Non-local numerical treatment of non-linear behavior by means of Helmholtz equation, with variable coefficients. Application to reinforced concrete structures.

Authors: Romain Gontero (1)(a), Alain Millard (2)(b), Thierry Vidal (1)(c), Alain Sellier (1)(d), Luca Sorelli(3)(e)

1 LMDC, INSA/UPS Génie Civil, 135 Avenue de Rangueil, 31077 Toulouse cedex 04 France.
2 CEA DEN/DANS/DM2S/SEMT/LM2S, bâtiment 607 - CEN Saclay 91191 Gif sur Yvette cedex
3 UNIVERSITE LAVAL, 2325 Rue de l’Université, Québec, QC G1V 0A6, Canada

Numerous work has been done with the aim of modeling the cracking of reinforced concrete (RC) structures. Among the recent methods proposed in the literature, the combination of reinforcement-concrete equilibrium combined with the linear behavior of the interface leads to a Helmholtz equation which takes account of the slip between the homogenized reinforcements and the concrete in presence of localized cracks [1][2]. In the case of large cracks openings, it is necessary to consider the non-linear behaviors of material and interfaces, such as the plasticity of reinforcements or the damage of the matrix-reinforcement interface. These phenomena induce variations of the coefficients in the Helmholtz equation, which leads to two levels of iterative procedures: one at a global level considering equilibrium of homogenized RC, and another one at a non-local level taking account of equilibrium between reinforcement and concrete. The implementation of a convergence criterion is then needed at each level. The goal of this paper is to describe the developments implemented in the Finite Element code Cast3m to perform non-local Helmholtz type calculations with non-constant coefficients. This method, using an acceleration method [3] is illustrated by the cases of reinforced concrete tie and beam, with homogenized reinforcements.

References:

