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ABSTRACT

The stress-strength reliability parameter is a key metric used in various
fields, including engineering, medicine, and business. In engineering, it
quantifies the probability that a system’s strength X exceeds the applied
stress Y . In this study, we examine for the first time four estimation
approaches for evaluating the stress-strength reliability parameter R =
P(Y < X), where X and Y are independent Weibull random variables
with different scale parameters but a common shape parameter. The
analysis is conducted under a unified hybrid censoring scheme. From the
classical perspective, we employ the maximum likelihood and maximum
product of spacings methods to obtain both point and interval estimates.
From the Bayesian perspective, two forms of the posterior distribution,
based on the likelihood and spacings functions, are derived and ana-
lyzed using Markov Chain Monte Carlo sampling techniques. The Bayes
estimates of R are obtained under the symmetric squared error loss,
and the corresponding Bayesian credible intervals are also computed. To
compare the four point estimators and the four interval estimators, an
extensive simulation study is performed using various experimental sce-
narios. Finally, comprehensive analyses for organic white light-emitting
diode datasets mixed with three colors, namely red, green, and blue, are
provided.
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1 Introduction

The stress-strength reliability model is a probability-based measure used to evaluate the perfor-
mance of a system or component. It estimates the likelihood that a component will fail when the
external stress Y it experiences exceeds its internal strength X . The reliability parameter is defined
as R = P(Y < X), which represents the likelihood of the component surviving under stress. It is
important to note that failure occurs if Y > X at any point; otherwise, the component functions as
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planned. Since the foundational work of Birnbaum and McCarty [1], the estimation of the reliability
parameter R and its statistical inferences has been extensively studied in various domains, such as
engineering, business, and medical sciences. Kotz et al. [2] presented numerous examples of the stress-
strength model. Asgharzadeh et al. [3] noted that the stress-strength reliability model R = P(Y < X)

is of significant interest beyond traditional reliability analysis. This is because it offers a general way
to compare two populations and has applications in various fields. In recent years, many researchers
have explored various estimation approaches, including classical and Bayesian methods, for the stress-
strength reliability model under the assumptions of different lifetime distributions. Kundu and Gupta
[4] analyzed the reliability parameter R when X and Y are Weibull (We) random variables sharing the
same shape parameter but have distinct scale parameters. Similarly, Pundir and Gupta [5] examined
the stress-strength reliability R for the Chen distribution using hybrid censoring schemes. See also the
work of Jana et al. [6] for exponential distribution, Kumari et al. [7] for Kumaraswamy distribution,
and Kotb and Al Omari [8] for exponential-Rayleigh distribution, among others.

The first step in analyzing the stress-strength reliability model is selecting the appropriate
statistical distribution to model both variables X and Y . One of the most significant and widely used
statistical distributions is the We distribution, which is characterized by one scale parameter and one
shape parameter. This distribution is capable of modeling three different failure rates, namely constant,
increasing, and decreasing shapes, which commonly appear when modeling engineering and medical
data. For more details on the We distribution, its extensions, and applications, refer to Lai et al. [9]. See
also the work of Cavalcante et al. [10]. Many authors considered the We distribution when studying
the stress-strength reliability model due to its flexibility. Almarashi et al. [11] studied various classical
estimation approaches of the stress-strength reliability model for the We distribution. If the random
variable X follows the We distribution, then its probability density function (PDF) can be expressed
as

g(x; μ, β) = μβxβ−1e−μxβ

, x > 0, (1)

where μ > 0 and β > 0 are the scale and shape parameters, respectively. The corresponding
distribution function is given by

G(x; μ, β) = 1 − e−μxβ

. (2)

Let the strength X follows We(μ1, β) and the stress Y follows We(μ2, β). Then, under the
independent assumption of X and Y , the stress-strength reliability parameter R = P(Y < X), can be
expressed as

R = μ1

μ1 + μ2

. (3)

It is important to note that assuming a common shape parameter is standard in stress–strength
reliability studies involving We distributions, as it simplifies the derivation of R = P(Y < X) into a
closed-form expression, thereby facilitating efficient estimation under the complex UHC scheme. This
assumption also reduces computational complexity in classical and Bayesian estimation methods while
maintaining model adequacy.

Another important consideration when studying the stress-strength reliability model is whether to
work with complete or censored data. In practice, employing complete data is frequently impractical,
as experimenters often encounter censored data due to factors such as testing period and associated
expenses. Therefore, censored data are naturally used in such investigations. However, the question
arises: which censoring plan should be used? The literature suggests a variety of censoring schemes,
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each with its advantages. Experimenters usually aim to find a plan that balances the test duration
with an adequate number of observed failures, thereby allowing efficient statistical inference. The
most common classical censoring schemes include Type-I, Type-II, hybrid Type-I, and hybrid Type-
II censoring plans, see Balakrishnan and Kundu [12], for more detail. Another two advances in
censoring plans are the generalized Type-I and Type-II hybrid censoring (HC) schemes, as proposed
by Chandrasekar et al. [13]. Nevertheless, the generalized Type-I HC methodology does not guarantee
a predetermined number of failures, while the generalized Type-II HC plan risks observing very few
or even no failures. To overpower these disadvantages, Balakrishnan et al. [14] integrated the two
censoring methods and presented a unified hybrid censoring (UHC) plan.

Let X1:n, X2:n, . . . , Xn:n denote the ordered failure times in a life testing experiment containing
n similar units. Before the experiment starts, the researcher pre-selects two integers r and k, where
1 ≤ r < k ≤ n, and two time limits 0 < T1 < T2 < ∞. The UHC plan can be described as follows:
(1) If Xr:n < T1, end the experiment at min{max(Xk:n, T1), T2}, (2) If T1 < Xr:n < T2, terminate the
experiment at min(Xk:n, T2), and (3) If Xr:n > T2, conclude the test at Xr:n. Accordingly, employing the
UHC plan lead to one of the following six cases

• Case 1: If 0 < Xr:n < Xk:n < T1 < T2, set τ = T1.

• Case 2: If 0 < Xr:n < T1 < Xk:n < T2, set τ = Xk:n.

• Case 3: If 0 < Xr:n < T1 < T2 < Xk:n, set τ = T2.

• Case 4: If 0 < T1 < Xr:n < Xk:n < T2, set τ = Xk:n.

• Case 5: If 0 < T1 < Xr:n < T2 < Xk:n, set τ = T2.

• Case 6: If 0 < T1 < T2 < Xr:n < Xk:n, set τ = Xr:n,

where τ refers to the time point at which the test is terminated. Let d refers to the observed number of
failures defined as

d =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a, for Case 1,
k, for Cases 2 and 4,
b, for Cases 3 and 5,
r, for Case 6,

where a and b denote the number of observed failures occurred before T1 and T2, respectively. Fig. 1
shows the various possible cases of UHC plan.

Let x = (x1, . . . , xd) represent an observed UHC sample, where xi = xi:n for simplicity. Then, the
joint likelihood function (LF) can be expressed, omitting the constant term, as:

L(θ ; x) =
d∏

i=1

f (xi) [1 − F(τ )]n−d , (4)

where θ is the vector of the unknown parameters. Many studies considered the UHC plan using various
lifetime distributions, and some recent works include Hasaballah et al. [15] for generalized inverted
exponential distribution, Kumar et al. [16] for inverse Pareto distribution, Hasaballah et al. [17] for
power rayleigh distribution, and Shukla et al. [18] for power Lindley distribution. By maximizing
the logarithm of the LF in (4) with respect to θ , the maximum likelihood estimators (MLEs) can be
obtained. Another classical estimation approach, known as the maximum product of spacings (MPS)
method, was proposed independently by Cheng and Amin [19] and Ranneby [20] as a competitive
alternative to the maximum likelihood method. As noted by Anatolyev and Kosenok [21], it has been

https://www.scipedia.com/public/Nassar_et_al_2026 3

https://www.scipedia.com/public/Nassar_et_al_2026


M. Nassar, R. Alotaibi and A. Elshahhat,

Classical and Bayesian stress-strength reliability estimation for weibull data

under unified hybrid censoring scheme with LED application,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 8

observed that the MPS estimators (MPSEs) are more efficient than the MLEs for skewed distributions
or in small sample cases. Based on an observed UHC sample x, the MPSEs are obtained by maximizing
the following product of spacings function (SF)

P(θ ; x) =
d+1∏
i=1

[F(xi) − F(xi−1)] [1 − F(τ )]n−d . (5)
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Figure 1: Schematic representation of UHC plan

It is important to mention that after obtaining the MLEs of the model parameters, the MLE of the
stress-strength reliability parameter R = P(Y < X) can be easily derived by applying the invariance
property of the MLEs, as well as the MPSEs, as will be discussed in the following sections.
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This study aims to investigate both classical and Bayesian estimations of the stress-strength
reliability parameter of the We distribution using UHC plan. We compare four estimation approaches:
(1) Maximum likelihood estimation, which is standard but can be inefficient with heavy censoring, (2)
MPS estimation, introduced here for the first time under UHC scheme, (3) Bayesian estimation based
on the LF, incorporating prior information via traditional posteriors, and (4) Bayesian estimation
based on the SF, yielding an alternative posterior form that aligns with order statistic properties
in censored data. Prior studies on stress-strength reliability have primarily relied on the maximum
likelihood estimation method or basic Bayesian methods via LF, see for example Hu and Ren [22],
and Kotb and Raqab [23]. However, these approaches overlook the potential of MPS, which has shown
superiority in spacings-based inference for censored samples, see Kateri and Nikolov [24]. Our work
fills these gaps by: (1) Deriving MPSEs using UHC scheme which often yielding better estimates in
small samples or with censoring, (2) Developing two Bayesian posteriors (LF- and SF-based) and
using Markov Chain Monte Carlo (MCMC) under squared error loss for point estimates and credible
intervals, enhancing uncertainty quantification, and (3) Comparing the four estimation methods which
has not been done previously in this unified framework.

It is worth noting that this is the first time the MPS estimation method has been considered under
the UHC scheme. This work is motivated by the following factors: (1) The widespread use of the
We distribution for modeling various types of data across many fields, (2) The significance of the
UHC scheme, which ensures that the experiment is completed within a maximum time T2 with at
least r failures. If this condition is not met, the scheme guarantees exactly r failures, and (3) The
broad applicability of the stress-strength reliability model in diverse fields, particularly in reliability
engineering. We believe that comparing various estimation methods for the stress-strength reliability
parameter of the We distribution will be of great interest to many readers, particularly reliability
engineers and practicing statisticians. The comparison of the four estimation methods discussed is
driven by the practical challenges in reliability engineering, where censored data under UHC are
common due to time-constrained experiments. Each method offers distinct advantages. By comparing
these methods, we aim to provide reliability engineers with evidence-based guidance on selecting
the most effective estimator for the stress-strength reliability metric using UHC scenarios, where no
prior study has systematically evaluated all four approaches together. While classical and Bayesian
approaches differ in their inferential frameworks, their comparison is both appropriate and valuable
in the context of stress-strength reliability estimation. All methods target the same parameter, R =
P(Y < X), and are evaluated using comparable performance metrics, as detailed in the simulation
study presented later. To achieve our objective, we first derive both classical point and interval estimates
for the stress-strength reliability parameter. The interval estimates are computed using the asymptotic
properties of both MLEs and MPSEs. Next, we incorporate Bayesian estimations using the squared
error loss function and the MCMC procedure. In our analysis, we consider two different forms of
the posterior distribution obtained using the LF and the SF. Additionally, Bayes credible intervals
(BCIs) for the reliability parameter are derived. We then conduct a relative comparison of the classical
and Bayesian estimation methods through simulations. Finally, we demonstrate the practicality of our
approach using light-emitting diode (LED) data.

