NOTICE

CERTAIN DATA CONTAINED IN THIS DOCUMENT MAY BE DIFFICULT TO READ IN MICROFICHE **PRODUCTS**.

WHC-EP--0368 DE91 007158

ED (Emergency Doses)-Revision 3: A Calculator Code for Environmental Dose Computations

Paul D. Rittmann

Date Published December 1990

Prepared for the U.S. Department of Energy Office of Environmental Restoration and Waste Management

Westinghouse P.O. Box 1970 Hanford Company Richland, Washington 99352

Hanford Operations and Engineering Contractor for the U.S. Department of Energy under Contract DE-AC06-87RL10930

Approved for Public Release

Public Release MASTER

WHC-EP-0368

CONTENTS

1.0	INTRODUCTION 1-1 1.1 HISTORY 1-1 1.2 HARDWARE REQUIREMENT 1-2 1.3 DOCUMENTATION 1-1 1-2
2.0	SUMMARY
3.0	INSTRUCTIONS TO USERS OF ED - REVISION 33-13.1 LOADING THE PROGRAM3-13.2 STARTING THE PROGRAM3-23.3 ATMOSPHERIC DISPERSION3-33.4 RELEASE RATE FOR A CHEMICAL RELEASE3-93.5 RELEASE AMOUNT FOR A RADIONUCLIDE RELEASE3-113.6 NUCLIDE CHOICES AND DOSE EQUIVALENT3-18
4.0	TYPICAL EXHAUST FLOW RATES FROM WESTINGHOUSEHANFORD COMPANY FACILITIES4-14.1100 AREA EFFLUENT STACKS4-14.2200 EAST AREA EFFLUENT STACKS4-24.3200 WEST AREA EFFLUENT STACKS4-34.4300 AREA EFFLUENT STACKS4-54.5400 AREA EFFLUENT STACKS4-6
5.0	SAMPLE PROBLEMS FOR ED - REVISION 35-15.1STACK RELEASE OF HYDROGEN FLUORIDE5-15.2GROUND RELEASE WITH DOWNWIND FIELD DATA5-2
6.0	VERIFICATION OF ED - REVISION 3 CALCULATIONS6-16.1 X/Q CALCULATION6-16.2 DOWNWIND CHEMICAL CONCENTRATIONS6-16.3 ESTIMATION OF TOTAL CURIES RELEASED6-56.4 DOSE CALCULATIONS6-6
7.0	CONCEPTUAL MODELS USED IN ED - REVISION 37-17.1ATMOSPHERIC DISPERSION MODEL7-17.2DOWNWIND CHEMICAL CONCENTRATIONS7-17.3ESTIMATION OF TOTAL CURIES RELEASED7-17.4DOWNWIND AIR CONCENTRATION AND DOSE EQUIVALENT7-27.5DOSE FACTORS FOR PLUTONIUM AND URANIUM MIXTURES7-3
8.0	LINE-BY-LINE DESCRIPTION OF ED - REVISION 3

4

•

1

CONTENTS (continued)

9.0	F	R	DGI	RAP		LI	ST	IN	G	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	9-1
10.0	F	REI	EI	RE	NC	ES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10-1
APPEN	DI	X	ES	:																!														
	A	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•		•	•					A-1
	B	. •	•	•	٠	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	B-1
	<u>C</u>	• '	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•			C-1
	D	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•		•	•			•	•			•		•			•	D-1

LIST OF TABLES

1	Rule of Thumb Table for Estimating Stability Class
2	Alternate Method Stability Class by Month and Time of Day \ldots 3-4
3	Estimating Mixing Depth in Meters
4	Estimating Mixing Depth in Feet
5	Alternate Method Mixing Layer Depths in Meters
6	Alternate Method Mixing Layer Depths in Feet
7	Plutonium Composition Used in FD
8	Uranium Composition Used in ED
9	Summary of Data Register and Flag Use
10	100-N Stacks
11	100-K Stacks
12	PUREX Stacks
13	B Plant/WESF Stacks
14	East Tank Farm Stacks
15	S Plant Stacks
16	T Plant Stacks
17	U Plant Stacks
18	Z Plant Stacks
19	West Tank Farm Stacks
20	300 Area Effluent Stacks
21	The 400 Area Effluent Stacks
22	Atmospheric Dispersion Parameters Calculated by ED 6-2
23	Ground Level X/Q Values Computed by GENII 6-2
24	Percent Differences Between ED and GENII Ground Level X/Q Results

11/1/90 (8:59am)

٩.,

۷

LIST OF TABLES (continued)

