and loss of precision.

Finally, he tested the algorithm in a small set of heliocentric and geo-

centric scenarios. Unfortunately, Simó’s paper was written in Spanish, a fact

that has undoubtedly limited its international dissemination. Furthermore,55

the derivation of the Levi-Civita theory was very concise and skipped

many nontrivial steps. This made the discussion difficult to follow for

readers unfamiliar with the subject.

In a bid to increase the awareness of the scientific community, we offer an

exhaustive derivation of the theory including proofs of all the results and the for-60

mulae employed. We improve on the original formulation by completely solving

the multi-revolution case for the first time in this context. This creates a very

powerful tool, suitable even for designing gravity-assisted transfers to the inner

planets (see, e.g., [3] for the case of the Messenger probe) or tours of planetary

systems. We also investigate a range of initial guess search techniques and test65

different numerical methods to approximate the solution. We implement the

algorithm in modern hardware and perform extensive benchmarking, including

determination of the domain of applicability and performance assessment. The

need for such rigorous testing lies in the automatic character of most applica-

tions, in which many solutions of Lambert’s problem are obtained by varying70

the input parameters. Robustness, accuracy and execution speed are crucial

for the purpose. We perform direct comparisons with the de facto standard

methods, [4] (used by ESA) and [5] (NASA’s choice). Simo’s scheme offers the

same level of robustness and universality as these reference algorithms (i.e., ac-

tually treating the three types of conics, solving undefined transfer plane cases75
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and multi-revolution geometries over the entire application domain). It is

the firm belief of the authors that Simo’s formulation is competitive with the

current methods of choice. Unfortunately, as stated above, it has not enjoyed

sufficient attention. By providing a detailed description and improvements of

the algorithm, including implementation in modern computers and benchmarks80

against the most popular methods, we hope to encourage further research and

development to tap its full potential.

The paper starts with a chronological note on Lambert solvers (Sect. 2).

The fundamentals of two-body Levi-Civita regularization and the application

to the derivation of the equations of motion and their solution are dealt with85

in Section 3. The transfer-time equation, including the multi-revolution case, is

obtained in Section 4. The algorithm to obtain the orbital elements from the es-

timate of the unknown parameter is detailed in Sect. 5. The solution procedure

and the associated numerical methods are presented in Sect. 6. Section 7 illus-

trates and discusses the tests carried out to assess the domain of applicability90

of the formulation and to evaluate the speed of convergence, the computational

efficiency and the accuracy of the results. Section 8 concludes the paper and is

followed by three appendices, respectively on the Stumpff functions and their

properties (App. A), on the computation of the derivative of the transfer time

with respect to z (App. B) and on the geometrical meaning of z (App. C).95

2. State of the art

The original algorithm by [6] iterated on the ratio of the area of the sector

to the area of the triangle for a given transfer geometry (see Fig. 1). This

technique was later improved by [7], who also developed a method in which the

unknown is half the difference between the eccentric anomalies at P2 and P1 on100

the solution curve. The latter approach was enhanced by [8], [9] and [10] by

including the multi-revolution case (see Fig. 1) and by proposing an improved

initial guess search method.
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[11] adopted a formulation based on universal variables, expressing the transfer-

time equation via Gauss’ f and g functions. [12] reformulated Bate’s algorithm105

by adding a constraint on the flight path angle at P1, whereas [13] extended

it using cos ∆θ as the unknown and solving with a variable-order Householder

algorithm. [14] sets up a Lambert solver based on the Newton-Raphson method

applied to universal variables. [5] modified it by means of a Halley iterator and

improved the initial guess. [4] also built on [14], devising a Householder iterator110

and a new initial guess search method.

Most of the techniques that solve Lambert’s problem with respect to the

semi-major axis rely on the formulation due to [15]. The first investigations in

this direction are those of [16] and [17]. More recently, [18] extended Pruss-

ing’s algorithm by means of a variable-order Householder iterator, whereas [19]115

linearised the transfer-time equation, obtaining a computationally efficient pro-

cedure which is suitable for on-board targeting and orbit determination compu-

tations. Other implementations include those of [20], who used a power series,

[21], [22] and [23].

The main solvers with respect to the semi-latus rectum are due to [24], [11]120

and [25]. [26] employed the transverse eccentricity vector (i.e., the component

of the eccentricity vector perpendicular to the chord) and the Newton-Raphson

method with numerical derivatives. Analytical derivatives were developed by

[27], who addressed the multi-revolution case. The latter investigation was

improved by [28] and [29] through simplified formulas for the derivatives.125

Solvers with the flight path angle as the unknown were initiated by [30] and

extended by [31] to include all orbit types. More recently, [32] treated the case

of multiple revolutions, whereas [33] exploited the information of the analytic

gradient of the transfer-time equation with respect to the velocity components

to update the iterator. [34] solved the problem via series expansions; [35] iter-130

ated on a system of two equations with the energy and eccentric anomaly as

unknowns; [36] iterated on the true anomaly; [37] worked with the eccentric

anomaly; [38] derived Lambert’s problem for rectilinear motion; [39] was the

first to deal with multi-revolution orbits in detail.
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The first application of Levi-Civita regularization to the solution of Lam-135

bert’s problem is due to [2], who also addressed the case of degenerate geometries

(most notably, rectilinear motion), and discussed the choice of the initial guess,

the derivative of the transfer-time equation as part of the Newton-Raphson it-

erator, and the issue of numerical degradation. [40] developed an equivalent

formulation using Kustaanheimo-Stiefel regularization [41] and gave a recipe140

for the case of multiple revolutions. [42] solved the problem in the regularised

space via optimal control theory.

Several authors have reviewed and compared the algorithms: for example,

[43], [44], [45] and [46]. Some recent comparisons, e.g. [47], [48] and [49] include

implementations of the algorithm in GPU architectures, analyse the resulting145

performance and offer comparisons with CPU architectures.