The remainder of this paper is organized as follows. In Section 2, we discuss the MLE of R and the
associated approximate confidence interval (ACI). Section 3 derives the MPSE along with the ACI. In
Section 4, we detail the Bayesian estimation approaches using the LF and the SF. The simulation design
and numerical results are presented in Section 5. Section 6 provides the results of LED application.
Finally, we conclude the paper in Section 7.
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2 Likelihood Estimation

Let x represent an observed UHC sample of size d drawn from n units, where X ∼ We(μ1, β).
Let y represent an observed UHC sample of size q out of m items, where Y ∼ We(μ2, β). The UHC
sample y is selected using the two predetermined integers r∗ and k∗, where 1 ≤ r∗ < k∗ ≤ m, and two
time limits 0 < T ∗

1 < T ∗
2 < ∞ using the same methodology discussed in the previous section. Let

θ = (μ1, μ2, β)�, then the joint LF of θ can be expressed as follows

L(θ ; x, y) =
{

d∏
i=1

f (xi) [1 − F(τ )]n−d

}{
q∏

i=1

f (yi) [1 − F(η)]m−q

}
, (6)

where

(q, η) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a∗, T ∗
1 ), for Case 1,

(k∗, yk∗), for Cases 2 and 4,
(b∗, T ∗

2 ), for Cases 3 and 5,
(r∗, yr∗), for Case 6,

where a∗ and b∗ refer to the observed number of failures recorded before T∗
1 and T ∗

2 , respectively. Based
on (1), (2) and (6), the joint LF follows

L(θ ; x, y) = μd
1μ

q
2β

d+q exp
{
(β − 1)Q − μ1ϕ(x; β) − μ2ψ(y; β)

}
, (7)

where Q = ∑d

i=1 log(xi)+∑q

i=1 log(yi), ϕ(x; β) = ∑d

i=1 xβ

i +(n−d)τ β , and ψ(y; β) = ∑q

i=1 yβ

i +(m−q)ηβ .
The log-LF can be expressed as

L(θ ; x, y) = d log(μ1) + q log(μ2) + (d + q) log(β) + (β − 1)Q − μ1ϕ(x; β) − μ2ψ(y; β). (8)

The MLEs of μ1, μ2 and β, denoted by μ̂1, μ̂2 and β̂, can be acquired by solving the following
likelihood equations

∂L(θ ; x, y)

∂μ1

= d
μ1

− ϕ(x; β) = 0,
∂L(θ ; x, y)

∂μ2

= q
μ2

− ψ(y; β) = 0 (9)

and
∂L(θ ; x, y)

∂β
= d + q

β
+ Q − μ1ϕ1(x; β) − μ2ψ1(y; β) = 0, (10)

where ϕ1(x; β) = ∑d

i=1 xβ

i log(xi) + (n − d)τ β log(τ ), and ψ1(y; β) = ∑q

i=1 yβ

i log(yi) + (m − q)ηβ log(η).
From (9), we can derive the MLEs μ̂1 and μ̂2

μ̂1(β) = d
ϕ(x; β)

, and μ̂2(β) = q
ψ(y; β)

. (11)

By substituting the expressions for μ̂1(β) and μ̂2(β) into (10), the MLE β̂ can be acquired as the
solution of ζ(β) = β, with

ζ(β) =
[dϕ1(x; β)/ϕ(x; β) + qψ1(y; β)/ψ(y; β) − Q

d + q

]−1

. (12)
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Employing the iterative procedure, defined as ζ(β(j)) = β(j+1), where β(j) represents the j-th iteration,
the Eq. (12) can be solved. Once β̂ is computed, the MLEs of μ1 and μ2 can be derived from (11) as
μ̂1 = μ̂1(β̂) and μ̂2 = μ̂2(β̂). After obtaining the MLEs μ̂1, μ̂2 and β̂, we can utilize the invariance
property of the MLEs to compute the MLE of the stress-strength reliability parameter R using (3) as
follows

R̂ = dψ(y; β̂)

dψ(y; β̂) + qϕ(x; β̂)
.

Sayyareh and Panahi [25] studied the asymptotic distribution of the MLEs under UHC scheme
and proved that the asymptotic distribution of the MLEs is asymptotically normal. We employ this
result as well as the delta method in order to develop the ACI of the stress-strength reliability measure.
To construct the ACI for R, it is essential to derive the variance associated with its MLE. According to
Asgharzadeh et al. [3], the requisite variance can be determined using the delta method. This approach
necessitates the computation of the variance-covariance matrix of the unknown parameters. Given the
complexity involved in obtaining the Fisher information matrix, we estimate the variance-covariance
matrix by inverting the observed Fisher information matrix as follows

�(θ̂) =
⎡
⎣ −F11 0 −F13

−F22 −F23

−F33

⎤
⎦

−1

=
⎡
⎣ 	̂11 0 	̂13

	̂22 	̂23

	̂33

⎤
⎦ , (13)

where Fij, i, j = 1, 2, 3, are evaluated at θ̂ = (μ̂1, μ̂2, β̂)�, and given by

F11 = − d
μ2

1

, F22 = − q
μ2

2

,

F33 = −d + q
β2

− μ1ϕ2(x; β) − μ2ψ2(y; β),

F13 = −ϕ1(x; β), and F23 = −ψ1(y; β),

where ϕ2(x; β) = ∑d

i=1 xβ

i log2
(xi)+(n−d)τ β log2

(τ ), and ψ2(y; β) = ∑q

i=1 yβ

i log2
(yi)+(m−q)ηβ log2

(η).

Using the delta method, we can approximate the variance of R̂ as follows

	̂R � 1
(μ̂1 + μ̂2)2

[μ̂2, −μ̂1, 0]

⎡
⎣ 	̂11 0 	̂13

	̂22 	̂23

	̂33

⎤
⎦
⎡
⎣ μ̂2

−μ̂1

0

⎤
⎦

� μ̂2
2	̂11 + μ̂2

1	̂22

(μ̂1 + μ̂2)2
,

Accordingly, the 100%(1 −α) ACI of the stress-strength reliability parameter R can be computed
as⎛
⎝ μ̂1 − zα/2

√
μ̂2

2	̂11 + μ̂2
1	̂22

μ̂1 + μ̂2

,
μ̂1 + zα/2

√
μ̂2

2	̂11 + μ̂2
1	̂22

μ̂1 + μ̂2

⎞
⎠ ,

where zα/2 is the upper (α/2)th percentile point of N(0, 1).
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3 Product of Spacings Estimation

In this section, the MSPE and ACI of the stress-strength reliability parameter of the We
distribution is derived based on the UHC data. Based on the two UHC samples, denoted by x and
y, where X ∼ We(μ1, β) and Y ∼ We(μ2, β), we can write the SF of θ in (5) as follows

P(θ ; x, y) =
{

d+1∏
i=1

[F(xi) − F(xi−1)] [1 − F(τ )]n−d

}{
q+1∏
i=1

[F(yi) − F(yi−1)] [1 − F(η)]m−q

}
. (14)

Using (1), (2) and (14), the joint SF can be expressed as

P(θ ; x, y) = exp

{
d+1∑
i=1

ω(xi; μ1, β) − μ1ϕ(x; β) +
q+1∑
i=1

ν(yi; μ2, β) − μ2ψ(y; β)

}
, (15)

where ω(xi; μ1, β) = log
[
eμ1(xβ

i −xβ
i−1) − 1

]
and ν(yi; μ2, β) = log

[
eμ2(yβ

i −yβ
i−1) − 1

]
. The log-SF can be

obtained using (15) as

P(θ ; x, y) =
d+1∑
i=1

ω(xi; μ1, β) − μ1ϕ(x; β) +
q+1∑
i=1

ν(yi; μ2, β) − μ2ψ(y; β). (16)

The MPSEs of the unknown parameters μ1, μ2 and β, denoted by μ̃1, μ̃2 and β̃, can be obtained
by maximizing the objective function in (15) with respect to these three parameters. Alternatively, they
can be obtained by solving the following three normal equations.

∂P(θ ; x, y)

∂μ1

=
d+1∑
i=1

ω1(xi; μ1, β) − ϕ(x; β) = 0, (17)

∂P(θ ; x, y)

∂μ2

=
q+1∑
i=1

ν1(yi; μ2, β) − ψ(y; β) = 0, (18)

and

∂P(θ ; x, y)

∂β
=

d+1∑
i=1

ω2(xi; μ1, β) − μ1ϕ1(x; β) +
q+1∑
i=1

ν2(yi; μ2, β) − μ2ψ1(y; β) = 0, (19)

where

ω1(xi; μ1, β) = xβ

i − xβ

i−1

1 − e−μ1(xβ
i −xβ

i−1)
, ω2(xi; μ1, β) = μ1[x

β

i log(xi) − xβ

i−1 log(xi−1)]

1 − e−μ1(xβ
i −xβ

i−1)
,

and

ν1(yi; μ2, β) = yβ

i − yβ

i−1

1 − e−μ2(yβ
i −yβ

i−1)
, ν2(yi; μ2, β) = μ2[y

β

i log(yi) − yβ

i−1 log(yi−1)]

1 − e−μ2(yβ
i −yβ

i−1)
.

The normal equations provided by (17)–(19) do not have explicit closed-form solutions. To solve
them numerically, iterative techniques such as the Newton-Raphson method can be employed. Once
the MPSEs are determined, the MPSE of the stress-strength reliability parameter can be calculated

https://www.scipedia.com/public/Nassar_et_al_2026 8

https://www.scipedia.com/public/Nassar_et_al_2026


M. Nassar, R. Alotaibi and A. Elshahhat,

Classical and Bayesian stress-strength reliability estimation for weibull data

under unified hybrid censoring scheme with LED application,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 8

using the invariance property of MPSEs as

R̃ = μ̃1

μ̃1 + μ̃2

.

Similar to the process of deriving the ACI for the stress-strength reliability parameter using MLEs,
we can also construct the ACI for the reliability parameter R utilizing the asymptotic properties of
the MPSEs. To establish this ACI, it is critical to first estimate the variance-covariance matrix by
inverting the observed Fisher information matrix. The elements of the observed Fisher information
matrix in this context are derived from the log-SF presented in Eq. (16). Consequently, we can obtain
the estimated variance-covariance matrix as

�∗
(θ̃) =

⎡
⎣ −F ∗

11 0 −F ∗
13−F ∗

22 −F ∗
23−F ∗
33

⎤
⎦

−1

=
⎡
⎣ 	̃∗

11 0 	̃∗
13

	̃∗
22 	̃∗

23

	̃∗
33

⎤
⎦ , (20)

with the fact that the elements F ∗
ij , i, j = 1, 2, 3, are obtained at θ̃ = (μ̃1, μ̃2, β̃)�, and

F ∗
11 =

d+1∑
i=1

ω11(xi; μ1, β), F ∗
22 =

q+1∑
i=1

ν11(yi; μ2, β),

F ∗
33 =

d+1∑
i=1

ω22(xi; μ1, β) − μ1ϕ2(x; β) +
q+1∑
i=1

ν22(yi; μ2, β) − μ2ψ2(y; β),

F ∗
13 =

d+1∑
i=1

ω13(xi; μ1, β) − ϕ1(x; β), and F ∗
23 =

d+1∑
i=1

ν13(yi; μ2, β) − ψ1(x; β),

where

ω11(xi; μ1, β) = −ω2
1(xi; μ1, β)e−μ1(xβ

i −xβ
i−1), ν11(yi; μ2, β) = −ν2

1(yi; μ2, β)e−μ2(yβ
i −yβ

i−1),

ω22(xi; μ1, β) = ω1(xi; μ1, β)[xβ

i log2
(xi) − xβ

i−1 log2
(xi−1)]

[xβ

i log(xi) − xβ

i−1 log(xi−1)]
− ω2

1(xi; μ1, β)e−μ1(xβ
i −xβ

i−1),

ν22(yi; μ2, β) = ν1(yi; μ2, β)[yβ

i log2
(yi) − yβ

i−1 log2
(yi−1)]

[yβ

i log(yi) − yβ

i−1 log(yi−1)]
− ν2

1(yi; μ2, β)e−μ2(yβ
i −yβ

i−1),

ω13(xi; μ1, β) = ω2(xi; μ1, β)

μ1

[
1 − μ1ω1(xi; μ1, β)e−μ1(xβ

i −xβ
i−1)

]
,

and

ν13(yi; μ2, β) = ν2(yi; μ2, β)

μ2

[
1 − μ2ν1(yi; μ2, β)e−μ2(yβ

i −yβ
i−1)

]
.