25	Comparison of ED and GENII for Reflection from the Mixing Layer (using Pasquill B stability and mixing layer	
	depth of 1,000 m)	6-4
26	External Dose Factors for Inert Gases	6-7
27	Inhalation Dose Factors for Particulates	6-8
28	Parameters used by ED in the Calculation of Sigma Y and Sigma Z (By = 0.9031 and Cy = 0.0)	7-2
29	Plutonium Inhalation Dose Factors	7-4
30	Inhalation Dose Factors for a Mixture of Plutonium Isotopes	7-4
31	Uranium Inhalation Dose Factors (EDE)	75
32	Uranium Inhalation Dose Factors (Maximum Organ)	7-5
33	Mixture of Uranium Isotopes N Reactor Fuel	7-5
34	Inhalation Dose Factors for the Mixture of Uranium Isotopes (Sv/Bq)	7-6
35	Summary of Data Register and Flag Use	8-1
36	Calculation of Dose Factor Address	8-9

vi

WHC-EP-0368

ED (EMERGENCY DOSES) - REVISION 3: A CALCULATOR CODE FOR ENVIRONMENTAL DOSE COMPUTATIONS

1.0 INTRODUCTION

1.1 HISTORY

The calculator program ED (Emergency Doses) was developed from several HP-41CV calculator programs documented in the report Seven Health Physics Calculator Programs for the HP-41CV, RHO-HS-ST-5P (Rittman 1984). The original ED was documented by an internal memo to R. H. Sudmann, dated May 18, 1984 (Appendix A). The program was developed at his request to enable estimates of offsite impacts more rapidly and reliably than was possible with the software available for emergency response at that time. The ED used the Hanford Stable and Sutton's Neutral and Unstable methods for calculating plume spread with distance. Inhalation dose factors from DACRIN were used for seven materials. Many of the features found in the present version were present then, such as USER mode operation, stored parameters to minimize inputs, and a nuclide choice menu tree.

The first revision to ED came through an internal memo to D. E. Bihl dated July 20, 1984 (Appendix B). This revision increased the number of radioactive materials that could be released from 7 to 19.

The second revision to ED came through an internal memo dated February 19, 1985 (Appendix D). This revision was motivated by an incident in the 200 East Area in which the downwind air sample data was used to estimate total release amounts. The ED - Revision 2 used the Pasquill stability class designations; it added the ability to calculate air concentrations and doses off the plume center line and, most importantly, added the ability to calculate release amounts from downwind measurements of air concentrations or ground contamination.

The ED - Revision 3, documented in this report, revises the inhalation dose model to match that of ICRP 30, and adds the simple estimates for air concentration downwind from a chemical release. In addition, the method for calculating the Pasquill dispersion parameters was revised to match the GENII code within the limitations of a hand-held calculator (e.g., plume rise and building wake effects are not included).

The summary report generator for printed output, which had been present in the code from the original version, was eliminated in Revision 3 to make room for the dispersion model, the chemical release portion, and the method of looping back to an input menu until there is no further change. The number of nuclide choices was reduced from 19 to 17 by removing both forms of 10^3 Ru.

11/1/90 (8:59am)

1.2 HARDWARE REQUIREMENT

This program runs on the Hewlett-Packard programmable calculators known as the HP-41CV and the HP-41CX. It will run on the original HP-41C only if the 'quad' memory module is in place. A card reader is needed only to load the program initially.

A printer is optional. If present, it will be ignored unless the printer is placed in 'Normal' mode. In this mode it will print the alphanumeric displays prompting the user for data entry, the values that are entered by the user, and the results displayed by the program.

1.3 DOCUMENTATION

The documentation for ED - Revision 3 includes a guide for users, sample problems, detailed verification tests and results, model descriptions, code description (with program listing), and independent peer review. The ED has evolved from earlier versions, and required no major code development effort. Thus, there exists no software development plan. The current version of ED meets all other Westinghouse Hanford Company software configuration management requirements.

This software is intended to be used by individuals with some training in the use of air transport models. There are some user inputs that require intelligent application of the model to the actual conditions of the accident. The results calculated using ED-Revision 3 are only correct to the extent allowed by the mathematical models.

2.0 SUMMARY

The calculator program ED (which stands for Emergency Doses) operates on the Hewlett-Packard HP-41C series of hand-held calculators. It is intended for rapid assessment of the downwind impacts of hazardous material releases into the air.

Version 3 of ED offers the following analysis capabilities and user conveniences:

- Dispersion calculation using the Pasquil!-Gifford model, with reflection from the mixing layer included
- Receptor location may be off the plume center line
- Option on whether to use SI units or English units for display of lengths and wind speed
- Menu items show current values and repeat until the value shown is accepted without change
- All data entered by the user is stored, and will be reused unless the user enters new values
- Through USER mode, a single input data item, such as distance downwind, can be modified and the calculation repeated
- Air concentrations of a hazardous chemical calculated in units of parts per million (by volume) and milligrams per cubic meter from user input of total pounds released or stack data (concentration released and exhaust flow rate) together with the formula weight of the chemical released
- Downwind air concentrations of radionuclides in microcuries per cubic centimeter
- Total curies released may be entered directly, calculated from stack data, calculated from a downwind air concentration measurement, or calculated from a downwind surface contamination measurement
- Inhalation dose calculated for any one of 17 radioactive materials, or the user may enter the name and dose factor of materials not stored in the calculator.