3. Levi-Civita regularization of two-body motion

Regularization is the elimination of singularities occurring in the equations

of motion by adopting properly selected variables. Levi-Civita regularization

[50, 51, 52] is a transformation of space and time, and the problem is considered150

in the plane. The method proceeds through three steps:

1. Introduction of a fictitious time s (note that this is a Sundman tran-

formation [53]) such that:

dt =
r

τ
· ds, (2)

being r the distance between the two bodies and τ a constant (in the

following its value will be set equal to 1).155

2. Definition of a transformation (conformal squaring) between the physical

r-plane and the complex u-plane:

u2 = r. (3)

3. Introduction of the specific mechanical energy −2ρ:

−2ρ =
v2

2
− µ

r
, (4)
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µ being the gravitational parameter of the central body and v the relative

speed.160

The differential equations of motion

r̈ + µ
r

r3
= 0 (5)

can be written in the new space and time variables by applying the rules

d

dt
=

1

r

d

ds
, (6)

d2

dt2
=

1

r3

(
r
d2

ds2
− r′ d

ds

)
, (7)

in which the apostrophe (′) denotes differentiation with respect to s. Now,

r =| u |2= (u,u) = uū, 1 (8)

with ū being the complex conjugate of u. Differentiating Eq. 3 with respect to

s yields165

r′ = 2uu′, (9)

r′′ = 2 (uu′′ + u′u′) . (10)

Differentiating Eq. 8 provides

r′ = u′ū + uū′ = (u′,u) + (u,u′) = 2(u,u′).2 (11)

Substitution of Eq. 7 into Eq. 5 gives

rr′′ − r′r′ + µr = 0, (12)

which, by means of Eqs. 8, 10, 11, 9 and 3, becomes

2(u,u) (uu′′ + u′u′)− 4(u,u′)uu′ + µuu = 0. (13)

1Given the vectors a and b, we denote their scalar product by (a,b), whereas ab is the

product of their complex representations.
2 For any pair of complex numbers ab̄+ āb = 2Re

(
ab̄
)

= 2 |a| |b| cos (arg (a)− arg (b)) =

2 (a, b)
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Expanding the scalar products yields

2uū (uu′′ + u′u′)− 2 (u′ū + uū′) uu′ + µuu = 0, (14)

or170

2uūuu′′ − 2uū′uu′ + µuu = 0. (15)

The second term can be rewritten as −2(u′,u′)uu. Eventually, dividing both

sides of Eq. 15 by u yields

2(u,u)u′′ − 2(u′,u′)u + µu = 0. (16)

On the other hand, using Eqs. 6 in Eq. 4 provides

1

2r
| r′ |2= µ− 2ρr, (17)

which, due to Eqs. 9 and 8, becomes

2(u′,u′) = µ− 2ρ(u,u). (18)

Eventually, substitution of Eq. 18 into Eq. 16 yields175

u′′ + ρu = 0. (19)

The transformed differential equations of motion are linear. Given the initial

conditions u0 and u′0 at s = s0, the solution of Eq. 19 is

u = u0 cos[
√
ρ(s− s0)] + u′0

1
√
ρ

sin[
√
ρ(s− s0)] if ρ > 0 (20)

u = u0 + u′0(s− s0) if ρ = 0 (21)

u = u0 cosh[
√
−ρ(s− s0)] + u′0

1√
−ρ

sinh[
√
ρ(s− s0)] if ρ < 0. (22)

The three types of conic section (i.e., ellipse, parabola, hyperbola) are all rep-

resented and discriminated by the sign of ρ (respectively, positive, null and

negative). The solution of Eq. 19 can be written in a more suitable form for180

the present study, i.e., by means of a Taylor series expansion around s0, which

holds for all three curves (universality):

u(s) =

∞∑
k=0

u(k)(s0)

k!
(s− s0)k

= u0

∞∑
j=0

(−1)jρj(s− s0)(2j)

(2j)!
+ u′0(s− s0)

∞∑
j=0

(−1)jρj(s− s0)(2j)

(2j + 1)!
.(23)
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In the second line of Eq. 23, the terms of odd and even order have been separated,

and Eq. 19 has been used to rewrite the (2j)th and (2j + 1)th derivatives of u:

u(2j)(s0) = (−ρ)ju0, (24)

u(2j+1)(s0) = (−ρ)ju′0. (25)

The series that appear in Eq. 23 are the Stumpff functions c0 and c1 of argument185

ρ(s− s0)2 (see Appendix A):

u(s) = u0c0[ρ(s− s0)2] + u′0(s− s0)c1[ρ(s− s0)2]. (26)

By a similar reasoning, the first derivative u′(s) that appears in Eq. 18 can be

expressed as

u′(s) = u′0c0[ρ(s− s0)2]− u0ρ(s− s0)c1[ρ(s− s0)2]. (27)

4. The transfer-time equation

Given r1 and r2 and the time ∆t = t2 − t1 (t1 < t2) to transfer from one190

to the other, two vectors u1 and u2 are introduced in the complex plane, such

that

u2
1 = r1, (28)

u2
2 = r2. (29)

According to the properties of the square, the angle between u1 and u2 is equal

to half the angle between the original vectors (Fig. 4), i.e.:

〈u1,u2〉 =
1

2
〈r1, r2〉 =

∆θ

2
. (30)

Without loss of generality, the orthogonal reference frame in the complex plane195

can be oriented with the x-axis parallel to u1. In other words,

u1 =

 A

0

 , (31)

u2 =

 B

C

 , (32)
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Figure 2: BLA.

in which

A =
√
r1, (33)

B =
√
r2 cos

(
∆θ

2

)
, (34)

C =
√
r2 sin

(
∆θ

2

)
. (35)

If the fictitious time s is zero when the body is at r1, then the total (fictitious)

transfer time equals the value of s at r2. Naming s2 the latter quantity yields:

u1 = u0c0(0), (36)

u2 = u0c0(ρs22) + u′0s2c1(ρs22). (37)

Defining200

u0 =

 α1

α2

 , (38)

u′0 =

 β1

β2

 , (39)

with

α1 = A, (40)

α2 = 0, (41)
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β1 =
B −Ac0(ρs22)

s2c1(ρs22)
, (42)

β2 =
C

s2c1(ρs22)
(43)

provides the following expression for the distance r2:

r2 = (u2,u2) = (u0,u0)c20(ρs2) + (u′0,u
′
0)s2c21(ρs2) + 2(u0,u

′
0)c0(ρs2)sc1(ρs2),

(44)

in which the scalar products are given by

(u0,u0) = α2
1 + α2

2, (45)

(u′0,u
′
0) = β2

1 + β2
2 , (46)

(u0,u
′
0) = α1β1 + α2β2. (47)

Integrating Eq. 2 between t1 and t2 yields

t2 − t1 ≡ ∆t =

∫ s2

0

rds = (α2
1 + α2

2)

∫ s2

0

c20(ρs2)ds (48)

+ (β2
1 + β2

2)

∫ s2

0

s2c21(ρs2)ds

+ 2(α1β1 + α2β2)

∫ s2

0

c0(ρs2)sc1(ρs2)ds.