Then, after applying the delta method as discussed in the previous section to approximate the
variance of the stress-strength reliability parameter using the MPSEs of the model parameter and the
estimated variance-covariance matrix in (20), we can compute the 100%(1 − α) ACI of R as
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⎛
⎝ μ̃1 − zα/2

√
μ̃2

2	̃
∗
11 + μ̃2

1	̃
∗
22

μ̃1 + μ̃2

,
μ̃1 + zα/2

√
μ̃2

2	̃
∗
11 + μ̃2

1	̃
∗
22

μ̃1 + μ̃2

⎞
⎠ .

4 Bayesian Estimation

Utilizing the assumption that the three parameters μ1, μ2, and β are independent random vari-
ables, this section examines the Bayesian analysis of the stress-strength reliability parameter R. In the
context of large sample sizes or fully observed data, classical estimation methods generally yield precise
results. Conversely, in the case of small sample sizes or censored data, these methods may produce
misleading outcomes. In contrast, the Bayesian approach integrates prior information, facilitating
more accurate estimations. Additional background on data modeling and Bayesian analysis can be
found in Wang et al. [26,27]. The initial step involves identifying the appropriate prior distribution
for each parameter. It is important to note that the gamma distribution serves as a conjugate prior
for scale and rate parameters in exponential family models, enabling tractable posterior updates and
improving computational efficiency. Second, the gamma distribution is highly flexible: depending on
its hyperparameters, it can encode both informative and weakly informative priors. Third, in the
context of censored data and survival analysis, the gamma prior is particularly useful because its
parameters have clear interpretations in terms of prior expected failure rates; for additional details,
see Dey et al. [28]. Analyzing the LF, which exhibits a simpler form compared to the SF, reveals that
the natural conjugate priors for the parameters μ1 and μ2 are gamma distributions. Conversely, no
conjugate prior exists for the parameter β. In this context, we also consider employing a gamma prior
for this parameter, owing to the flexible characteristics of the gamma distribution, which offers the
same support for β.

Suppose that μ1 ∼ Gamma(ε1, ε1), μ2 ∼ Gamma(ε2, ε2), and β ∼ Gamma(ε3, ε3), where εj, εj >

0, j = 1, 2, 3 are known hyper-parameters. Then, we can formulate the joint prior distribution of θ as

π(θ) ∝ μ
ε1−1
1 μ

ε2−1
2 βε3−1 exp {ε1μ1 − ε2μ2 − ε3β} , μ1, μ2, β > 0. (21)

The posterior distribution of the unknown parameters is obtained by combining the observed data
with the prior distribution through Bayes’ theorem. In this study, we consider two sources of observed
data, resulting in two forms of the posterior distribution. The first is based on the LF, while the second
is derived using the SF, for more details, see Kurdi et al. [29]. Based on the LF in (7) and the joint prior
distribution in (21), the posterior distribution derived using the LF-based approach can be expressed
as

W1(θ |x, y) = 1
A1

μ
d+ε1−1
1 μ

q+ε2−1
2 βd+q+ε3−1 exp

{
β(Q − ε3) − μ1[ϕ(x; β) + ε1] − μ2[ψ(y; β) + ε2]

}
, (22)

where

A1 =
∫ ∞

0

∫ ∞

0

∫ ∞

0

π(θ)L(θ ; x, y)dμ1dμ2dβ.
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On the other hand, we can obtain the posterior distribution based on the SF-based approach by
combining the SF given by (15) with the joint prior distribution provided by (21), as follows

W2(θ |x, y) = 1
A2

μ
ε1−1
1 μ

ε2−1
2 βε3−1 exp

{ d+1∑
i=1

ω(xi; μ1, β) − μ1[ϕ(x; β) + ε1]

+
q+1∑
i=1

ν(yi; μ2, β) − μ2[ψ(y; β) + ε2] − ε3β

}
, (23)

where

A2 =
∫ ∞

0

∫ ∞

0

∫ ∞

0

π(θ)P(θ ; x, y)dμ1dμ2dβ.

Under the squared error loss function, the Bayes estimator of the stress-strength reliability
parameter R is given by the posterior mean. However, both forms of the posterior distribution
lack closed-form expressions, making analytical computation of the Bayes estimators infeasible. To
overcome this limitation, numerical approximation techniques such as the MCMC procedures can
be employed. These methods generate samples from the posterior distribution to approximate the
value of R. To implement the MCMC procedures, we begin with the posterior distribution obtained
through the LF-based approach. The initial step in this process involves deriving the full conditional
distributions, which will serve as the basis for generating samples. From the target distribution
presented in (22), we have the following

μ1|θ−μ1
, x, y ∼ Gamma

(
d + ε1, ϕ(x; β) + ε1

)
, (24)

μ2|θ−μ2
, x, y ∼ Gamma

(
q + ε2, ψ(y; β) + ε2

)
, (25)

and

W1(β|θ−β , x, y) ∝ βd+q+ε3−1 exp
{
β(Q − ε3) − μ1ϕ(x; β) − μ2ψ(y; β)

}
. (26)

It is evident from (24) and (25) that generating samples for μ1 and μ2 can be straightforwardly
implemented. However, it is worth noting that the full conditional distribution of β, given by (26), does
not correspond to any well-known statistical distribution. Consequently, we employ the Metropolis-
Hastings (M-H) algorithm with a normal proposal distribution within the Gibbs sampler to generate
the required MCMC samples for obtaining Bayesian point and interval estimates. To implement the
proposed hybrid algorithm, we follow the next steps (Algorithm 1):

Algorithm 1: MCMC sample generation using LF

Step 1. Set j = 1 and the starting values
(
μ

(0)

1 , μ(0)

2 , β(0)
)
. Use the MLEs as starting values.

Step 2. Obtain β(j) from (26) via the M-H algorithm:

- Generate β∗ from N
(
β(j−1), 	̂33

)
.

- Compute the acceptance ratio:

� = min

[
1,

W1(β
∗|μ(j−1)

1 , μ(j−1)

2 , x, y)

W1(β(j−1)|μ(j−1)

1 , μ(j−1)

2 , x, y)

]
.

(Continued)
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Algorithm 1 (continued)
- Draw u from the unit uniform distribution.
- If u ≤ �, set β(j) = β∗. Otherwise, set β(j) = β(j−1).
Step 3. Generate μ

(j)
1 using Gamma

(
d + ε1, ϕ(x; β(j)) + ε1

)
.

Step 4. Simulate μ
(j)
2 from Gamma

(
q + ε2, ψ(y; β(j)) + ε2

)
.

Step 5. Compute the stress-strength reliability parameter at iteration j as:

R
(j) = μ

(j)
1

μ
(j)
1 + μ

(j)
2

.

Step 6. Update j = j + 1.
Step 7. Repeat Steps 2–6 for M iterations to obtain:

{
R

(1),R(2), . . . ,R(M)
}

.

Based on the obtained MCMC sample, the Bayes estimate of the stress-strength reliability
parameter R using the LF-based approach, denoted by R̂BLF , can be obtained using the approximate
posterior mean as follows

R̂BLF = 1
M − B

M∑
j=B+1

R
(j),

where B refers to the burn-in period. In order to obtain the 100%(1 − α) BCI of R, we first sort the
acquired MCMC sample as

{
R

[B+1]
< R

[2]
< . . . < R

[M]
}
. Then, get the 100%(1 − α) BCI bounds as

follows{
R

[α(M−B)/2],R[(1−α/2)(M−B)]
}

.

Utilizing the second form of the posterior distribution, derived using the SF-based approach, we
can derive the full conditional distributions of the model parameters μ1, μ2 and β can be derived,
respectively, as

W2(μ1|θ−μ1
, x, y) ∝ μ

ε1−1
1 exp

{ d+1∑
i=1

ω(xi; μ1, β) − μ1ϕ(x; β)

}
, (27)

W2(μ2|θ−μ2
, x, y) ∝ μ

ε2−1
2 exp

{ q+1∑
i=1

ν(yi; μ2, β) − μ2ψ(y; β)

}
, (28)

and

W2(β|θ−β , x, y)

∝ βε3−1 exp
{ d+1∑

i=1

ω(xi; μ1, β) − μ1ϕ(x; β) +
q+1∑
i=1

ν(yi; μ2, β) − μ2ψ(y; β) − ε3β

}
. (29)

It is evident from (27) and (29) that the three full conditional distributions do not correspond
to any standard distribution. Consequently, we employ the M-H algorithm, as discussed in step 2 in
Algorithm 1, to generate the required MCMC samples, using a normal proposal distribution for each
parameter. The following steps outline the sample generation process (Algorithm 2):
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Algorithm 2: MCMC sample generation using SF

Step 1. Put j = 1 and
(
μ

(0)

1 , μ(0)

2 , β(0)
)
, using the MPSEs as beginning values.

Step 2. Generate μ
(j)
1 using the M-H algorithm from (27).

Step 3. Simulate μ
(j)
2 using the M-H algorithm from (28).

Step 4. Obtain β(j) using the M-H algorithm from (29).
Step 5. Calculate R at iteration j as:

R
∗(j) = μ

(j)
1

μ
(j)
1 + μ

(j)
2

.

Step 6. Set j = j + 1.
Step 7. Repeat Steps 2–6 for M times to get:{
R

∗(1),R∗(2), . . . ,R∗(M)
}

.

After removing a suitable burn-in period, we can calculate the Bayes estimate of the stress-strength
reliability parameter R employing the SF-based approach, denoted by R̃BSF , as follows

R̃BSF = 1
M − B

M∑
j=B+1

R
∗(j).

After sorting the acquired MCMC sample as
{
R

∗[B+1]
< R

∗[2]
< . . . < R

∗[M]
}
, we can compute the

100%(1 − α) BCI of the stress-strength reliability parameter R as{
R

∗[α(M−B)/2],R[∗(1−α/2)(M−B)]
}

.

5 Numerical Comparisons

The purpose of this section is threefold: (i) to examine the finite-sample performance of the
proposed estimator under different censoring levels, (ii) to compare its accuracy and robustness against
commonly used methods, and (iii) to demonstrate conditions under which our approach provides
tangible advantages. Accordingly, this section provides a comprehensive Monte Carlo simulation study
to assess the effectiveness and validity of the proposed point and interval estimators for μi (i = 1, 2), β,
and the stress–strength reliability measureR, as developed in the preceding discussion. This simulation
framework provides a robust platform to investigate the performance of the proposed estimation
procedures under realistic censoring levels and different parameter settings.

To establish this goal, a total of 1000 independent UHC samples are drawn from two distinct
populations, namely We(μ1, μ2, β) distribution, defined respectively as: Set-A: We(0.5, 1.5, 0.5) and
Set-B: We(1, 2, 1). For the purposes of this analysis, the true value of the stress-strength reliability
index R is taken to be 1/4 and 1/3 for Set-A and Set-B, respectively. The simulation design
incorporates several configurations for the observed UHC sample of size d drawn from n units
(k, r, and Ti, i = 1, 2) as well as for the other observed UHC sample of size q drawn from m units (k∗,
r∗, and T ∗

i , i = 1, 2).

Now, to generate a UHC dataset, do:

Step 1: Set the true values We(μ1, β) population.
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Step 2: Simulate Ui, i = 1, 2, . . . , n, independent random variables from uniform U(0, 1)

distribution.

Step 3: Simulate complete order statistics as:

Xi =
[
− 1

μ1

log(1 − ui)

] 1
β

, i = 1, 2, . . . , n.

Step 4: Set the desired effective sample sizes r and k

Step 5: Find a and b at Ti (for i = 1, 2).