WHC-EP-0368

3.0 INSTRUCTIONS TO USERS OF ED - REVISION 3

3.1 LOADING THE PROGRAM

- A. Check to see if the program is already in the calculator.
 - 1. Switch the calculator to USER mode (i.e., press the button labeled "USER", which makes the word "USER" appear in small letters on the left side of the display).
 - 2. Press the button labeled "XEQ".
 - 3. If the display shows the words "ED Rev 3", then the program is already loaded. Skip over the directions following to step 3.2.B.
 - 4. If the display shows the word "XEQ ___", then the program needs to be loaded. Turn off the calculator and follow the directions for loading the program, which begin in the next step.
- B. Prepare the Calculator.
 - 1. Clear the program memory.
 - a. Turn off the calculator.
 - b. While holding down the delete button (arrow left), turn on the calculator.
 - c. The display will show "MEMORY LOST".
 - Allocate 20 registers for data storage by pressing the following keys, in succession: "XEQ", "ALPHA", S, I, Z, E, "ALPHA", O, 2, O.
- C. Switch to USER mode by pressing the button labeled "USER", which makes the word "USER" appear on the left side of the display.
- D. Feed the 10 program cards into the card reader.
 - 1. Make sure the rechargeable battery is fully charged. The cards may be read in any order.
 - 2. If the message "MALFUNCTION" appears when reading any of the cards, the following should be executed:
 - a. Read another card, and come back to the 'problem' card later.

3-1

b. If this does not work (i.e., other cards also show the error) then either the card reader needs service, or the cards themselves have been damaged. Knowledgeable, qualified personnel are required for these problems.

3.2 STARTING THE PROGRAM

- A. Switch to USER mode (i.e., press the button labeled "USER", which makes the word USER appear in small letters on the left side of the display).
- B. Press the button labeled "XEQ" to start the program. The display should show the words "ED - Rev 3" if the program is properly loaded. Press the "R/S" button to continue. Step-by-step instructions begin in Section 3.3.
- C. The following is general information about the program.
 - 1. The program is divided in two major sections.
 - a. <u>Atmospheric Dispersion</u>--User prompts show the current value for a variable. When a new value is entered, the user must verify the number before the program continues.
 - b. <u>Release Amount or Rate</u>--Current values are not shown in the display. To see the current value of a requested quantity, press the delete button (arrow left). When a value is entered, the program goes on to the next menu item without asking the user to verify the input.
 - 2. At any data entry prompt, the value entered on a previous run will be used unless a new value is entered. Thus the entire calculation can be repeated from the "ED - Rev 3" display to the dose display simply by pressing the "R/S" button again and again.
 - 3. The program is designed to allow correction of a previous input value or menu choice. The directions to go back and change a value are as follows.
 - a. Switch the calculator to USER mode by pressing the "USER" switch. When the calculator is in USER mode, the word "USER" will appear in the display on the lower left.
 - b. In USER mode, some of the keys will not perform the usual function. The redefined keys are listed below in the order they appear on the face of the calculator. Press the button corresponding to the variable you need to change.

HP-41 Key ED - Rev 3	A X	B Y	C V	D D	E DUR	
HP-41 Key ED - Rev 3	F UNITS	G SOURCE	H H	I ISO	J X/Q	
HP-41 Key ED - Rev 3	shift	XEQ ED3	L	M MET	SST	

For example, to change the distance, press "A" and the program will begin at Section 3.3.F.

- c. Before entering a new value, press the USER switch to take the calculator out of USER mode. If the calculator is left in USER mode, the program will take short cuts and only show computed results. The program skips all later inputs. Unless you intend to take advantage of this feature, be sure the word "USER" is not showing in the display.
- d. Enter the new value, and press "R/S" to go on.
- 4. The execution of the program stops at each menu displayed. The calculator is then just a calculator. To allow the program to continue, the "R/S" button must be pressed. While the program execution is in progress, the letters "PRGM" will appear on the right side of the display.
- 5. If the "R/S" button is accidentally pressed during execution of the program, the calculator will stop and display the current value in the X register. To continue execution, simply press the "R/S" button again.

3.3 ATMOSPHERIC DISPERSION

- A. Choosing Units
 - Choose either "METRIC" or "U.S.A. UNITS" for distances. "METRIC" means meters or kilometers, while "U.S.A. UNITS" means feet or miles.
 - 2. The current selection is displayed.
 - a. If you want to switch to the other unit system, press any number and then press "R/S". All previous entries will automatically be converted to the new units. They do not need to be re-entered.

- b. To continue, press "R/S".
- B. Atmospheric Stability Class Input
 - 1. The display "MET = Z ?" means that the current selected value for atmospheric stability class is Z. Allowable values for Z are A, B, C, D, E, F, or G. These letters are printed in blue on the calculator buttons.
 - The best values for Pasquill-Gifford stability are obtained from the Hanford Meteorologica! Station (telephone 509-373-2716). If you have a source of actual weather data, be sure to get the following information: (1) stability class (A-G), (2) mixing layer depth, (3) wind speed, and (4) wind direction. Each will be needed.
 - 3. If current conditions are not available, estimate the stability class from either of the following tables (Tables 1 and 2).

Wind speed	Daytin	ne clou	ld cover	Night cloud	cover
(mph)	little	half	overcast	> half <	half
< 5	A	A	В	E	F
5 - 10	B	B	C	E	F
10 - 15	B	C	C	D	
> 15	Č	Ď	Ď	D	D

Table 1. Rule of Thumb Table for Estimating Stability Class.

Slade (1968).