The relations proved in Appendix A can be employed to manipulate the inte-205

grands of Eq. 48 as follows:

∆t = (α2
1 + α2

2)

∫ s2

0

[
1− 2ρs2c2(4ρs2)

]
ds (49)

+ (β2
1 + β2

2)

∫ s2

0

2s2c2(4ρs2)ds

+ 2(α1β1 + α2β2)

∫ s2

0

sc1(4ρs2)ds.

Then, using relation v) of Appendix A,

∆t = (α2
1 + α2

2)s2 − (α2
1 + α2

2)2ρs32c3(4ρs22) + (β2
1 + β2

2)2s32c3(4ρs22) (50)

+ 2(α1β1 + α2β2)s22c2(4ρs22),

in which c2 is the second-order Stumpff function. Eventually, substituting

Eqs. 33-35 gives

∆t = A2s2 − 2A2ρs32c3(4ρs22) (51)
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+

[
B2 + C2 +A2c20(ρs22)− 2ABc0(ρs22)

]
2s2c3(4ρs22)

c21(ρs22)

+
2A
[
B −Ac0(ρs22)

]
s2c2(4ρs22)

c1(ρs22)
.

Denoting210

ρs22 = z (52)

and multiplying both sides of Eq. 51 by c21(z), yields the expression of the

transfer time for a given geometry (i.e., A, B, C), energy ρ and fictitious time

of arrival s2:

c21(z)

s2
∆t = A2c21(z)− 2A2zc3(4z)c21(z) + 2B2c3(4z) (53)

+ 2C2c3(4z) + 2A2c20(z)c3(4z)− 4ABc0(z)c3(4z)

+ 2ABc1(z)c2(4z)− 2A2c0(z)c2(4z)c1(z).

The four terms in A2 can be further manipulated using the relations i), ii), iii)

and 74 of Appendix A:215

c21(z) = 2c2(4z), (54)

zc3(4z)c21(z) = 2zc3(4z)c2(4z), (55)

c20(z)c3(4z) = c3(4z)[1− 2zc2(4z)], (56)

c0(z)c2(4z)c1(z) = c2(4z)c1(4z) = c2(4z)[1− 4zc3(4z)]. (57)

Eventually,

c21(z)

s2
∆t = 2Pc3(4z) + 2AB [c1(z)c2(4z)− 2c0(z)c3(4z)] , (58)

where

P = A2 +B2 + C2 ≡ r1 + r2. (59)

The explicit dependence from s2 can be eliminated by introducing the following

expression for µ

µ = 2ρ

[
P − 2ABc0(z)

zc21(z)

]
, (60)

obtained from Eq. 18 with Eqs. 26, 27 and 44 and using the identity220

c20(z) + zc21(z) = 1, (61)
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which follows from the formulas i) and ii) of Appendix A. Eventually, the sub-

stitution

Q = 2AB ≡ 2
√
r1r2 cos

(
∆θ

2

)
(62)

provides

∆t =
2Pc3(4z) +Q [c1(z)c2(4z)− 2c0(z)c3(4z)]

c31(z)

√
2
P −Qc0(z)

µ
, (63)

in which ∆t is determined by the geometry (i.e., P , Q) and by the value of the

parameter (i.e., z). Appendix C proves that
√
z (respectively,

√
−z in case of225

hyperbolic motion) is equal to half the variation in eccentric anomaly between

P1 and P2 on the solution orbit. Note that the parameter z is equal to

1/4 times the homonym free parameter of [11] and [7], even though

the underlying formulation is very distinct.

Based on the relationship between the two-body mechanical energy −2ρ and230

the semimajor axis a of the conic section,

a =
µ

4ρ
, (64)

Eq. 60 allows to express the latter as

a =
P −Qc0(z)

2zc21(z)
. (65)

Note that the sign of the semimajor axis is determined by the sign of z (positive

for ellipses, negative for hyperbolas). As a matter of fact,

P −Qc0(z) = r1 + r2 − 2
√
r1r2 cos

(
∆θ

2

)
cos
√
z if z > 0

1 if z = 0

cosh
√
−z if z < 0

(66)

It is easy to prove that Eq. 66 is always larger than (
√
r1−

√
r2)2 for z ≥ 0 and235

thus positive. When the motion is hyperbolic it might be possible, depending on

the geometry, to find a value of z that makes Eq. 66 vanish. Note however that,

according to Eq. 63, the corresponding transfer time is zero (motion with infinite

velocity). As this limiting case has no physical significance, lower values of z

need not be considered. It can therefore be safely assumed that P −Qc0(z) > 0.240

14



Eq. 63 is singularity-free and universal (i.e., applicable to all three types of

conic section). It gives the time of flight over arc lengths of up to 2π. Fig. 3

illustrates the dependence of ∆t on z for four values of ∆θ, r1 = 1 NDU and

r2 = 2 NDU, with NDU meaning normalized distance units. Based on Kepler’s

third law, we define the period of a circular orbit of unit radius (1 NDU) around245

a primary of unit gravitational parameter as being equal to 2π normalized units

of time (NTU). The two short-way (i.e., ∆θ < π) transfers are characterized by

a transfer time that vanishes for some finite, negative value of z, that for which

P − Qc0(z) vanishes. The trajectory is a straight line (the eccentricity of the

hyperbola tends to infinity) and the speed is infinite. The two long-way (i.e.,250

π < ∆θ < 2π) geometries exhibit a horizontal t = 0 asymptote for negative

z, instead: the secondary must pass through the pericenter of the solution

hyperbola and, even if the eccentricity grows as z decreases, the transfer time

cannot become zero (in particular, the expression P −Qc0(z) is always strictly

positive). All transfer-time curves exhibit a vertical asymptote at z = π2: as255

z increases, the transfer arc grows larger, the semimajor axis increases and the

eccentricity tends to 1. Hence, at the limit the solution is a parabolic orbit

whose ∆t = ∞ because c31(π2) = 0 in the denominator of the transfer-time

equation.