Step 6. Stop and identify the UHC data type as:
a. Stop the test at a at 0 < Xr:n < Xk:n < T1, Case 1;

b. Stop the test at k at 0 < Xr:n < T1 < Xk:n (or 0 < T1 < Xr:n < Xk:n), Cases 2 and 4;

c. Stop the test at b at 0 < Xr:n < T1 < T2 (or 0 < T1 < Xr:n < T2), Cases 3 and 5;

d. Stop the test at r at 0 < T1 < T2 < Xr:n, Case 6.

d. Step 7: Redo Steps 1–6 for We(μ2, β) population.

To develop the Bayesian estimations of μi (i = 1, 2), β, or R, we consider two informative gamma
priors for (εi, εi), i = 1, 2. Firstly, without loss of generality, we are fixing (ε3, ε3) = (1,2) and (1,1) for
Set-A and Set-B, respectively, for the parameter β. Following the past samples algorithm discussed in
Nassar and Elshahhat [30], the hyperparameter values for (ε1, ε2, ε1, ε2) of μi, i = 1, 2, are obtained
from the LF and SF approaches, namely:

• For Set-A: We(0.5, 1.5, 0.5):
– From LF: (ε1, ε2, ε1, ε2) = (75.7121, 77.8578, 147.3832, 50.4344);

– From SF: (ε1, ε2, ε1, ε2) = (73.0298, 75.6217, 134.1668, 46.3773).

• For Set-B: We(1, 2, 1):
– From LF: (ε1, ε2, ε1, ε2) = (75.7139, 77.8583, 73.6933, 37.8260);

– From SF: (ε1, ε2, ε1, ε2) = (73.0303, 75.6225, 67.0839, 34.7833).

To assess the impact of hyperparameter choices on the posterior estimates of the unknown stress-
strength reliability, Fig. 2 displays histograms along with their corresponding Gaussian kernel density
estimates. These plots are generated under three different configurations for (εi, εi), i = 1, 2, 3, of
μi (i = 1, 2), β, each varied by significance more/less the true prior mean; namely:

• For Set-A: We(0.5, 1.5, 0.5) when εi = 4, i = 1, 2, 3:
– Prior-A: (ε1, ε2, ε3) = (3, 8, 3);

– Prior-B: (ε1, ε2, ε3) = (2, 6, 2);

– Prior-C: (ε1, ε2, ε3) = (1, 4, 1),

• For Set-B: We(1, 2, 1):
– Prior-A: (ε1, ε2, ε3) = (6, 10, 6);

– Prior-B: (ε1, ε2, ε3) = (4, 8, 4);

– Prior-C: (ε1, ε2, ε3) = (3, 6, 3).

After gathering 1000 UCS samples, the ’maxLik’ programming, proposed by Henningsen and
Toomet [31], is used to produce the MLEs/MPSEs and their 95% ACI estimates of μi (i = 1, 2), β, and
R. After installing the ’coda’ package (proposed by Plummer et al. [32]), the Bayes point estimations
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(from LF-based and SF-based) and associated 95% BCI estimations of the same unknown quantities
are computed after ignoring the first 2000 MCMC iterations (burn-in) from the total M = 12, 000
iterations.

Figure 2: Histograms for MCMC iterations of R based on three prior sets

In the simulation framework, the average estimated (Av.E) values of the proposed point estimators
for the parameter R (as an example) are computed as follows:

Av.EŘ = 1
1000

1000∑
i=1

Ř
[i]
,

where each Ř
[i]

corresponds to the ith realization of the estimator based on simulated data.

To assess the quality of these point estimators, we evaluate their accuracy using the rout mean
squared error (RMSE) and the average relative absolute bias (ARAB), given respectively by:

RMSE(Ř) =
√√√√ 1

1000

1000∑
i=1

(
Ř

[i] − R

)2

,

ARAB(Ř) = 1
1000

1000∑
i=1

R
−1
∣∣∣Ř[i] − R

∣∣∣ .

For interval estimation, performance is quantified through the average interval length (AIL) and
the empirical coverage probability (CP) at the nominal 95% confidence level. These are formulated as:

AIL95%
(R) = 1

1000

1000∑
i=1

(
U

R̂
[i] − L

R̂
[i]

)
,
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CP95%
(R) = 1

1000

1000∑
i=1

D(
L
R̂

[i] ,U
R̂

[i]

)(R),

where D(·) denotes the indicator function, and L(·) and U(·) represent the lower and upper bounds of
the associated 95% credible or confidence intervals for R.

Tables 1–4 detail the Av.Es, RMSEs, and ARABs across their respective columns, while Tables 5
and 6 report the AILs and CPs. A comprehensive evaluation of Tables 1–8 reveals several notable
observations, especially when considering estimators that achieve the smallest RMSEs, ARABs, and
AILs along with the highest CPs:

Table 1: Point estimation results when (T1, T2) = (T ∗
1 , T ∗

2 ) = (0.5, 1.0) from Set-A

n (r, k) Par. MLE MPSE MCMC

m (r∗, k∗) LF SF

20 (5, 8) μ1 0.747 0.299 0.504 0.811 0.335 0.627 0.588 0.252 0.346 0.646 0.309 0.415
30 (10, 15) μ2 1.639 0.510 0.243 1.973 0.780 0.372 1.676 0.218 0.128 1.618 0.156 0.089

β 0.637 0.210 0.276 2.332 1.376 2.367 0.454 0.196 0.187 0.831 0.385 0.662
R 0.268 0.089 0.328 0.338 0.093 0.351 0.306 0.068 0.223 0.333 0.089 0.333

(10, 15) μ1 0.745 0.283 0.550 0.805 0.329 0.622 0.717 0.213 0.437 0.613 0.232 0.330
(15, 25) μ2 1.634 0.422 0.210 1.870 0.660 0.301 1.676 0.219 0.128 1.614 0.154 0.089

β 0.462 0.193 0.197 1.504 1.106 2.157 0.510 0.110 0.170 0.732 0.282 0.464
R 0.327 0.082 0.309 0.337 0.092 0.347 0.305 0.064 0.220 0.251 0.085 0.270

50 (20, 30) μ1 0.762 0.278 0.524 0.804 0.327 0.611 0.573 0.199 0.283 0.639 0.205 0.312
60 (30, 40) μ2 1.573 0.280 0.144 2.010 0.626 0.347 1.603 0.149 0.082 1.609 0.151 0.086

β 0.479 0.168 0.171 1.834 1.070 2.009 0.508 0.071 0.112 0.715 0.267 0.430
R 0.263 0.079 0.286 0.336 0.090 0.324 0.309 0.061 0.204 0.251 0.074 0.237

(30, 40) μ1 0.743 0.269 0.490 0.814 0.337 0.608 0.528 0.118 0.178 0.661 0.184 0.324
(40, 50) μ2 1.558 0.240 0.124 1.859 0.591 0.246 1.601 0.154 0.082 1.593 0.130 0.072

β 0.516 0.168 0.125 1.102 1.034 1.799 0.504 0.066 0.104 0.690 0.246 0.380
R 0.322 0.076 0.279 0.328 0.087 0.312 0.253 0.050 0.161 0.243 0.053 0.171

90 (50, 60) μ1 0.716 0.239 0.441 0.793 0.319 0.585 0.522 0.090 0.136 0.635 0.177 0.285
80 (40, 50) μ2 1.552 0.229 0.118 1.980 0.579 0.325 1.515 0.094 0.039 1.576 0.114 0.062

β 0.495 0.162 0.097 1.508 0.627 1.204 0.502 0.057 0.090 0.647 0.204 0.296
R 0.321 0.071 0.249 0.328 0.085 0.314 0.250 0.036 0.116 0.253 0.040 0.128

(70, 80) μ1 0.512 0.068 0.105 0.791 0.311 0.581 0.510 0.050 0.078 0.601 0.118 0.206
(60, 70) μ2 1.536 0.169 0.089 1.862 0.418 0.244 1.500 0.096 0.035 1.566 0.105 0.055

β 0.452 0.153 0.089 0.804 0.321 0.609 0.499 0.052 0.083 0.514 0.132 0.196
R 0.253 0.040 0.128 0.256 0.043 0.137 0.250 0.025 0.080 0.245 0.027 0.085
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Table 2: Point estimation results when (T1, T2) = (T ∗
1 , T ∗

2 ) = (1.5, 2.0) from Set-A

n (r, k) Par. MLE MPSE MCMC

m (r∗, k∗) LF SF

20 (5, 8) μ1 0.746 0.286 0.504 0.805 0.379 0.679 0.559 0.192 0.282 0.614 0.258 0.362
30 (10, 15) μ2 1.557 0.326 0.167 1.850 0.531 0.273 1.677 0.220 0.129 1.629 0.166 0.096

β 0.447 0.199 0.201 1.324 0.852 1.648 0.496 0.102 0.159 0.815 0.368 0.630
R 0.326 0.081 0.304 0.335 0.090 0.339 0.305 0.061 0.219 0.250 0.077 0.247

(10, 15) μ1 0.744 0.282 0.498 0.811 0.335 0.622 0.557 0.169 0.251 0.616 0.238 0.343
(15, 25) μ2 1.552 0.285 0.147 1.905 0.473 0.273 1.672 0.214 0.125 1.622 0.160 0.094

β 0.458 0.195 0.180 1.235 0.750 1.469 0.497 0.101 0.157 0.732 0.282 0.464
R 0.322 0.076 0.286 0.336 0.092 0.345 0.264 0.062 0.195 0.266 0.070 0.219

50 (20, 30) μ1 0.746 0.261 0.493 0.816 0.340 0.632 0.517 0.098 0.152 0.640 0.199 0.308
60 (30, 40) μ2 1.548 0.224 0.116 1.827 0.415 0.226 1.603 0.151 0.082 1.612 0.149 0.085

β 0.503 0.176 0.171 1.203 0.721 1.406 0.502 0.065 0.103 0.711 0.265 0.421
R 0.265 0.072 0.268 0.334 0.090 0.338 0.252 0.043 0.136 0.260 0.050 0.158

(30, 40) μ1 0.737 0.256 0.479 0.819 0.342 0.637 0.521 0.088 0.135 0.645 0.188 0.304
(40, 50) μ2 1.528 0.193 0.102 1.833 0.383 0.224 1.617 0.170 0.093 1.589 0.125 0.070

β 0.500 0.167 0.115 0.961 0.492 0.924 0.502 0.064 0.102 0.676 0.234 0.352
R 0.317 0.070 0.246 0.333 0.088 0.332 0.255 0.038 0.119 0.270 0.045 0.142

90 (30, 40) μ1 0.716 0.239 0.441 0.796 0.323 0.593 0.512 0.066 0.104 0.661 0.179 0.283
80 (40, 50) μ2 1.535 0.190 0.100 1.687 0.342 0.176 1.500 0.096 0.035 1.589 0.127 0.070

β 0.452 0.162 0.089 0.955 0.472 0.910 0.499 0.053 0.085 0.651 0.208 0.302
R 0.306 0.062 0.224 0.328 0.087 0.311 0.251 0.032 0.102 0.259 0.037 0.117

(70, 80) μ1 0.715 0.226 0.431 0.791 0.311 0.581 0.510 0.050 0.078 0.606 0.122 0.214
(60, 70) μ2 1.525 0.158 0.084 1.744 0.316 0.173 1.510 0.092 0.037 1.609 0.151 0.086

β 0.482 0.154 0.081 0.785 0.300 0.570 0.498 0.052 0.083 0.646 0.204 0.293
R 0.307 0.059 0.213 0.328 0.085 0.314 0.251 0.024 0.077 0.249 0.024 0.077

Table 3: Point estimation results when (T1, T2) = (T ∗
1 , T ∗

2 ) = (0.5, 1.0) from Set-B

n (r, k) Par. MLE MPSE MCMC

m (r∗, k∗) LF SF

20 (5, 8) μ1 1.155 0.405 0.286 1.211 0.436 0.308 1.156 0.182 0.159 1.219 0.266 0.259
30 (10, 15) μ2 2.191 0.559 0.207 2.569 0.854 0.322 2.151 0.208 0.091 2.076 0.127 0.049