Table 2. Alternate Method Stability Class by Month and Time of Day.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec
midn-1	F	F	F	F	F	F	F	F	F	F	F	F
2 - 3	F	F	F	F	F	F	F	F	F	F	F	F
4 - 5	F	F	F	F	Ε	Ε	Ε	Ε	F	F	F	F
6 - 7	Ε	Ε	Ε	Ε	Ε	D	D	D	Ε	Ε	F	F
8 - 9	Ε	Ε	D	D	D	D	₿	В	С	D	Ε	Ε
10 - 1	1 D	D	D	D	В	B	Α	Α	Α	D	D	D
noon-1	D	D	В	В	В	Α	Α	Α	A	В	D	D
2 - 3	D	D	D	В	Α	Α	Α	Α	В	С	D	D
4 - 5	Ε	D	D	D	В	В	В	С	D	D	Ε	Ε
6 - 7	Ε	Ε	Ε	D	D	D	D	D	D	Ε	Ε	Ε

	Jan	Feb	Mar	Apr	May	Jun	Juï	Aug	Sep	Oct	Nov	Dec
8 - 8	E	Ε	Ε	Ε	D	D	D	D	Ε	F	F	F
10 - 1	1 <u>E</u>	E	E	E	E	Ε	D	D	E	F	F	F

Table 2. Alternate Method Stability Class by Month and Time of Day. (cont)

4. If the value shown in the display is correct, press "R/S". If not, type in a better value and then press "R/S".

C. Mixing Layer Depth Input

- The mixing layer depth (D) is the vertical dispersion limit. If a current measurement is not available, estimate it from Table 3. Mixing depth is important at great distances and more unstable conditions. The values shown on the following tables (Table: 3 through 6) are conservative estimates.
- 2. The display "D= Z M" or "D= Z FT" means that the current value for mixing depth is Z in the units shown.
- 3. If the value shown is correct, press "R/S". If not, type in the correct value and then press "R/S".

			•	
Month	Sunrise	Midday	Sunset	Night
Jan-Feb	200	200	200	150
Mar-Apr	300	400	300	150
May-Jun	400	800	400	150
Jul-Aug	500	1,000	500	150
Sep-Oct	350	700	350	150
Nov-Dec	200	300	200	150

Table 3. Estimating Mixing Depth in Meters.

Table 4. Estimating Mixing Depth in Feet.

Month	Sunrise	Midday	Sunset	Night
Jan-Feb	656	656	656	492
Mar-Apr	984	1.312	984	492
Mav-Jun	1.312	2.625	1.312	492
Jul-Aua	1,640	3,281	1,640	492
Sep-Oct	1,148	2,297	1,148	492
Nov-Dec	656	984	656	492

Stab	Winter	Spring	Summer	Autumn
A	500	850	1.000	900
В	500	600	750	600
C	300	500	650	500
D	200	400	500	400
Ε	200	250	250	250
F	150	150	150	150
G	100	100	100	100

Table 5. Alternate Method Mixing Layer Depths in Meters.

Tahle 6. Alternate Method Mixing Layer Depths in Feet.

Stab	Winter	Spring	Summer	Autumn
Α	1,640	2.789	3,281	2.953
B	1,640	1,969	2,461	1,969
С	984	1,640	2,133	1,640
D	656	1,312	1,640	1.312
Ε	656	820	820	820
F	492	492	492	492
G	328	328	328	328

Winter = Jan., Feb., Mar. Spring = Apr., May., June Summer = July, Aug., Sep. Autumn = Oct., Nov., Dec.

- D. Wind Speed Input
 - 1. The display "V= Z M/S ?" or "V= Z FT/S ?" means that the current wind speed is Z in the units shown.
 - If actual weather data are not available, use 5 to 10 mi/h (2 to 5 m/s), which is a typical wind speed for the Hanford Site.
 - 3. If the value shown is correct, press "R/S". If not, type in the correct value and then press "R/S".

E. Effective Release Height Input

1. The vertical height of the release above the receptor (H) includes any estimates of plume rise or downwash. If time is limited, just use the stack height. If the effective stack

8/21/90 (3:52pm)

3-6

height is less than 2.5 times the height of nearby buildings, the release must be treated as originating at ground level.

- 2. The display "H= Z M" or "H= Z FT" means that the current value for release height is Z in the units shown.
- 3. If the value shown is correct, press "R/S". If not, type in the correct value and then press "R/S".
- F. Downwind Distance Input
 - 1. Using the assumed wind direction and a map, determine the distance to the downwind receptor in the direction the wind is traveling. The wind transport direction is the X-axis in the coordinate system of the dispersion model being used.
 - 2. The display "X= Z KM ?" or "X= Z MI ?" means that the current value for distance is Z in the units shown. The minimum value for X is 0.1 km or 0.0622 mi. If a smaller value is entered, the program will insert the minimum distance.
 - 3. If the value shown is correct, press "R/S". If not, type in the correct value and then press "R/S".
- G. Plume Offset Input
 - 1. The distance perpendicular to the wind transport direction is called the plume offset, or 'Y'.
 - 2. The display "Y= Z M" or "Y= Z FT" means that the current value for plume offset is Z in the units shown.
 - 3. If the value shown is correct, press "R/S". If not, type in the correct value and then press "R/S".
- H. Normalized Exposure Results
 - 1. The normalized exposure (X/Q) has units of seconds per cubic meter. It is calculated from the wind speed, release height, horizontal and vertical plume spread parameters (Σy and Σz). These parameters depend on the stability class, the distance downwind, and the mixing depth.
 - 2. The first result displayed is " $\Sigma Y = Z M$?" or " $\Sigma Y = Z FT$?", which means that the current value for horizontal plume spread parameter is Z in the units shown. The question mark signifies that a new value may be entered if necessary; step H.4 tells how to do this.
 - 3. The second result displayed is " $\Sigma Z = Z M$?" or " $\Sigma Z = Z FT$?" meaning that the current value for vertical plume spread parameter is Z with the units shown. The question mark

signifies that a new value may be entered, if necessary; step H.4 tells how to do this.