4.1. Multi-revolution case260

The case of elliptical orbits can be extended to account for transfer arcs

larger than 2π, i.e., in which the secondary completes an integer number n of

revolutions around the primary before joining P2. The period T of an elliptical

orbit of semi-major axis a,

T = 2π

√
a3

µ
, (67)

can be written as a function of the unknown z, as stated in Eq. 65. Thus, the265

expression of the transfer time is modified by adding n orbital periods. Then,

letting n start from 0 yields the most general form of Eq. 63:

∆t =
2Pc3(4z) +Q [c1(z)c2(4z)− 2c0(z)c3(4z)]

c31(z)

√
2
P −Qc0(z)

µ

15
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Figure 3: Transfer time ∆t as a function of z for four values of ∆θ (two short-way and two

long-way trajectories), r1 = 1 NDU and r2 = 2 NDU. For the meaning of the units, the reader

is referred to the text.

+
nπ

c31(z)

√
1

2µ

[
P −Qc0(z)

z

]3
. (68)

Figure 4 illustrates the dependence of ∆t on z for a sample of geometries with

n = 1. In general, for high enough values of ∆t, the problem has two solutions,

corresponding to two elliptical orbits with short and long period, respectively.270

The lower half of Fig. 5 shows two such geometries, respectively corresponding

to ∆θ = 2π+π/2 and ∆θ = 2π+ 3π/2. The left subplots give the transfer-time

curve, whereas the right subplots illustrate the solution orbits. The selected

value for the transfer time is 8π, allowing for two trajectories in each case

(the correspondence between the value of z and the transfer orbit is indicated275

by a graphic marker). The transfer-time curve exhibits an absolute minimum

because a minimum time is required in order for the secondary to revolve around

the primary between the two given positions. At either side of the minimum

(respectively, for z tending to 0 and to π2), the transfer time tends to infinity.

In both cases, the eccentricity tends to 1 and the trajectory becomes a parabola:280

z = 0 makes the denominator of the second term of Eq. 68 vanish, whereas when

z = π2 the denominators of both terms are zero.
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Figure 4: Transfer time ∆t as a function of z for four values of ∆θ, r1 = 1 NDU, r2 = 2 NDU

and n = 1. For the meaning of the units, the reader is referred to the text.

5. From z to the initial value problem

Once z is known, Simó computes the semimajor axis of the orbit

with Eq. 65. Next, the eccentricity is obtained with285

e2 = 1− A2C2

a2zc21(z)
. (69)

The remaining orbital elements are computed using a standard pro-

cedure (see for example [54]). The velocity v1 at r1 is finally obtained

from the orbital elements and the true anomaly. We followed Simó’s

procedure for determining the velocity in order to fully document

his original work. However, the reader must be aware that there290

are more efficient ways of obtaining the velocity vector from the z

parameter (see [11], for example).

6. A regularized Lambert solver

Since the transfer-time equation (Eq. 68) does not admit a closed-form an-

alytical solution, z must be approximated by some numerical method. Given295

µ, ∆t, r1, r2, ∆θ, n and a choice between long- and short- period if n > 0, the
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Figure 5: Examples of transfer-time curves (left column) and specific Lambert’s problem

solutions (right column) for n = 0 (upper two rows) and n = 1 (lower two rows). The

geometry is represented by the transfer angle (indicated in the top left corner of each row).

Lambert’s problem is solved for one value of the transfer time (as indicated by the y-coordinate

of the horizontal line), giving rise to one ellipse when n = 0 and two ellipses when n = 1. The

correspondence between the value of z in the left subplot and the transfer orbit in the right

subplot of each row is indicated by a graphic marker. For the meaning of the units, the reader

is referred to the text.
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procedure to solve Lambert’s problem by the method presented in the previous

sections, called RLSolver hereinafter, is the following:

1. computation of the geometrical constants P and Q (Eqs. 59 and 62);

2. if n > 0, determination of the minimum transfer time ∆t? and the cor-300

responding value z? of the unknown: if ∆t < ∆t?, the problem does not

admit solution;

3. choice of an initial guess z0 for z;

4. approximation of z by application of a numerical solution method to

Eq. 68;305

5. computation of v1 from the orbital elements and the true anomaly

θ1.

The value of ∆t? for multi-revolution orbits is approximated by means of

the Regula-Falsi iteration scheme, which in the present case means finding the

zero of the derivative of Eq. 68 with respect to z. The development of the310

formula for the derivative is presented in App. B. Higher-order methods were not

considered due to the computational cost of the corresponding derivatives of the

transfer time equation. The Regula-Falsi method is applied to the initial interval

[0.2π2, 0.4π2], which has proved to be a suitable choice for most problems. If

the solution is outside the interval, the bounds are iteratively moved towards it.315

The iteration tolerance is set to 10−13 to ensure the accuracy of the

minimum value of the transfer time equation (∆t?), which is critical to

determine whether the problem admits solution and to discriminate

between the two solution branches. The number of iterations required to

confine the solution is typically less than six, but as high as twelve near r2/r1 ∼ 1320

or ∆θ ∼ 0. The total number of computations of the derivative is eleven

on average, but twice as much near the above limits. An improved Regula-

Falsi method has been implemented based on the Illinois method [55], which

essentially speeds up the convergence with almost no increase in computing

time.325
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6.1. The initial guess

Five methods to choose the initial guess z0 have been explored.