β 1.112 0.349 0.230 4.060 1.849 3.060 0.967 0.186 0.080 1.283 0.336 0.283
R 0.345 0.077 0.187 0.321 0.075 0.177 0.363 0.034 0.091 0.375 0.045 0.125
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Table 3 (continued)

n (r, k) Par. MLE MPSE MCMC

m (r∗, k∗) LF SF

(10, 15) μ1 1.094 0.310 0.228 1.247 0.428 0.314 1.039 0.179 0.148 1.231 0.249 0.231
(15, 25) μ2 2.082 0.451 0.169 2.613 0.735 0.311 2.152 0.203 0.087 2.058 0.118 0.041

β 1.017 0.195 0.146 2.559 1.602 1.559 0.971 0.184 0.076 1.251 0.306 0.251
R 0.345 0.073 0.175 0.337 0.072 0.173 0.334 0.034 0.082 0.377 0.048 0.131

50 (20, 30) μ1 1.155 0.181 0.185 1.264 0.343 0.276 1.136 0.170 0.140 1.215 0.239 0.215
60 (30, 40) μ2 2.057 0.315 0.123 2.457 0.705 0.267 2.074 0.140 0.050 2.047 0.107 0.034

β 1.022 0.166 0.104 2.927 1.959 1.927 0.990 0.159 0.051 1.159 0.244 0.186
R 0.337 0.049 0.117 0.327 0.049 0.119 0.359 0.030 0.078 0.369 0.041 0.106

(30, 40) μ1 1.137 0.171 0.161 1.247 0.323 0.260 1.033 0.167 0.129 1.204 0.222 0.204
(40, 50) μ2 2.056 0.301 0.117 2.590 0.685 0.297 2.073 0.139 0.049 2.048 0.106 0.034

β 1.016 0.159 0.093 2.462 1.493 1.462 1.000 0.151 0.043 1.159 0.215 0.162
R 0.336 0.047 0.112 0.330 0.048 0.114 0.358 0.028 0.075 0.370 0.042 0.110

90 (30, 40) μ1 1.161 0.169 0.142 1.315 0.354 0.317 1.156 0.146 0.084 1.198 0.220 0.198
80 (40, 50) μ2 2.048 0.273 0.106 2.540 0.658 0.275 1.988 0.095 0.023 2.030 0.096 0.026

β 1.007 0.148 0.085 2.897 1.918 1.897 0.984 0.141 0.056 1.114 0.174 0.115
R 0.367 0.040 0.103 0.368 0.044 0.110 0.345 0.018 0.037 0.338 0.039 0.093

(70, 80) μ1 1.019 0.156 0.128 1.221 0.256 0.224 1.016 0.121 0.095 1.196 0.213 0.196
(60, 70) μ2 2.046 0.238 0.095 2.435 0.524 0.222 1.981 0.094 0.021 2.032 0.094 0.026

β 1.007 0.139 0.072 1.858 0.884 0.858 0.968 0.125 0.069 1.107 0.170 0.108
R 0.368 0.038 0.100 0.369 0.041 0.107 0.345 0.017 0.037 0.335 0.036 0.086

Table 4: Point estimation results when (T1, T2) = (T ∗
1 , T ∗

2 ) = (1.5, 2.0) from Set-B

n (r, k) Par. MLE MPSE MCMC

m (r∗, k∗) LF SF

20 (5, 8) μ1 1.066 0.243 0.188 1.130 0.308 0.232 1.129 0.163 0.135 1.229 0.247 0.229
30 (10, 15) μ2 2.057 0.336 0.133 2.163 0.375 0.145 2.152 0.205 0.087 2.030 0.094 0.026

β 0.958 0.190 0.126 1.525 0.537 0.525 1.006 0.156 0.088 1.225 0.280 0.225
R 0.342 0.060 0.145 0.342 0.064 0.154 0.337 0.039 0.092 0.377 0.049 0.135

(10, 15) μ1 1.072 0.243 0.186 1.121 0.289 0.221 1.164 0.190 0.167 1.224 0.248 0.224
(15, 25) μ2 2.061 0.333 0.132 2.153 0.372 0.144 2.152 0.204 0.087 2.030 0.094 0.026

β 0.960 0.189 0.125 1.489 0.505 0.489 1.008 0.146 0.087 1.200 0.256 0.200
R 0.342 0.059 0.143 0.342 0.062 0.150 0.334 0.031 0.075 0.377 0.047 0.130

50 (20, 30) μ1 1.163 0.183 0.147 1.223 0.245 0.220 1.023 0.164 0.134 1.168 0.245 0.191
60 (30, 40) μ2 2.028 0.231 0.090 2.228 0.335 0.132 2.082 0.165 0.065 2.070 0.122 0.045

β 0.995 0.165 0.108 1.441 0.460 0.441 1.009 0.137 0.052 1.139 0.201 0.142
R 0.370 0.041 0.111 0.344 0.049 0.128 0.355 0.026 0.064 0.368 0.041 0.112
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Table 4 (continued)

n (r, k) Par. MLE MPSE MCMC

m (r∗, k∗) LF SF

(30, 40) μ1 1.132 0.167 0.142 1.228 0.242 0.218 1.027 0.142 0.110 1.159 0.231 0.181
(40, 50) μ2 2.029 0.229 0.090 2.227 0.336 0.133 2.084 0.151 0.055 2.070 0.122 0.046

β 0.989 0.162 0.084 1.420 0.459 0.420 1.008 0.127 0.047 1.125 0.190 0.128
R 0.370 0.040 0.110 0.371 0.045 0.118 0.353 0.024 0.058 0.343 0.042 0.098

90 (30, 40) μ1 1.142 0.148 0.138 1.192 0.232 0.197 1.133 0.139 0.133 1.210 0.228 0.210
80 (40, 50) μ2 2.027 0.199 0.080 2.244 0.323 0.133 1.976 0.093 0.023 2.076 0.126 0.049

β 0.975 0.147 0.069 1.387 0.430 0.389 1.001 0.088 0.061 1.090 0.160 0.092
R 0.336 0.039 0.094 0.371 0.044 0.112 0.345 0.017 0.035 0.347 0.036 0.084

(70, 80) μ1 1.015 0.105 0.082 1.204 0.222 0.204 1.014 0.098 0.078 1.163 0.198 0.168
(60, 70) μ2 2.029 0.197 0.079 2.241 0.325 0.133 1.979 0.091 0.021 2.075 0.125 0.048

β 0.979 0.125 0.066 1.380 0.394 0.380 1.002 0.085 0.058 1.088 0.159 0.089
R 0.334 0.030 0.072 0.369 0.040 0.106 0.344 0.016 0.033 0.342 0.032 0.075

Table 5: Interval estimation results when (T1, T2) = (T ∗
1 , T ∗

2 ) = (0.5, 1.0) from Set-A

n (r, k) Par. ACI BCI

m (r∗, k∗) LF SF LF SF

20 (5, 8) μ1 0.807 0.933 0.888 0.926 0.455 0.962 0.472 0.961
30 (10, 15) μ2 1.758 0.853 1.938 0.838 0.345 0.971 0.457 0.962

β 0.468 0.961 1.442 0.880 0.438 0.964 0.595 0.950
R 0.271 0.977 0.326 0.973 0.091 0.992 0.120 0.990

(10, 15) μ1 0.639 0.947 0.662 0.945 0.433 0.964 0.447 0.963
(15, 25) μ2 1.506 0.875 1.643 0.863 0.324 0.973 0.428 0.964

β 0.437 0.964 1.225 0.898 0.411 0.966 0.549 0.954
R 0.227 0.981 0.253 0.979 0.090 0.993 0.119 0.990

50 (20, 30) μ1 0.421 0.965 0.463 0.961 0.344 0.971 0.403 0.966
60 (30, 40) μ2 1.033 0.914 1.205 0.900 0.327 0.973 0.361 0.970

β 0.376 0.969 1.059 0.912 0.282 0.976 0.507 0.958
R 0.193 0.984 0.168 0.986 0.073 0.994 0.118 0.990

(30, 40) μ1 0.328 0.973 0.439 0.963 0.318 0.974 0.390 0.968
(40, 50) μ2 0.827 0.931 0.957 0.920 0.295 0.975 0.328 0.973

β 0.385 0.968 0.698 0.942 0.256 0.979 0.424 0.965
R 0.150 0.988 0.150 0.987 0.061 0.995 0.107 0.991

90 (30, 40) μ1 0.286 0.976 0.413 0.966 0.259 0.978 0.368 0.969
80 (40, 50) μ2 0.886 0.926 1.049 0.913 0.270 0.977 0.293 0.976

β 0.327 0.973 0.634 0.947 0.214 0.982 0.412 0.966
R 0.121 0.990 0.132 0.989 0.098 0.992 0.103 0.991
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Table 5 (continued)

n (r, k) Par. ACI BCI

m (r∗, k∗) LF SF LF SF

(70, 80) μ1 0.236 0.980 0.342 0.971 0.193 0.984 0.224 0.981
(60, 70) μ2 0.633 0.947 0.756 0.937 0.257 0.979 0.279 0.977

β 0.288 0.976 0.540 0.955 0.200 0.983 0.307 0.974
R 0.097 0.992 0.117 0.990 0.087 0.993 0.097 0.992

Table 6: Interval estimation results when (T1, T2) = (T ∗
1 , T ∗

2 ) = (1.5, 2.0) from Set-A

n (r, k) Par. ACI BCI

m (r∗, k∗) LF SF LF SF

20 (5,8) μ1 0.669 0.944 0.735 0.939 0.464 0.961 0.497 0.959
30 (10, 15) μ2 1.272 0.894 1.471 0.877 0.333 0.972 0.431 0.964

β 0.497 0.959 1.020 0.915 0.387 0.968 0.671 0.944
R 0.274 0.977 0.262 0.978 0.089 0.993 0.137 0.989

(10, 15) μ1 0.590 0.951 0.674 0.944 0.432 0.964 0.477 0.960
(15, 25) μ2 1.062 0.912 1.163 0.903 0.319 0.973 0.423 0.965

β 0.486 0.959 0.699 0.942 0.376 0.969 0.584 0.951
R 0.235 0.980 0.247 0.979 0.094 0.992 0.122 0.990

50 (20, 30) μ1 0.370 0.969 0.448 0.963 0.377 0.969 0.414 0.966
60 (30, 40) μ2 0.821 0.932 0.930 0.922 0.294 0.976 0.406 0.966

β 0.414 0.966 0.602 0.950 0.259 0.978 0.542 0.955
R 0.164 0.986 0.166 0.986 0.068 0.994 0.118 0.990

(30, 40) μ1 0.344 0.971 0.400 0.967 0.275 0.977 0.395 0.967
(40, 50) μ2 0.727 0.939 0.819 0.932 0.289 0.976 0.366 0.969

β 0.377 0.969 0.490 0.959 0.253 0.979 0.484 0.960
R 0.142 0.988 0.151 0.987 0.063 0.995 0.111 0.991

90 (30, 40) μ1 0.326 0.973 0.342 0.971 0.221 0.982 0.326 0.973
80 (40, 50) μ2 0.730 0.939 0.867 0.928 0.288 0.976 0.335 0.972

β 0.368 0.969 0.460 0.962 0.206 0.983 0.429 0.964
R 0.126 0.990 0.143 0.988 0.097 0.992 0.103 0.991

(70, 80) μ1 0.254 0.979 0.313 0.974 0.193 0.984 0.226 0.981
(60, 70) μ2 0.610 0.949 0.725 0.940 0.282 0.976 0.324 0.973

β 0.339 0.972 0.430 0.964 0.200 0.983 0.402 0.966
R 0.095 0.992 0.121 0.990 0.087 0.993 0.110 0.990
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Table 7: Interval estimation results when (T1, T2) = (T ∗
1 , T ∗

2 ) = (0.5, 1.0) from Set-B

n (r, k) Par. ACI BCI

m (r∗, k∗) LF SF LF SF

20 (5, 8) μ1 1.259 0.895 1.394 0.884 0.337 0.972 0.366 0.969
30 (10, 15) μ2 1.958 0.837 2.102 0.825 0.433 0.964 0.492 0.959