4. For ground-level releases, the effect of plume meander or building wake may be included by changing the displayed values for horizontal and vertical plume spread. Type in the revised value and press "R/S". If you are unsure how to do this, leave the displayed values alone and just press "R/S".

For elevated releases, an X/Q value for fumigation may be calculated by entering a mixing depth, D, equal to the height of the stack. Then, when the vertical plume spread value is displayed, enter a value that is greater than 1.2 times D. This will force the program to calculate an X/Q in which there is a uniform concentration between ground level and the top of the stack.

- 5. The third result displayed is X/Q= a.bcE-d?, which means that the computed value for normalized exposure is a.bcE-d seconds per cubic meter. Again, the question mark signifies that a new value may be entered, if necessary.
- 6. To change the value for X/Q used in subsequent calculations, enter the new value and press "R/S". If you do not wish to change X/Q, press "R/S" to go on.
- I. Release Duration Input
 - 1. The release duration is used to estimate air concentrations downwind or total release, depending on later inputs for release amount.
 - 2. The display "DUR= Z HR" means that the current value for release duration is Z hours.
 - 3. If the value shown is correct, press "R/S". If not, type in the correct value and then press "R/S".
- J. Type of Material Released
 - 1. The material released can be either radioactive or chemical.
 - a. If "RAD SOURCE?" is displayed, radioactivity released will be used to determine the inhalation dose downwind.
 - b. If "CHEM SOURCE?" is displayed, chemical release rate will be used to determine air concentrations downwind.
 - 2. The current selection is displayed.
 - a. If you want to switch to the other type of release, press any number and then press "R/S".

b. To accept the displayed source type and continue, press "R/S". Calculations for the chemical source are described next. Radiological source calculations are described in Section 3.5.

3.4 RELEASE RATE FOR A CHEMICAL RELEASE

A. "ST, TuTAL= 1,2?"

"ST, TOTAL= 1,2?" offers two ways to establish release rate. Enter either "1" or "2" to select, and press "R/S" to continue. It is important to enter either a "1" or a "2". Any other entry will cause the program to continue at an incorrect location.

- "1" chooses "ST" and means that the release rate will be based on a stack concentration and flow rate.
- "2" chooses "TOTAL" and means the total mass released will be input next. The release rate is then calculated from the release duration.
- B. "ST" Stack Data
 - 1. Use this item when the average air concentration at the point of release is known. It is important that this be the peak concentration during the release, not an average over a larger time period.
 - "STACK CONC?" is the next prompt. It requests input for the air concentration in either parts per million (by volume) or mass density (milligrams per cubic meter). Type in the number and press "R/S".
 - 3. The next prompt displays the currently assumed units. The choice is either "PPM ?" or "MG/M3?".
 - a. To switch to the other units, press any number and then press "R/S".
 - b. To accept the displayed units and go on, press "R/S".
 - 4. The final prompt is "STACK CFM ?". Enter a value for the total exhauster flow rate, in cubic feet per minute. The tables in Section 4.0 list typical values for most of the effluent stacks on site. After the stack flow rate has been entered, press "R/S" to continue with Section 3.4.D.

C. "TOTAL" - Total Mass Released

- 1. Use this option to enter the total mass released.
- "TOT LB REL ?" is the next prompt. Enter a value for the total number of pounds estimated to have been released. Press "R/S" and the program will continue.
- D. Air Concentration at Downwind Location (X,Y)
 - 1. The program displays the air concentration at the downwind location (X,Y).
 - 2. The air concentration message "X,Y MG/M3=a.bE-c" or "X,Y PPM=a.bE-c" may be too long to fit in the display. If it is, the calculator scrolls the visible portion of it from left to right. All or part of the "X,Y" disappears in a few seconds.
 - a. To view the entire message again, press the "ALPHA" switch. This puts the calculator in ALPHA mode and displays the message register.
 - b. When you are ready to continue, press the "ALPHA" switch again to take the calculator out of alpha mode. Make sure the word "ALPHA" is gone from the lower right side of the display.
- E. Conversion from milligrams per cubic meter to parts per million by volume, or parts per million to milligrams per cubic meter
 - 1. When you press "R/S" to leave the air concentration display, the program displays "FORMULA WT?". The program is requesting a value for the formula weight of the chemical in order to convert from milligrams per cubic meter to ppm, or parts per million to milligrams per cubic meter. For example, the value for ammonia is 17 g/mol, and for chlorine it is 71 g/mol.
 - 2. Enter a value for formula weight and press "R/S" to continue. The program then displays the air concentration at (X,Y) in the other units (see Section 3.4.D.).
 - 3. If you press "R/S" twice when the final air concentration is displayed, the program will begin again at "ED Rev 3" (Section 3.2.B.).