• Half-interval point. The initial guess z0 is the mid point in the z-domain

of each conic in the transfer-time plots. For example, z0 = π2 for single-

revolution elliptical orbits. However, in the case of long-way hyperbolic330

orbits, whose z-domain is unbounded, a lower limit must be provided. To

this end, any of the boundary-finding methods discussed below is ade-

quate. The half-interval point approach is computationally very fast, but

the initial guess is not very accurate, the errors approaching 0.5π2 near

the asymptotes.335

• Half-angle point. Following [2], z0 = (∆θ/2)2 for elliptical orbits and

z0 = 0 for hyperbolic orbits. For elliptical orbits, this choice is more

accurate than the half-interval point.

• Piecewise linear interpolation. A linear function is used to approximate

the transfer time for a given geometry. Hence, the initial guess is the value340

of z corresponding to ∆t on such function. Since the linear approximation

is very poor near the asymptote, the z-domain is divided into subintervals,

yielding a piecewise linear approximation. Numerical experiments show

that the interval [0, 0.3π2] works well for most elliptical orbits, [−π2, 0]

is a good choice for long-way hyperbolic transfers, and [0.9zf , 0], with345

P −Qc0(zf ) = 0, is suitable in most short-way hyperbolas. If the solution

is outside the z-domain of interpolation, the boundaries are iteratively

moved towards the solution. The number of iterations required to confine

the solution is lower than four in most cases, and as high as nine near the

asymptotes.350

• Piecewise nonlinear interpolation. A nonlinear (e.g., quadratic, cubic, ex-

ponential) function is used to approximate the transfer time. This option

must take into account the computational cost of inverting the function.

Compared to the piecewise linear interpolation, the method yields a more
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accurate initial guess and requires fewer interpolating intervals. In general,355

five functions are sufficient to cover the z-domain: one for elliptical orbits

with n = 0, two for hyperbolic transfers (respectively, for long and short

ways) and two for the multi-revolution case (respectively, for the short-

and long-period solutions), and no iterations are required to confine the

solution. Unfortunately, the initial guess can degrade very quickly close360

to the asymptotes, at times resulting in no convergence at all. This issue

can be addressed by dividing the z-domain into smaller subintervals, at

the cost of slightly reduced performance.

• Interpolating table. A pre-computed four-dimensional grid of values of z,

∆θ, r2/r1 and ∆t is stored and queried during execution. This method is365

extremely fast within the domain covered by the table, and can be rea-

sonably accurate. An optional trilinear interpolation can be applied to

further increase the accuracy of the initial guess at the expense of a slight

increase in computing time. However, two tables are required if n > 0

(respectively for short- and long-period solutions) and, depending on the370

resolution of the tables, the size of the arrays may become a limiting

factor. Besides, any out-of-range combination of the input parameters

can yield very poor initial guesses. Experiments have shown that this ap-

proach suffers from poor convergence near the asymptotes. This difficulty

can be solved by introducing specific controls and/or resorting to either375

piecewise interpolation method, at the expense of code simplicity. Since

the interpolating table is not an iterative method, it is always faster then

the two previous methods.

Usually, an improvement in the initial guess is beneficial, lowering the number

of iterations required for convergence. However, an overly complex initial guess380

search algorithm may increase the total execution time, even when the number

of iterations is lower. An appropriate balance among code complexity, number

of iterations, convergence domain and total computing time should be sought.

Furthermore, the choice of the initial guess search method must take into ac-
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count the iteration scheme, with some methods (e.g., bisection) working on a set385

of solution-bracketing bounds whilst others (e.g., high-order Householder meth-

ods) requiring a very accurate initial guess. In the present work, each pass

of the iterative scheme requires evaluation of the derivative of the

transfer time equation (see Sect. 6.2). This being a computationally

expensive operation, improvements in the initial guess have a very390

beneficial effect on the algorithm efficiency. The piecewise linear in-

terpolation and the interpolating table are the only strategies that

ensure an appropriate initial guess estimation in all geometry cases:

other types of interpolation may yield incorrect estimations if evalu-

ated out of their interpolation bounds, and static values provide poor395

initial guesses. The interpolating table, once precomputed, does not

involve any complex operations at runtime. Meanwhile, the piecewise

linear interpolation scheme is more complex, as it requires searching

for the solution bounds at runtime. Therefore, the interpolating table

method has been adopted.400

6.2. Numerical solution methods

Several numerical methods can be used to approximate the solution of Eq. 68.

In this work, the following have been considered: bisection, Regula-Falsi (RF)

and Newton-Raphson (NR), whereas higher-order Householder methods have

been disregarded because of the cost of computing high-order derivatives of the405

transfer time. The original implementations of RF and NR present convergence

problems, so modified versions have been investigated. Eventually, NR with a

set of safety checks to avoid out-of-boundary deviations offers the best combina-

tion of computational speed and robustness. The resulting MNR (M standing

for modified) requires an initial guess and two solution-bracketing boundaries.410

The method executes NR, which requires the derivative of the transfer time

with respect to z (see App. B). At each iteration, MNR checks whether the

current z falls between the boundaries, and, if necessary, it brings it back to the

closest of the two. Due to the monotonic nature of the transfer-time equation,
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NR converges from such point. In the case of multi-revolution transfers, z? and415

∆t? are estimated at this stage to distinguish between long- and short-period

solutions.

7. Performance tests

RLSolver has been tested to assess:

• the space and time domain of applicability, i.e., the ranges of r1, r2, ∆θ and420

∆t for which it solves the corresponding Lambert’s problems (Sect. 7.2);

• the accuracy of the results (Sect. 7.3);

• the execution time (Sect. 7.4).

Comparisons with the algorithms of Izzo [4] and/or Gooding [5] (hereinafter de-

noted I15 and G90, respectively) have been executed on the same architectures.425

The output of the computation is the velocity vector v1 at the beginning

of each transfer. Then, three benchmarks have been designed for testing. The

basic benchmark (BB) solves for transfers between r1 = 1 NDU and r2 = 2 NDU

(µ = 1), ∆θ is varied between 0 and 2π (i.e., n = 0) and, for each value of ∆θ,

∆t is varied logarithmically between 2π ·10−3 and 2π ·103 NTU. The domains of430

∆θ and ∆t are subdivided into 1000 intervals, yielding one million test points.