β 1.098 0.909 1.850 0.846 0.458 0.962 0.643 0.946
R 0.286 0.976 0.290 0.976 0.066 0.994 0.086 0.993

(10, 15) μ1 1.073 0.911 1.128 0.906 0.324 0.973 0.351 0.971
(15, 25) μ2 1.680 0.860 1.846 0.846 0.413 0.966 0.451 0.962

β 0.731 0.939 1.784 0.851 0.454 0.962 0.614 0.949
R 0.228 0.981 0.254 0.979 0.060 0.995 0.082 0.993

50 (20, 30) μ1 0.662 0.945 0.714 0.940 0.312 0.974 0.332 0.972
60 (30, 40) μ2 1.174 0.902 1.339 0.888 0.367 0.969 0.428 0.964

β 0.513 0.957 1.679 0.860 0.365 0.970 0.486 0.960
R 0.185 0.985 0.215 0.982 0.045 0.996 0.075 0.994

(30, 40) μ1 0.632 0.947 0.692 0.942 0.226 0.981 0.313 0.974
(40, 50) μ2 1.117 0.907 1.265 0.895 0.365 0.970 0.381 0.968

β 0.476 0.960 1.265 0.895 0.366 0.970 0.439 0.963
R 0.179 0.985 0.195 0.984 0.047 0.996 0.071 0.994

90 (30, 40) μ1 0.473 0.961 0.546 0.955 0.186 0.984 0.285 0.976
80 (40, 50) μ2 1.021 0.915 1.139 0.905 0.285 0.976 0.296 0.975

β 0.400 0.967 1.089 0.909 0.369 0.969 0.398 0.967
R 0.148 0.988 0.162 0.986 0.046 0.996 0.071 0.994

(70, 80) μ1 0.414 0.966 0.470 0.961 0.159 0.987 0.263 0.978
(60, 70) μ2 0.903 0.925 1.018 0.915 0.269 0.978 0.293 0.976

β 0.348 0.971 0.660 0.945 0.361 0.970 0.385 0.968
R 0.133 0.989 0.152 0.987 0.042 0.997 0.067 0.994

Table 8: Interval estimation results when (T1, T2) = (T ∗
1 , T ∗

2 ) = (1.5, 2.0) from Set-B

n (r, k) Par. ACI BCI

m (r∗, k∗) LF SF LF SF

20 (5, 8) μ1 0.913 0.924 0.992 0.917 0.328 0.973 0.343 0.971
30 (10, 15) μ2 1.283 0.893 1.363 0.886 0.388 0.968 0.485 0.960

β 0.614 0.949 0.871 0.927 0.472 0.961 0.547 0.954
R 0.235 0.980 0.240 0.980 0.064 0.995 0.081 0.993
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Table 8 (continued)

n (r, k) Par. ACI BCI

m (r∗, k∗) LF SF LF SF

(10, 15) μ1 0.899 0.925 0.964 0.920 0.274 0.977 0.337 0.972
(15, 25) μ2 1.281 0.893 1.354 0.887 0.299 0.975 0.437 0.964

β 0.613 0.949 0.844 0.930 0.468 0.961 0.509 0.958
R 0.232 0.981 0.236 0.980 0.062 0.995 0.078 0.994

50 (20, 30) μ1 0.557 0.954 0.630 0.948 0.253 0.979 0.273 0.977
60 (30, 40) μ2 0.895 0.925 0.969 0.919 0.286 0.976 0.386 0.968

β 0.415 0.965 0.614 0.949 0.387 0.968 0.465 0.961
R 0.155 0.987 0.156 0.987 0.059 0.995 0.072 0.994

(30, 40) μ1 0.541 0.955 0.607 0.949 0.214 0.982 0.278 0.977
(40, 50) μ2 0.893 0.926 0.972 0.919 0.269 0.978 0.299 0.975

β 0.413 0.966 0.587 0.951 0.369 0.969 0.450 0.963
R 0.152 0.987 0.153 0.987 0.054 0.995 0.071 0.994

90 (30, 40) μ1 0.412 0.966 0.475 0.960 0.174 0.986 0.317 0.974
80 (40, 50) μ2 0.773 0.936 0.838 0.930 0.256 0.979 0.287 0.976

β 0.354 0.971 0.518 0.957 0.326 0.973 0.368 0.969
R 0.124 0.990 0.124 0.990 0.048 0.996 0.067 0.994

(70, 80) μ1 0.379 0.968 0.433 0.964 0.157 0.987 0.306 0.974
(60, 70) μ2 0.770 0.936 0.844 0.930 0.248 0.979 0.283 0.976

β 0.326 0.973 0.445 0.963 0.313 0.974 0.366 0.969
R 0.117 0.990 0.119 0.990 0.046 0.996 0.066 0.995

• The proposed estimation procedures for the Weibull distribution parameters under stress-
strength (including μi, i = 1, 2, β, and R) generally demonstrate reliable inferential accuracy.

• Bayesian estimators derived via MCMC methods consistently outperform their competitive
classical approaches. This performance gain arises from the Bayesian paradigm’s utilization of
prior information in addition to censored data, unlike likelihood-based techniques that rely
exclusively on observed samples.

• The BCIs outperformed ACIs due to their prior knowledge of the parameters under investi-
gation. They consistently yielded narrower intervals and better empirical coverage across all
assessed parameters.

• An increase in n (or m) improves the estimation precision. Similar improvements are noted as
both d and q increase simultaneously.

• Increasing the threshold limits of Ti, i = 1, 2 (or T ∗
i , i = 1, 2), the accuracy of inferential

outcomes for all considered parameters becomes better by reducing their simulated RRMSE,
ARAB, and AIL values and increasing their simulated CP values.

• When the true parameter values μi, i = 1, 2, and β increase:
– The RMSEs and ARABs for μi, i = 1, 2 tend to decrease in the case of Bayes outcomes

from the Lf-based (or SF-based) approach and tend to increase for the frequentist
outcomes from the LF (or SF) approach.
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– The RMSEs and ARABs for β and R decreased in most cases for all point estimation
setups.

– The AILs associated with μi, i = 1, 2 and β tend to increase for all interval estimation
approaches, while those of R decreased.

– The CPs associated with μi, i = 1, 2 and β tend to decrease, while those of R increase
for all interval estimation approaches.

• Comparing the point and interval estimation strategies, for all unknown parameters μi, i = 1, 2,
β, and R, it is noted that:

– The ML method outperformed the MPS method;

– The Bayes method (LF-based) outperformed its competitor using SF-based;

– The ACI (LF-based) method outperformed the ACI (SF-based) method;

– The BCI method (LF-based) outperformed its competitor using the SF-based.

• In conclusion, the MCMC inference using LF-based is now recommended for We parameter
estimation and its stress-strength reliability metric when a dataset under investigation is
gathered from UHC settings.

Across all scenarios, the Bayesian method consistently exhibited lower bias and mean squared
error than the frequentist method. This finding underscores the practical significance of our approach:
in applied survival studies, where censoring is common, the improved reliability of estimates can
substantially strengthen inference. The comparisons confirm that the proposed methods preserve
efficiency under light censoring while remaining robust under heavier censoring. These properties
make the approach particularly appealing for practitioners who require reliable inference across a
wide range of data conditions. Thus, the simulations not only corroborate the theoretical properties
but also demonstrate the method’s practical utility in real-world applications.

6 LED Data Analysis

The LED is a solid-state semiconductor product that generates visible or infrared light when
exposed to an electrical current. Among recent advancements, organic white LEDs (WOLEDs)
have garnered significant attention due to their potential for energy-efficient, cost-effective lighting
solutions. WOLEDs are particularly notable for their ability to produce high-quality white light over
broad emitting surfaces. In the context of reliability analysis, the lifetime performance of these devices
is a critical factor, especially under varying environmental and operational stresses; see Farinola and
Ragni [33]. This study focuses on the M00071 series of WOLEDs, which incorporates red, green, and
blue organic emitters under two stress levels, namely: 9.64 mA (with n = 10) and 17.09 mA (with
m = 10). This data set was originally reported by Zhang et al. [34]. For calculation purposes, in Table 9,
each data point has been divided by a thousand for computational purposes.

Table 9: Failure times in WOLED datasets

Group Data

X (9.64 mA) 1.6915 2.0847 2.1003 2.3745 2.4215 2.5860 2.6215 2.6805 2.8680 2.8795
Y (17.09 mA) 0.6015 0.6897 0.6973 0.7165 0.7855 0.8545 0.8895 1.1157 1.1313 1.2515
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Using the ML estimation, the shape parameter β is estimated as 8.54 (95% ACI-LF as [5.13,
14.23]). Since the confidence interval excludes 1, this indicates that the hazard is not constant but
increases with time. This step provides clarity regarding the underlying distributional form of the
WOLEDs data. Having established the behavior of the shape parameter β, we then proceeded with
the goodness-of-fit assessment. Fig. 3 compares the fitted Weibull survival curve (blue) with the
nonparametric Kaplan-Meier estimate (red). The fitted Weibull curve closely follows the Kaplan-
Meier trajectory, and its 95% confidence band comfortably covers the empirical survival function.
Additionally, the model’s Akaike information criterion (AIC) value of 10.87 further supports its
adequacy.

Following the benefits and importance of WOLEDs in life today and to demonstrate the utility
of our proposed statistical methodologies, we analyze lifetime data obtained under two predefined
stress conditions. To evaluate the suitability of the We distribution in modeling the WOLED datasets,
we first compute the MLEs of μi, i = 1, 2 and β, along with their corresponding standard errors
(SEs). Additionally, to further assess the precision of the estimates, we calculate the 95% ACIs for the
same unknown coefficients, including their respective interval lengths (ILs). These parameter estimates
are subsequently utilized to compute the Kolmogorov-Smirnov (KS) test statistic and its associated
p-value, see Table 10. Since the observed p-value notably exceeds the conventional significance level of
α = 0.05, we conclude that the We distribution offers an adequate fit to the WOLED datasets.
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Figure 3: Fitted Weibull survival curve vs. the Kaplan-Meier estimate from the WOLEDs data

https://www.scipedia.com/public/Nassar_et_al_2026 24

https://www.scipedia.com/public/Nassar_et_al_2026


M. Nassar, R. Alotaibi and A. Elshahhat,

Classical and Bayesian stress-strength reliability estimation for weibull data

under unified hybrid censoring scheme with LED application,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 8

Table 10: Fitting summary of We lifespan model from WOLED datasets

Group Par. MLE (SE) 95% ACI KS (p-Value)

Low. Upp. IW

X β 6.4327 (0.5344) 5.3853 7.4801 2.0947 0.1878 (0.8102)
μ1 0.0026 (0.0011) 0.0004 0.0048 0.0044

Y β 4.4606 (1.0765) 2.3507 6.5704 4.2197 0.1866 (0.8163)
μ2 1.2145 (0.3922) 0.4457 1.9832 1.5375

A comprehensive diagnostic assessment of model fit is provided in Fig. 4, leveraging six com-
plementary graphical tools: (1) fitted We density line with histograms of the WOLED lifetimes;
(2) empirical/estimated reliability lines; (3) empirical/estimated probability-probability (PP) lines; (4)
empirical/estimated quantile-quantile (QQ) lines; (5) empirical/estimated scaled-TTT lines; and (6)
contour map of the log-LF. Under both groups X and Y , visual subplots in Fig. 4a–d consistently
indicate strong concordance between the observed data and the fitted We lifetime models. Further-
more, in Fig. 4e, the TTT plots reveal an increasing hazard trend in both datasets, aligning with a key
characteristic of the We distribution’s failure behavior. Finally, the contour plot in Fig. 4f confirms the
existence and uniqueness of the MLEs for the We parameters μi (i = 1, 2) and β, recommending their
appropriateness as initial values in subsequent estimation routines.