3.5 RELEASE AMOUNT FOR A RADIONUCLIDE RELEASE

A. "ST,CI,AR,GD=1-4"

"ST,CI,AR,GD=1=4" offers four ways to establish the number of curies released. Enter a number from 1 to 4, as discussed in the following subsections, to select, and press "R/S" to continue. It is important to enter a number from 1 to 4 because any other entry will cause the program to continue at an incorrect location.

- "1" chooses "ST" and means the total release will be based on a stack concentration and stack flow rate.
- "2" chooses "CI" and means the total curies released will be input next.
- "3" chooses "AR" and means the total release will be estimated from an air concentration measurement downwind.
- "4" chooses "GD" and means the total release will be estimated from a ground contamination measurement downwind.
- B. "ST" Stack Data
 - 1. Choose this (enter "1") when the average air concentration at the point of release is known. It is important that this be the concentration during the release, not an average over a longer time period.
 - "CONC OR DPM?" is the next prompt. It is requesting input for either air concentration in micro-Curies per cubic centimeter, or the activity measured on an air sample filter in disintegrations per minute (dpm).
 - a. The program tells the difference by comparing the value to unity. It assumes that all air concentrations will be less than $1 \ \mu$ Ci/cc at the point of release.
 - b. To enter a concentration greater than 1 μ Ci/cc, divide it by a convenient factor (like 10 or 100) to get it below 1. Then adjust the stack flow rate upward by the same factor.
 - c. If a value of less than 1 μ Ci/cc is selected, the program skips step 3, proceeding to step 4 next.
 - 3. If you entered a value greater than 1 (for dpm on an air sample), the next prompt will be "CU.FT SAMPLD?". This is a request for a figure for the volume of air pulled through the sample filter, in cubic feet. For example, if the sampler operated at 2 cfm for 5 min, the volume would be 10 ft³.

After a value is entered, press "R/S" and the program will continue by displaying the calculated air concentration at the point of release, in micro-Curies per cubic centimeter. Press "R/S" to continue with the program.

- 4. The final prompt is "STACK CFM ?". Enter a value for the total exhauster flow rate, in cubic feet per minute. The tables in the next section list typical values for most of the effluent stacks on site. After the stack flow rate has been entered, press "R/S" and the program displays the total activity released. Press "R/S" to continue with Section 3.5.F below.
- C. "CI" Total Curies Released
 - 1. Use this option to enter the total curies released.
 - 2. "CURIES REL ?" is the next prompt. Enter the value and press "R/S". The program continues with Section 3.5.F.
- D. "AR" Air Concentration at (X,Y)
 - 1. Use this item to interpret downwind air concentration measurements. The X/Q computed earlier must be for a location (X,Y) at which the air sample was taken.
 - 2. "CONC OR DPM?" is the next prompt. This is a request for a value for either air concentration in micro-Curies per cubic centimeter, or the activity on an air sample filter in dpm.
 - a. The program tells the difference by comparing the value to unity. It is assumed that all downwind air concentrations will be less than 1 μ Ci/cc, and all filter activities greater than 1 dpm. Enter a value and press "R/S".
 - b. If you enter a value less than 1 μ Ci/cc, the program skips step 3 and goes directly to step 4.
 - 3. If you entered a value greater than 1 (for dpm on an air sample), the next prompt will be "CU.FT SAMPLD?". It is requesting a figure for the volume of air pulled through the sample filter, in cubic feet. For example, if the sampler operated at 2 cfm for 5 min, the volume would be 10 ft³. After a value is entered, press "R/S" and the program continues by displaying the calculated air concentration at (X,Y), in micro-Curies per cubic centimeter. Press "R/S" to continue with the program.
 - 4. The final prompt is "HRS SAMPLED?". This information is needed to correct for downwind air samples that were running longer than the release. For example, if the downwind sampler had been running for a total of 40 h, even though the release

lasted only 2 h, the average concentration computed would be lower, by a factor of 20, than the actual concentration during the passage of the plume. The program uses the longer of the release duration or sample period to calculate the total release.

Note that as long as the sample period includes the entire release, or else begins and ends during the release, the total release estimate will be correct. Otherwise, the total release computed by the program will be low according to the portion of the release that was not sampled.

- 5. After entering a value for hours sampled, press "R/S" and the program will display the total activity released. Press "R/S" to continue to Section F.
- E. "GD" Ground Contamination at (X,Y)
 - 1. Use this item to interpret downwind ground contamination measurements. The X/Q computed earlier must be for a location (X,Y) where the ground contamination was measured.
 - 2. "DPM/SQ.CM ?" is the next prompt. Enter the measured surface contamination downwind and press "R/S". Is direct survey data are available, the detector face area must be taken into account. Use the following chart:

Probe type	Face type
GM: P-11	15 cm ²
PAM	54 cm ²

Note that direct survey readings should represent the average measured over about a square meter, rather than the maximum reading in that area.