We also present specific benchmarks for the multi-revolution transfer with n = 1

(angles between 2π and 4π). In this case there is no solution for transfer times

below the minimum (shaded areas of Fig. 7.2). The range ∆t explored is from

∆t?+10−9 to ∆t?+103. The benchmark named BS computes the short transfer,435

while test BL corresponds to the long trajectory. Prior to the execution of

the tests, RLSolver has undergone an assessment of its convergence properties

(Sect. 7.1).

7.1. Convergence tolerance

The machine precision level sets the theoretical upper limit to the numer-440

ical accuracy of the output of a computation, 15 significant figures for double
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Table 1: Limit and degenerate cases: orbit type (first column), transfer angle

(second column), value of z (third column), number of iterations (fourth column),

x- and y- components of the velocity vectors at the beginning (v1) and at the end

(v2) of the transfer (fifth and sixth columns, respectively).

Orbit type ∆θ z Iterations v1x, v1y v2x, v2y

Elliptic 0 1.828 5 1.096, 0.000 0.449, 0.000

Elliptic π 2.674 4 0.053, 1.155 0.053, -0.577

Elliptic 2π 7.114 5 1.067, 0.000 0.371, 0.000

Parabolic 0 0.000 1 1.414, 0.000 1.000, 0.000

Parabolic π 0.000 1 -0.816, 1.155 -0.816, -0.577

Hyperbolic 0 -0.103 5 3.279, 0.000 3.123, 0.000

Hyperbolic π -9.822 3 -9.393, 1.155 -9.393, -0.577

floating-point precision. In general, the accuracy of the solution (i.e., z) de-

pends on the number of iterations performed, and this, in turn, depends on the

tolerance chosen for convergence. In RLSolver, like in the majority of Lambert’s

solvers, this tolerance is applied to the transfer time. Below a certain threshold,445

increasing the number of iterations does not bring a better accuracy because

the machine precision has been reached3. This threshold can be determined by

repeatedly solving the same problem for decreasing values of the convergence

tolerance: the accuracy of the results does not increase indefinitely, rather, it

reaches an upper limit. The corresponding tolerance is the threshold sought.450

The study has been carried out on all the points of BB, BL and BS using con-

vergence tolerances from 1 to 10−16 at steps of one order of magnitude. In the

vast majority of cases, the threshold convergence tolerance is reached in four

to six iterations. For the points of BL and BS close to the minimum transfer

time, 20 Newton-Raphson iterations or more are required due to the455

3or because the solution lies in the highly-inclined part of the transfer-time equation (close

to the vertical asymptote), where two different ∆ts may correspond to extremely close values

of z, hence iterating further does not cause any appreciable variation in the solution.
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small slope of the function. Some hyperbolic orbits with low values of time

of flight require nine to ten iterations. Such situations, however, are very

unlikely in realistic mission scenarios. Setting the convergence tolerance at its

threshold value allows to obtain the best possible accuracy with the minimum

number of iterations. At this limit, the relevant performance figure is the execu-460

tion time. Note that the accuracy level chosen (machine precision basically) is

not required for many practical applications. However this allows us to compare

the execution time of the different solvers under equal conditions to guarantee

a level playing field.

7.2. Space and time domain of applicability465

We successfully tested RLsolver over a wide range of times of flight, number

of revolutions (n) and r2/r1 ratios. It can handle, for example, the cases ∆t = 0

(infinitely fast rectilinear trajectory), r1 = r2 and r2 = 0 (P2 ≡ F ). Table 1

reports results for other potentially conflictive cases. These include parabolas,

highly-eccentric hyperbolic orbits and undefined transfer planes (∆θ = 0, π, 2π).470

7.3. Accuracy

The convergence tolerance study has been carried out also on I154. At the

respective threshold tolerance, the results provided by I15 and RLSolver have

been compared on all the Lambert’s problems of BB, BL and BS by evaluating

the relative difference RD on the velocity vector:475

RD =

√(
vRLSolver
1 − vI15

1

)
·
(
vRLSolver
1 − vI15

1

)
vI151

. (70)

The maps of RD over the three benchmarks are provided in Fig. 6: every-

where RD is close to the double floating-point precision, except for some hy-

perbolic orbits with very low ∆t for which RD increases up to 10−11 , and

multi-revolution transfers close to ∆t? for which RD quickly increases

beyond 10−11.480

4The accuracy characteristics of I15 and G90 are similar, therefore the comparison has

been made against I15 only.
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Figure 6: Space and time domain of applicability of the RLSolver. The single-revolution

geometries (∆θ between 0 and 2π) can always be solved, whereas the multi-revolution transfers

(here n = 1, 2, 3) are solvable only above the minimum-transfer time curve, of which three

examples are given, respectively representing ratios r2/r1 of 2, 3 and 4. The unsolvable

geometries correspond to the shaded areas below each curve.
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Figure 7: Maps of log10(RD), the relative difference between the results of RLSolver and

those of I15 obtained at their respective convergence tolerance thresholds. The three maps

correspond to Lambert’s problems of BB (bottom), BS (top-left) and BL (top-right), respec-

tively.
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7.4. Execution speed

On a typical five-iteration execution, the time is distributed as follows: for

n = 0 problems, 45% is spent on the evaluation of the transfer-time equation

and its derivative in the time-convergence loop, 25% is required to compute v1

from z, 15% is employed to determine the initial guess (including the query to485

the interpolating table and the associated safety checks) and the rest is used by

auxiliary tasks (essentially constants assignments, memory allocation, problem

geometry definition, out-of-bounds checks and convergence criteria, and the

computation of Eqs. 65, 69 and the rest of orbital parameters). For n > 0,

60% of the execution time is consumed in finding ∆t? (with an average of490

eleven evaluations of the transfer time equation derivative), 24% in

the evaluation of the transfer-time equation and its derivative on the MNR

iterator, 6% is spent on v1, 3% on the initial guess, and the rest on the auxiliary

tasks. In the transfer-time computation routine, roughly one third of the time

goes into the calculation of the Stumpff coefficients. The routine for the transfer-495

time derivative has been optimized to include both the evaluation of the transfer

time and its derivative in the same call, so that its execution is only 1.7 times

longer than the basic transfer-time routine. The above time distribution can be

easily scaled to account for a different number of iterations.