Before proceeding, we test whether the shape parameter can be treated as common across the
stress and strength populations using a likelihood–ratio (LR) test. The LR statistic is

� = 2
{
�stress + �strength − �c

}
,

where �stress and �strength are the maximized log-likelihoods from the separate fits, and �c is the maximized
log-likelihood under the constrained model with a shared shape parameter. Under H0 (common
shape), �∼χ 2

1 . For the WOLED data, � = 2.137, which gives a p-value of p ≈ 0.144. Hence, we
do not reject H0 at conventional significance levels (e.g., 5% or 10%).

To evaluate the derived point and interval estimators for the parameters μi(i = 1, 2), β, and R

across each WOLED dataset group summarized in Table 9, four synthetic UTIPHC datasets, denoted
as S[i] for i = 1, 2, 3, are generated. These samples are constructed under the framework of r = r∗ = 4
and k = k∗ = 8, with varying schemes for Ti and T ∗

i for (i = 1, 2), as detailed in Table 11. For
each simulated dataset in Table 11, point estimates (along with their SEs) and 95% interval estimates
(accompanied by ILs) are computed for μi(i = 1, 2), β, and R using both the developed frequentist
and Bayesian techniques (see Table 12).

https://www.scipedia.com/public/Nassar_et_al_2026 25

https://www.scipedia.com/public/Nassar_et_al_2026


M. Nassar, R. Alotaibi and A. Elshahhat,

Classical and Bayesian stress-strength reliability estimation for weibull data

under unified hybrid censoring scheme with LED application,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 8

x

D
en

si
ty

1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2 We��1����

1.8 2.0 2.2 2.4 2.6 2.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Group X

x

R
el

ia
bi

lit
y

Empirical
Estimated

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Group X

OCP

E
C

P

(a) PDF (b) RF (c) PP

1.8 2.0 2.2 2.4 2.6 2.8

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

Group X

Theoretical Quantiles

Q
ua

nt
ile

s 
in

 D
at

a

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

S
ca

le
d 

T
T

T
−

Tr
an

sf
or

m

Group X

Empirical
We��1����

0.000

0.001

0.002

0.003

0.004

0.005

5.5 6.0 6.5 7.0 7.5

�

� 1

level

(−45, −40]

(−40, −35]

(−35, −30]

(−30, −25]

(−25, −20]

(−20, −15]

(−15, −10]

(−10, −5]

(−5, 0]

Group X
 

(d) QQ (e) TTT (f) Contour
(i) Group-X

y

D
en

si
ty

0.6 0.8 1.0 1.2 1.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 We��2����

0.6 0.7 0.8 0.9 1.0 1.1 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Group Y

y

R
el

ia
bi

lit
y

Empirical
Estimated

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Group Y

OCP

E
C

P

(a) PDF (b) RF (c) PP

0.6 0.7 0.8 0.9 1.0 1.1 1.2

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

Group Y

Theoretical Quantiles

Q
ua

nt
ile

s 
in

 D
at

a

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

S
ca

le
d 

T
T

T
−

Tr
an

sf
or

m

Group Y

Empirical
We��2����

0.5

1.0

1.5

2.0

3 4 5 6

�

� 2

level

(−11, −10]

(−10, −9]

(−9, −8]

(−8, −7]

(−7, −6]

(−6, −5]

(−5, −4]

(−4, −3]

(−3, −2]

(−2, −1]

(−1, 0]

(0, 1]

(1, 2]

Group Y
 

(d) QQ (e) TTT (f) Contour
(ii) Group-Y

Figure 4: Visualization graphs of the We lifespan model from WOLED datasets. (a): PDF; (b): RF; (c):
PP; (d): QQ; (e): TTT; (f): Contour
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Table 11: Artificial UHC samples from WOLED datasets

Sample T1(a)

T ∗
1 (a

∗)
T2(b)

T ∗
2 (b

∗)
(τ , η) Data

S[1] 2.9 (9) 3.0 (9) (2.9, 1.3) 1.6915, 2.0847, 2.1003,
2.3745, 2.4215, 2.5860,
2.6215, 2.6805, 2.8680

1.2 (9) 1.3 (9) 0.6015, 0.6897, 0.6973,
0.7165, 0.7855, 0.8545,
0.8895, 1.1157, 1.1313

S[2] 2.5 (5) 2.7 (8) (2.6805,
1.1157)

1.6915, 2.0847, 2.1003,
2.3745, 2.4215, 2.5860,
2.6215, 2.6805

0.8 (5) 1.2 (8) 0.6015, 0.6897, 0.6973,
0.7165, 0.7855, 0.8545,
0.8895, 1.1157

S[3] 2.5 (5) 2.6 (6) (2.6, 0.9) 1.6915, 2.0847, 2.1003,
2.3745, 2.4215, 2.5860

0.8 (5) 0.9 (6) 0.6015, 0.6897, 0.6973,
0.7165, 0.7855, 0.8545

S[4] 1.7 (1) 2.1 (2) (2.3745,
0.7165)

1.6915, 2.0847, 2.1003,
2.3745

0.65 (2) 0.7 (3) 0.6015, 0.6897, 0.6973,
0.7165

Table 12: Estimates of μi, i = 1, 2, β, and R from WOLED datasets

Sample Par. MLE
MPSE

MCMC
LF-based
MCMC

SF-based

95% ACI-LF
95% ACI-SF

95% BCI-LF
95% BCI-SF

Est. SE Est. SE Low. Upp. IL Low. Upp. IL

S[1] μ1 1.5497 0.4022 1.5466 0.0104 0.7614 2.3380 1.5766 1.5267 1.5661 0.0394
1.7138 0.4317 1.7128 0.0100 0.8677 2.5599 1.6921 1.6931 1.7323 0.0392

μ2 4.2814 1.2555 4.2800 0.0100 1.8207 6.7420 4.9214 4.2607 4.2994 0.0388
3.4809 1.1504 3.4798 0.0101 1.2262 5.7356 4.5094 3.4602 3.4994 0.0392

β 0.3700 0.1423 0.3587 0.0150 0.0910 0.6489 0.5579 0.3394 0.3782 0.0388
0.1014 0.0417 0.0998 0.0095 0.0196 0.1832 0.1636 0.0819 0.1181 0.0362

R 0.2658 0.0729 0.2654 0.0014 0.1229 0.4086 0.2857 0.2628 0.2680 0.0052
0.3299 0.0812 0.3298 0.0014 0.1708 0.4891 0.3183 0.3270 0.3327 0.0056

S[2] μ1 1.5020 0.4283 1.4992 0.0103 0.6626 2.3414 1.6788 1.4799 1.5189 0.0389

(Continued)
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Table 12 (continued)

Sample Par. MLE
MPSE

MCMC
LF-based
MCMC

SF-based

95% ACI-LF
95% ACI-SF

95% BCI-LF
95% BCI-SF

Est. SE Est. SE Low. Upp. IL Low. Upp. IL

1.6372 0.4646 1.6363 0.0100 0.7266 2.5478 1.8212 1.6167 1.6560 0.0392
μ2 4.0753 1.3390 4.0741 0.0101 1.4508 6.6997 5.2489 4.0548 4.0942 0.0394

3.7715 1.5342 3.7704 0.0101 0.7644 6.7785 6.0141 3.7507 3.7902 0.0394
β 0.3607 0.1467 0.3528 0.0127 0.0732 0.6482 0.5749 0.3338 0.3721 0.0383

0.1172 0.0506 0.1157 0.0097 0.0181 0.2164 0.1982 0.0971 0.1344 0.0373
R 0.2693 0.0860 0.2690 0.0014 0.1008 0.4378 0.3369 0.2663 0.2717 0.0054

0.3027 0.1024 0.3026 0.0014 0.1020 0.5034 0.4013 0.2999 0.3054 0.0055
S[3] μ1 1.3516 0.4781 1.3496 0.0102 0.4146 2.2885 1.8739 1.3300 1.3692 0.0392

1.4451 0.5422 1.4442 0.0101 0.3824 2.5079 2.1255 1.4246 1.4639 0.0393
μ2 3.5497 1.3784 3.5486 0.0101 0.8481 6.2512 5.4031 3.5293 3.5684 0.0391

3.6217 1.5913 3.6206 0.0101 0.5029 6.7406 6.2377 3.6010 3.6404 0.0394
β 0.3251 0.1526 0.3203 0.0111 0.0260 0.6242 0.5982 0.3013 0.3400 0.0387

0.1354 0.0703 0.1339 0.0099 0.0009 0.2732 0.2723 0.1149 0.1531 0.0382
R 0.2758 0.1120 0.2755 0.0016 0.0563 0.4952 0.4389 0.2724 0.2786 0.0062

0.2852 0.1269 0.2851 0.0015 0.0364 0.5340 0.4976 0.2822 0.2881 0.0060
S[4] μ1 1.3267 0.6045 1.3253 0.0101 0.1420 2.5114 2.3694 1.3058 1.3449 0.0391

1.4218 0.7344 1.4209 0.0101 0.0000 2.8612 2.8612 1.4013 1.4406 0.0393
μ2 3.1055 1.4218 3.1044 0.0101 0.3189 5.8921 5.5732 3.0850 3.1242 0.0391

3.3030 1.9838 3.3019 0.0101 0.0000 7.1913 7.1913 3.2823 3.3217 0.0394
β 0.2445 0.1411 0.2415 0.0105 0.0032 0.5211 0.5179 0.2221 0.2612 0.0391

0.1217 0.0832 0.1200 0.0100 0.0000 0.2848 0.2848 0.1009 0.1394 0.0385
R 0.2993 0.1468 0.2992 0.0017 0.0116 0.5871 0.5756 0.2958 0.3025 0.0067

0.3009 0.1846 0.3009 0.0016 0.0000 0.6626 0.6626 0.2977 0.3040 0.0064

For the Bayesian analyses we avoid extremely diffuse Gamma(0.001, 0.001)-type priors because
they can be numerically unstable and place undue mass in extreme parameter regions. Instead, when no
substantive expert input is available we adopt weakly-informative priors that ensure positive support
while allowing the likelihood to dominate:

β ∼ Gamma(2, 1), μ ∼ Gamma
(
2, scale = μ̂/2

)
,

where μ̂ is a preliminary point estimate (we use the MLE). When an expert supplies a 50% quantile
(median) m0 for the lifetime, we translate it to a prior center for μ via μ0 = m0/(ln 2)1/β∗ , where β∗ is
either an expert guess for the shape or a pilot estimate; then μ can be given a Gamma prior with mean
μ0 and concentration chosen to reflect the expert’s confidence.

To guard against prior-data conflict we perform prior predictive checks: for each prior p(β, μ)

we draw (β, μ) from p, simulate n observations under Weibull (β, μ), compute the dataset median T ,
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and compare the observed median Tobs to the prior predictive distribution of T . We report lower-tail,
upper-tail and two-sided prior-predictive p-values; small two-sided p (near 0) indicates conflict.

Applied to the M00071 OLED sample (observed median Tobs = 2503.75), we obtain the following
prior-predictive results (4000 prior predictive draws each):

– vague Gamma(0.001, 0.001) priors: plow = 0.9463, pup = 0.0537, p2 = 0.1075.

– weakly-informative priors: β ∼ Gamma(2, 1), μ ∼ Gamma(2, scale = μ̂/2): plow = 0.6998,
pup = 0.3002, p2 = 0.6005.

– informative prior matching expert median m0 = 2500: p2 = 0.9290 (good agreement).

– conflicting informative prior with m0 = 1000: p2 ≈ 0 (clear prior-data conflict).

When a prior-data conflict is detected (small two-sided p), we either (i) reconsider and possibly
relax the prior concentration, (ii) revisit the elicited expert statement, or (iii) present sensitivity results
(posterior under the informative prior vs. posterior under the weakly-informative default).