A simulation has been performed on the three scenarios (BB, BS500

and BL) to estimate the average execution times. The algorithms are

simulated with a tolerance of 10−9 which corresponds to an average of

five iterations for RSolver. The simulations have been repeated 100

times in order to obtain meaningful values for the average execution

time, yielding a total of 108 evaluations on each test scenario. The505

three methods (RLSolver, G90 and I15) have been programmed in

Fortran language. The executables have been built with Intel Fortran

19.0.0.117 with optimization level -O3, under Ubuntu 18.04.1 LTS.

The test system sports an Intel Xeon E5-2630 v3 processor at 2.40

GHz with 24 GB of RAM. Table 2 compares the performance of510

the three methods. I15 (the clear winner) is between 3 and 4 times
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Table 2: Average execution times of RLSolver, G90 and I15 on the BB (first column), BS

(second column) and BL (third column), in microseconds.

Algorithm BB BS BL

RLSolver 1.16 5.14 5.30

G90 0.51 1.77 1.76

I15 0.38 1.41 1.30

faster than RLSolver. While considerably slower than I15, RLSolver

performance remains quite acceptable for many applications. For

example, solving a 1000 by 1000 porkchop plot takes only 1.2 s. I15

is always at least three times faster than RLSolver. However, for most515

applications the relatively lower performance of RLSolver is a minor issue, since,

for example, the computation of the Lambert’s problems for a porkchop plot

with 1000 × 1000 points only takes 1.4 s.

8. Discussion and conclusions

This paper revisits the solution of Lambert’s problem via Levi-Civita reg-520

ularization, a method developed by [2] in which the transfer time for a given

geometry is expressed through a quantity, called z, proportional to the square of

the eccentric anomaly difference between the end-points of the transfer on the

solution curve. The Stumpff functions of argument z that appear in the transfer-

time expression arise from the solution of the regularized two-body equation of525

motion. This is the equation of the simple harmonic oscillator in which the

constant coefficient is the mechanical energy, a quantity that discriminates the

three types of conic section and, thus, makes the method universal.

Here, the theory of Levi-Civita regularization applied to Lambert’s problem

is demonstrated with full details including the explanation of the geometrical530

meaning of z, the proof of the relevant properties of the Stumpff functions and

the transcription of the problem statement in the regularized space. We improve

on the original formulation by completely solving the multi-revolution (n > 0)
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case for the first time in this context, an upgrade that enables the application

of the algorithm to modern problems, such as the design of multi-revolution535

trajectories among the moons of the giant planets or to the inner solar system.

The features of the transfer-time equation are illustrated, the geometry of the

solutions (e.g., short-, long-way) is discussed, the multiple conic sections (short-

, long-period) arising when n > 0 are presented and the degeneracies that the

method can accommodate are analysed. After investigating a range of initial540

guess search techniques and testing different numerical methods to approximate

the solution, we propose a solution procedure in which the initial guess is as-

signed very efficiently by querying a pre-defined interpolating table. Then, in

order to achieve both speed and robustness, we combine Newton-Raphson with

safety checks to avoid out of boundary deviations to approximate z. To facili-545

tate the reproduction of our results, we provide the complete algorithmic recipe

for the computation of the derivative of the transfer-time with respect to z.

Nowadays, the solution of the Lambert’s problem is key in modern Astrody-

namics. Its most common applications are the computation of porkchop plots

(direct transfers between planets) and the optimization of, e.g., multi-gravity550

assist interplanetary trajectories. In all these cases, the solution of the two-body

orbital boundary value problem must be calculated repeatedly in an automatic

search. Accuracy and execution speed are certainly important performance fea-

tures, but the capability to deal with limit cases and degenerate geometries

without failure is also crucial. The method here discussed has been coded in555

Fortran and tested extensively in order to quantify, in the first place, its do-

main of applicability, i.e., the geometries and transfer times for which it can

approximate z and solve the corresponding initial value problem. Then, once

its convergence properties have been understood and appropriately tuned, the

accuracy of the results has been compared with that of Izzo’s algorithm [4],560

thus obtaining an external validation of the present method. Execution speed

assessments have yielded acceptable results, especially after extrapolation to the

computation of a porkchop plot of medium size. The higher algebraic complex-

ity of the regularized transfer-time equation over the equivalent formulations
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by [4] and [5] justifies the longer execution times. Note however that Simo’s565

method offers room from improvement (e.g. in the computation of velocities, as

indicated in Sect. 5), so the difference can be reduced.

In conclusion, the method meets all the requirements of modern applications

and is an interesting alternative to state-of-the-art methods such as those devel-

oped by Izzo and Gooding that are world-wide rated as the standard Lambert570

solvers.

Appendix A: Stumpff functions

Karl Stumpff (1895-1970) introduced a special family of functions that ap-

pear frequently in Astrodynamics. They were later called the Stumpff functions,

and they are defined in terms of the series (see also [7], Chapt. 4)575

ck(z) =
1

k!
− z

(k + 2)!
+

z2

(k + 4)!
+ ... =

∞∑
i=0

(−1)izi

(k + 2i)!
, k = 0, 1, 2, 3, ... (71)

The series is absolutely convergent for all real values of z. The degree k of the

series is a positive integer number. The first two Stumpff functions, namely

c0(z) and c1(z), admit simple closed-form expressions:

c0(z) =


cos
√
z if z > 0

1 if z = 0

cosh
√
−z if z < 0

(72)

c1(z) =



sin
√
z√

z
if z > 0

1 if z = 0

sinh
√
−z√
−z

if z < 0

(73)

The Stumpff functions of higher degree can be obtained by means of the recur-

sive formula:580

zck+2(z) =
1

k!
− ck(z). (74)

the proof of which follows from the straightforward application of the definition

(Eq. 71). Four properties of the Stumpff functions are relevant for the present
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study. Note that the first three are proved here for z > 0 (the case z < 0 exploits

equivalent properties of hyperbolic functions, whereas the case z = 0 is trivial).

i) c20(z) = 1− 2zc2(4z)585

Proof:

Defining z = y2 allows to write

c0(4z) = c0(4y2) = cos
√

4y2 = 2 cos2
√
y2−1 = 2c20(y2)−1 = 2c20(z)−1,

(75)

where use has been made of the well-known trigonometric identity cos 2y =

2 cos2 y − 1. Then, by applying Eq. 74, one can write

zc2(z) = 1− c0(z), (76)

4zc2(4z) = 1− c0(4z). (77)

Hence,590

4zc2(4z) = 1− 2c20(z) + 1. (78)

ii) c21(z) = 2c2(4z)

Proof:

Application of Eq. 74 to k = 0 provides c2(z) =
1− cos

√
z

z
. Then, by

recalling that 2 sin2 z = 1− cos 2z,

c21(z) =
sin2√z
√
z
2 =

1− cos 2
√
z

2z
= 2

1− cos
√

4z

4z
= 2c2(4z). (79)

iii) c0(z)c1(z) = c1(4z)595

Proof:

The trigonometric identity 2 sinu cos v = sin(u + v) + sin(u − v) can be

applied to the product co(z)c1(z):

c0(z)c1(z) =
sin
√
z cos

√
z√

z
=

sin 2
√
z

2
√
z

=
sin
√

4z√
4z

= c1(4z). (80)
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iv)
dck(z)

dz
=
kck+2(z)− ck+1(z)

2
[40]

Proof:600

Differentiation of Eq. 71 with respect to the argument provides

dck(z)

dz
=

∞∑
j=1

(−1)jjzj−1

(k + 2j)!
. (81)

On the other hand,

kck+2(z)− ck+1(z) =

∞∑
i=0

k(−1)izi

(k + 2 + 2i)!
−
∞∑
i=0

(−1)izi

(k + 1 + 2i)!

=

∞∑
i=0

[k − (k + 2 + 2i)](−1)izi

(k + 2 + 2i)!

= 2

∞∑
i=0

(i+ 1)(−1)i+1zi

(k + 2 + 2i)!
≡ 2

dck(z)

dz
. (82)

v)

∫
skck(ρs2)ds = sk+1ck+1(ρs2)

Proof:

605 ∫
skck(ρs2)ds =

∫ ∞∑
i=0

(−1)iρisk+2i

(k + 2i)!
ds =

∞∑
i=0

(−1)iρisk+2i+1

(k + 1 + 2i)(k + 2i)!

= sk+1
∞∑
i=0

(−1)iρis2i

(k + 1 + 2i)!
≡ sk+1ck+1(ρs2). (83)

Appendix B: Derivative of the transfer time with respect to z

In order to apply the chain rule of differentiation to Eq. 68, it is convenient

to group terms in its right-hand side in the following way:

∆t =
RT

S
+ U, (84)

where

R = 2Pc3(4z) +Q [c1(z)c2(4z)− 2c0(z)c3(4z)] , (85)

S = c31(z), (86)
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T =

√
2
P −Qc0(z)

µ
, (87)

U = 2πn

√
1

µ

[
P −Qc0(z)

2zc21(z)

]3
. (88)

The first derivative of Eq. 84 is:610

d∆t

dz
=
T

S

dR

dz
− RT

S2

dS

dz
+
R

S

dT

dz
+
dU

dz
, (89)

where

dR

dz
= 2P

dc3(4z)

dz

+ Q

[
c2(4z)

dc1(z)

dz
+ c1(z)

dc2(4z)

dz
− 2c3(4z)

dc0(z)

dz
− 2c0(z)

dc3(4z)

dz

]
,(90)

dS

dz
= 3c21(z)

dc1(z)

dz
, (91)

dT

dz
= − Q√

2µV

dc0(z)

dz
, (92)

dU

dz
= − 3nπ

2z2c41(z)

√
V

2zµ

[
zc1(z)Q

dc0(z)

dz
+ V c1(z) + 2zV

dc1(z)

dz

]
. (93)

In Eqs. 92 and 93 V = P−Qc0(z). The derivatives of the Stumpff functions with

respect to the argument can be computed by means of the recursive formula iv)

proved in Appendix A. In particular,

dc0(z)

dz
= −c1(z)

2
, (94)

dc1(z)

dz
=

c3(z)− c2(z)

2
, (95)

dc2(4z)

dz
= 2 [2c4(4z)− c3(4z)] , (96)

dc3(4z)

dz
= 2 [3c5(4z)− c4(4z)] . (97)

Appendix C: Geometrical meaning of z615

Elliptical orbits

If M denotes the mean anomaly, E the eccentric anomaly and e the eccentricity,

differentiation of Kepler’s equation M = E−e sinE with respect to time t yields

Ṁ ≡
√

µ

a3
= Ė(1− e cosE). (98)
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Hence,

dt

dE
= (1− e cosE)

√
a3

µ
= r

√
a

µ
(99)

because r = a(1 − e cosE). Eventually, after recalling that in the ellipse 2ρ =620

µ/(2a),

dt =
r

2
√
ρ
dE. (100)

The substitution of Eq. 2 with τ = 1 yields

dE = 2
√
ρds. (101)

Integration between s0 = 0 and s2 gives

E2 − E0

2
≡ ∆E

2
=
√
ρs2 ≡

√
z. (102)

Hyperbolic orbits

A similar reasoning applied to the equivalent form of Kepler’s equation, i.e.,625

M = e sinhH −H with H the eccentric anomaly, leads to

H2 −H0

2
≡ ∆H

2
=
√
−ρs2 ≡

√
−z. (103)

Parabolic orbits

This is a limit case: z = 0 because ρ = 0.
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