Due to the lack of informative prior knowledge on the Weibull model parameters from the
WOLED studies, a joint improper gamma prior is employed in all Bayesian computations. The
posterior summaries are generated using the proposed MCMC technique with a total of M = 50,000
iterations, discarding the initial 10,000 iterations as burn-in. Starting values for the MCMC procedure
are chosen based on the frequentist estimates of μi(i = 1, 2) and β, obtained via the ML and MPS
methods (refer to Table 12). Results in Table 12 reveal that the Bayesian estimates, derived from the
MCMC outputs, consistently achieve smaller SEs for μi(i = 1, 2), β, and R compared to their
frequentist analogs, indicating superior precision. Additionally, the BCIs against both LF-based and
SF-based approaches tend to yield shorter ILs than their corresponding ACIs, thereby demonstrating
greater efficiency in interval estimation.

To assess the existence and uniqueness properties of the MLEs and MPSEs for the parameters
μi, i = 1, 2, and β, Figs. 5 and 6 display the contour plots of the log-likelihood and log-spacing
functions, respectively, evaluated based on the datasets S[i] for i = 1, 2, 3, 4. In Figs. 5 and 6,
each contour plot illustrates a pair of parameters, with one on the horizontal axis and the other
on the vertical axis, while the color bar represents the log-likelihood values. The red circle in the
figure denotes the global maximum of the log-likelihood surface. The contours distinctly suggest
that the WOLED data yield well-defined and unique solutions under both estimation frameworks.
These graphical findings align with the numerical outcomes provided in Table 12. Additionally, to
illustrate the posterior behavior, Fig. 7 focuses on sampleS[1] and presents the Gaussian kernel density
estimates along with trace plots for the parameters μ1, μ2, β, and R. Based on the remaining 40,000
MCMC draws of μi, i = 1, 2, β, and R, the subplots in Fig. 7 demonstrate satisfactory mixing and
stationarity, indicating a well-calibrated burn-in phase that effectively discards initial non-stationary
iterations. Moreover, the posterior density estimates of μ1, μ2, β, and R reveal that their marginal
posterior distributions exhibit near-symmetrical shape, confirming the superiority and interpretability
of the Bayesian inference. Furthermore, Table 13 presents a comprehensive summary of descriptive
measures for the We parameters, encompassing the mean, mode, quartiles (denoted by Quart.i for
i = 1, 2, 3), standard deviation (SD), and skewness (Skew.). These statistics confirm the same findings
listed in Table 12.

https://www.scipedia.com/public/Nassar_et_al_2026 29

https://www.scipedia.com/public/Nassar_et_al_2026


M. Nassar, R. Alotaibi and A. Elshahhat,

Classical and Bayesian stress-strength reliability estimation for weibull data

under unified hybrid censoring scheme with LED application,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 8

0

5

10

15

0 1 2 3 4
�1

� 2

level

(−220, −200]

(−200, −180]

(−180, −160]

(−160, −140]

(−140, −120]

(−120, −100]

(−100, −80]

(−80, −60]

(−60, −40]

(−40, −20]
0.0

0.3

0.6

0.9

0 1 2 3
�

� 1

level

(−180, −160]

(−160, −140]

(−140, −120]

(−120, −100]

(−100, −80]

(−80, −60]

(−60, −40]

(−40, −20]

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0 12.5
�

� 2

level

(−120, −110]

(−110, −100]

(−100, −90]

(−90, −80]

(−80, −70]

(−70, −60]

(−60, −50]

(−50, −40]

(−40, −30]

(−30, −20]

(a) Sample [1]

0

5

10

15

20

0 1 2 3 4
�1

� 2

level

(−220, −200]

(−200, −180]

(−180, −160]

(−160, −140]

(−140, −120]

(−120, −100]

(−100, −80]

(−80, −60]

(−60, −40]

(−40, −20]
0.0

0.3

0.6

0.9

0 1 2 3
�

� 1

level

(−140, −130]

(−130, −120]

(−120, −110]

(−110, −100]

(−100, −90]

(−90, −80]

(−80, −70]

(−70, −60]

(−60, −50]

(−50, −40]

(−40, −30]

(−30, −20] 0.0

0.5

1.0

0 5 10
�

� 2

level

(−110, −100]

(−100, −90]

(−90, −80]

(−80, −70]

(−70, −60]

(−60, −50]

(−50, −40]

(−40, −30]

(−30, −20]

(b) Sample [2]

0

5

10

15

0 1 2 3 4
�1

� 2

level

(−130, −120]

(−120, −110]

(−110, −100]

(−100, −90]

(−90, −80]

(−80, −70]

(−70, −60]

(−60, −50]

(−50, −40]

(−40, −30]

(−30, −20]

(−20, −10]
0.00

0.25

0.50

0.75

1.00

0 1 2
�

� 1

level

(−100, −90]

(−90, −80]

(−80, −70]

(−70, −60]

(−60, −50]

(−50, −40]

(−40, −30]

(−30, −20]

(−20, −10]

0.0

0.3

0.6

0.9

0 3 6 9
�

� 2

level

(−85, −80]

(−80, −75]

(−75, −70]

(−70, −65]

(−65, −60]

(−60, −55]

(−55, −50]

(−50, −45]

(−45, −40]

(−40, −35]

(−35, −30]

(−30, −25]

(−25, −20]

(−20, −15]

(c) Sample [3]

Figure 5: Contours from log-LF for μi, i = 1, 2, and β from WOLED datasets. (a): Sample S[1]; (b):
Sample S[2]; (c): Sample S[3]
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Figure 6: Contours from log-SF for μi, i = 1, 2, and β from WOLED datasets. (a): Sample S[1]; (b):
Sample S[2]; (c): Sample S[3]

https://www.scipedia.com/public/Nassar_et_al_2026 31

https://www.scipedia.com/public/Nassar_et_al_2026


M. Nassar, R. Alotaibi and A. Elshahhat,

Classical and Bayesian stress-strength reliability estimation for weibull data

under unified hybrid censoring scheme with LED application,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 8

(a) � 	

(b) � 


(c) �

(d)
(i) MCMC (LF-based) (ii) MCMC (SF-based)

Figure 7: The MCMC diagrams of μi, i = 1, 2, β, and R from WOLED datasets. (a): γ1; (b): γ2; (c): φ;
(d): R
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Table 13: Statistics of μi, i = 1, 2, β, and R from WOLED data

Sample Par. Mean Mode Quart.1 Quart.2 Quart.3 SD Skew.

MCMC (LF-based)
MCMC (SF-based)

S[1] μ1 1.5466 1.5530 1.5401 1.5464 1.5531 0.0099 0.0138
1.7128 1.7126 1.7061 1.7128 1.7195 0.0100 −0.0212

μ2 4.2800 4.2771 4.2733 4.2800 4.2869 0.0099 0.0066
3.4798 3.4577 3.4731 3.4798 3.4867 0.0100 −0.0084

β 0.3587 0.3317 0.3520 0.3587 0.3654 0.0099 0.0106
0.0998 0.0891 0.0935 0.0998 0.1061 0.0093 0.0439

R 0.2654 0.2664 0.2645 0.2654 0.2663 0.0013 −0.0057
0.3298 0.3312 0.3289 0.3299 0.3308 0.0014 −0.0186

S[2] μ1 1.4992 1.4821 1.4925 1.4990 1.5060 0.0100 0.0452
1.6363 1.6294 1.6296 1.6363 1.6429 0.0100 0.0226

μ2 4.0741 4.0833 4.0672 4.0741 4.0809 0.0100 0.0453
3.7704 3.7515 3.7637 3.7703 3.7771 0.0100 0.0114

β 0.3528 0.3354 0.3461 0.3527 0.3593 0.0099 −0.0166
0.1157 0.1083 0.1092 0.1156 0.1221 0.0095 0.0285

R 0.2690 0.2663 0.2681 0.2690 0.2700 0.0014 −0.0081
0.3026 0.3028 0.3017 0.3026 0.3036 0.0014 0.0138

S[3] μ1 1.3496 1.3288 1.3428 1.3496 1.3565 0.0100 0.0215
1.4442 1.4313 1.4375 1.4441 1.4508 0.0100 0.0236

μ2 3.5486 3.5426 3.5418 3.5486 3.5554 0.0100 0.0300
3.6206 3.6170 3.6139 3.6206 3.6274 0.0100 0.0125

β 0.3203 0.3079 0.3136 0.3202 0.3269 0.0100 −0.0108
0.1339 0.1179 0.1273 0.1338 0.1404 0.0097 0.0306

R 0.2755 0.2728 0.2745 0.2755 0.2766 0.0016 −0.0091
0.2851 0.2835 0.2841 0.2851 0.2861 0.0015 0.0155

S[4] μ1 1.3253 1.3044 1.3185 1.3253 1.3321 0.0100 0.0157
1.4209 1.4080 1.4142 1.4208 1.4275 0.0100 0.0238

μ2 3.1044 3.1018 3.0976 3.1044 3.1112 0.0100 0.0212
3.3019 3.2983 3.2952 3.3019 3.3087 0.0100 0.0153

β 0.2415 0.2082 0.2348 0.2415 0.2482 0.0100 −0.0248
0.1200 0.1042 0.1134 0.1200 0.1266 0.0098 0.0274

R 0.2992 0.2957 0.2980 0.2992 0.3003 0.0017 −0.0164
0.3009 0.2992 0.2998 0.3009 0.3019 0.0016 0.0148
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Briefly, to account for external stressors (e.g., temperature, current density) we extend the Weibull
model so that the scale parameter depends on covariates. Let zi denote the covariate vector for unit i
and set

μi = μ0 exp(γ �zi),

so that the density of observation ti is

f (ti | β, μ0, γ ) = β

μi

( ti

μi

)β−1

exp
{

−
( ti

μi

)β}
.

The log-likelihood is �(β, μ0, γ ) = ∑n

i=1

[
log β − β log μi + (β − 1) log ti − (ti/μi)

β
]
. Estimation

can proceed by MLE (numerical optimization) or within our Bayesian framework by placing priors
on log β, log μ0 and γ . In the LED M00071 example we illustrate the effect of including a two-level
stress indicator (binary z) as a demonstration: the covariate model yields γ̂ = 0.1954 (SE 0.0437), and
reduces the standard error of group median estimates compared with a pooled model (pooled SE of
the median ≈ 107.8 vs. group SEs ≈ 77.0 and ≈ 86.9). The AIC improves by ≈ 8.4 when the covariate
is included. These results are illustrative; for industrial inference we recommend recording physical
stress covariates and fitting the extended model above so that one can quantify the effect of stress on
lifetime and achieve the precision gains demonstrated here.

The analysis of WOLED devices under varying stress and strength conditions reveals key insights
into their degradation patterns, enhancing predictive accuracy within life testing frameworks. Compar-
ative evaluation across two WOLED datasets confirms the efficacy of the proposed statistical inference
methods in modeling lifetime distributions using the We lifespan model under the recommended
censoring scheme.

7 Concluding Remarks

This study comprehensively investigated classical and Bayesian estimation methodologies for
the stress-strength reliability parameter under a unified hybrid censoring scheme, where X and
Y follow independent Weibull distributions with a common shape parameter and different scale
parameters. Four estimation approaches, namely, maximum likelihood estimation, maximum product
of spacings, and Bayesian frameworks based on likelihood and spacing functions, were investigated,
marking the first integration of the maximum product of spacings method within the unified hybrid
censoring methodology. Bayesian estimates were derived under the squared error loss function,
assuming independent gamma prior distributions for the three parameters. Samples from the posterior
distribution derived based on the likelihood function were generated using the Metropolis-Hastings
algorithm within the Gibbs sampling procedure. In contrast, the Metropolis-Hastings algorithm alone
was employed to generate samples from the posterior distribution derived from the spacing function.
To compare the various point and interval estimators, an extensive simulation study was conducted to
evaluate their numerical accuracy and efficiency. Finally, illustrative application using light-emitting
diode datasets were provided to demonstrate the practical utility of the proposed methods. Although
the assumption of a common shape parameter is adopted in this study to simplify estimation, future
research could relax this constraint to examine the robustness of classical and Bayesian methods when
the stress and strength Weibull distributions have distinct shape parameters. Such extensions would
broaden the applicability of the methods to a wider range of reliability scenarios.
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