- 3. "DEP. SP? CM/S" is the final prompt. Enter an appropriate value for the ground deposition speed. Typically this is about 0.1 cm/s, although it may be higher for certain chemical forms (halogens). The ground deposition speed also varies with humidity, surface moisture, and vegetation cover.
- After entering a value for deposition speed, press "R/S" and the program will display the total activity released. Press "R/S" to continue.

- F. Air Concentration at Downwind Location (X,Y)
 - 1. The last result displayed before entering the nuclide choices portion of the program is the air concentration at the downwind location (X,Y).
 - 2. The air concentration message "X,Y UCI/CC=a.bE-c" is too long to fit in the display, so the calculator scrolls the visible portion of it from left to right. The "X,Y" disappears in a few seconds.
 - a. To view the entire message again, press the "ALPHA" switch. This puts the calculator in ALPHA mode and displays the message register.
 - b. When you are ready to continue, press the "ALPHA" switch again to take the calculator out of alpha mode. Make sure the word "ALPHA" is gone from the lower right side of the display.

3.6 NUCLIDE CHOICES AND DOSE EQUIVALENT

- A. "a,B1,B2,NEW=1-4" offers four nuclide menus
 - Enter a number from 1 to 4 to select; press "R/S" to continue. Each choice is described in detail in the following subsections.
 - 2. The menu choices are arranged so that lower numbers will give higher doses. So, when in doubt between two choices, select the one with the lower menu number.
 - 3. It is important to enter a number from 1 to 4 because any other entry will cause the program to continue at an incorrect location. (To recover from pressing the wrong number, switch to ALPHA mode, press the blue "G", and then switch out of ALPHA mode.)
- B. "a" Alpha-Emitting Nuclides
 - 1. "PU,AM,NP,U= 1-4?" lists the alpha emitting choices.
 - a. Enter a number from 1 to 4 to select, and press "R/S" to continue.
 - b. In all cases, the dose to the bone surface will be limiting.
 - c. It is important to enter a number from 1 to 4 because any other entry will cause the program to continue at an incorrect location.

	Used in ED.	•
Nuclide	Weight percent	Curies per 1 Ci alpha
2 3 8 Pu	0.093	0.163
239 Pu	84.00	0.534
²⁴⁰ Pu	13.00	0.303
²⁴¹ Pu	2.88	30.4
^{2 4 2} Pu	0.027	1.1 E-05

"PU" is a 12% ²⁴⁰ Pu mixture (0.098 Ci/g). Table 7 shows a typical composition.

Plutonium Composition

If this plutonium mixture is selected, the next prompt is "NO3, O2 = 1, 2". The choice here is between plutonium nitrate (inhalation Class W) and plutonium oxide (inhalation Class Y). Make your choice and press "R/S".

"AM" is pure 241 Am (inhalation Class W, 3.43 Ci/g). 3.

"NP" is pure 237 Np (inhalation Class W, 7.04 x 10^{-4} Ci/g). 4.

5. "U" is one of three uranium compounds, commonly found in the 200 Areas. The typical isotopic composition is shown in Table 8.

Table 8.	Uranium Used in	Composition ED.
Nuclide	Weight percent	Curies per 1 Ci alpha
2 3 4 U 2 3 5 U 2 3 6 U 2 3 8 U	0.009 0.836 0.073 99.082	0.625 0.019 0.002 0.354

If this uranium mixture is selected, the next prompt is "UO, UO3, UNH=1-3".

Table 7.

8/21/90 (3:52pm)

3-15

^{2.}

- a. "UO" is inhalation Class Y compounds such as UO_2 or U_3O_8 .
- b. "UO3" is an inhalation Class W compound with a specific activity of 7.8 x 10^{-7} Ci/g, or 0.78 Ci/Mt or 3.5 x 10^{-4} Ci/lb or 0.71 Ci/ton.
- c. "UNH" is Class D with a typical uranium concentration of 4 lb/gal as shipped from PUREX, or 10 lb/gal entering the UO_3 facility calciner.

C. "B1" - First Beta Emitter List

- 1. "SR,RU,I,CS= 1-4" lists the beta emitter choices on this menu.
 - a. Enter a number from 1 to 4 to select, and press "R/S" to continue.
 - b. It is important to enter a number from 1 to 4 because any other entry will cause the program to continue at an incorrect location.
- 2. "SR" is 90 Sr along with its daughter 90 Y. If 1 Ci is released, the program interprets this as 1 Ci 90 Sr and 1 Ci 90 Y, which potentially could exaggerate the doses by a factor of 2, depending on how the release amount was determined.
- 3. "RU" is 106 Ru. The next menu is "INSOL, SOL = 1,2", which allows the selection of either inhalation class Y (INSOL) or inhalation class D (SOL). The 106 Ru has a radioactive daughter, 106 Rh. Entering a value of 1 Ci of 106 Rh is interpreted as 1 Ci of the parent and an equal amount (1 Ci) of the 106 Rh daughter.
- 4. "I" is either 129 I or 131 I. If "I" is selected, the next prompt is "I129, I131 = 1,2".
- 5. "CS" is 137Cs. Again, if 1 Ci 137Cs is released, an equal amount of its daughter, 137mBa, is added to this.
- D. "B2" Second Beta Emitter List
 - 1. "CO,KR,H = 1-3" lists the beta emitter choices on this menu.
 - a. Enter a number from 1 to 3 to select, and press "R/S" to continue.
 - b. It is important to enter a number from 1 to 3 because any other entry will cause the program to continue at an incorrect location.

- 2. "CO" is 60 Co. The next menu is "INSOL, SOL = 1,2", which allows the selection of either inhalation class Y (INSOL) or inhalation class W (SOL).
- 3. "KR" is ⁸⁵Kr. A semi-infinite plume model is used, which could seriously underestimate the dose rates near a stack release.
- 4. "H" is H-3, or tritium, as water vapor. Skin absorption is included in the inhalation dose calculation.

E. "NEW" - User Input Dose Factor

- 1. "ISO NAME ?" is the first prompt. The calculator is left in ALPHA mode to facilitate text entry.
 - a. You select the characters using the symbols printed in blue on the calculator keys. A list of all the letters available is located on the back of the calculator. The shift key (yellow button on the left) must be used to enter numbers.
 - b. The program will store and use up to 6 characters (the first 6 entered), so choose them carefully.
- "REM/UCI ?" is requesting input of the inhalation dose factor in units of rem per microCuries inhaled. Enter this value and press "R/S" to begin the dose calculation. The assumed breathing rate is 330 cc/s. Several additional dose factors are provided in Tables 26 and 27 (Section 6).
- F. Dose Equivalent Result
 - 1. The program calculates both the effective dose equivalent (EDE) and the largest organ dose. In this way, the results can be compared with Protective Action Guides for EDE or organs. However, the program will display only the dose that is closer to exceeding an action level. The other dose can be seen by pressing the "X<>Y" key, which interchanges the X and Y registers. Note that a small "O" will appear in the lower part of the display if the organ dose is limiting. The organ dose is always the greater of the two doses.
 - 2. The dose equivalent is displayed in millirem. The nuclide identity is shown first. In most cases, the display will scroll, from left to right, because the line is too long to fit in the display.
 - a. To look at the entire message again, press the "ALPHA" switch. This puts the calculator in ALPHA mode and displays the message register.

- b. When you are ready to continue, press the "ALPHA" switch again to take the calculator out of alpha mode. Make sure the word "ALPHA" is gone from the lower right side of the display.
- c. The dose is also stored in the X register (the one normally displayed when the calculator is turned on). In addition, the message register having identity of the nuclide or mixture that was selected for the dose calculation. Press the ALPHA switch to see the message; press the ALPHA switch again to see the X register.
- Press "R/S" to see the type of dose that was displayed in the message register. The calculator will beep and display either "EDE LIMITS" or "ORGAN LIMITS".
- 5. Press the "X<>Y" key to interchange the X and Y registers and see the other dose. This is the end of the program.

3.7 GENERAL NOTES

- A. At any data entry prompt, the value entered on a previous run will be used unless a new value is entered. Thus the entire calculation can be repeated from the "ED - Rev 3" display to the dose display simply by repeatedly pressing "R/S".
- B. The program is designed to make it easy to change just one input value or menu choice and rerun the case. The directions follow.
 - 1. Switch the calculator to USER mode by pressing the "USER" switch. When the calculator is in USER mode, the word "USER" will appear in the display on the lower left.
 - 2. In USER mode, some of the keys will not perform the usual function. The redefined keys are listed below in the order they appear on the face of the calculator.

HP-41 Key ED - Rev 3		A X	B Y	C V	D D	E DUR	
HP-41 Key ED - Rev 3	•	F UNITS	G SOURCE	H H	I ISO	J X/Q	
HP-41 Key ED - Rev 3		shift	XEQ ED3	L	M Met	SST	
	ł i						

- 3. For example, to change the distance, press the "A" and the program will begin at Section 3.3.D. in the directions previously given. Enter a new value for X, press "R/S" (as often as needed) and the program will show the E.T.A., the dispersion values, X/Q, the previously computed total curie amount released, the ground-leve; concentration at (X,Y), and the dose.
- 4. The total amount released is only recomputed if "G" is pressed to begin at Section 3.4.A. In this way, downwind data can be used to estimate the total release. Then doses and concentrations at other locations can be computed without changing this number.
- C. When running cases in USER mode, if some of the intermediate values that are displayed just flash and are quickly replaced with menus, set flag 21 to make them stop. Execute the set flag function by pressing the yellow-colored shift button and then the number 7, which has "SF" written above it. The display will prompt you for two numbers, so type in 21. Note that if a printer is connected and turned on, these displays are printed and the program does not stop. Also, when the calculator is turned off, flag 21 is automatically cleared, hence the need to manually set it when necessary.

	Registers		Flags
00	miscellaneous values	00	clear if EDE limits
01	X/Q, s/m ³	01	temporary for $X < 1$ km
02	unit conversion factor	02	temporary use for ppm
03	unit string	05	set for USA units
04	Stability class, MET, A to G	06	set for Class G
05	wind speed, V, m/s	07	set for chem release
06	distance, X. meters	08	set for ppm units
07	distance. Y. meters		
08	release height, H. meters		
09	release duration. DUR. hours		
10	AMT menu choice, 1 to 4		
11	conc or dpm value; formula wt		
12	cu.ft sampled: chem release rate		
13	stack conc: air conc: grd cont		
14	stack cfm; hours sampled; Vd		
15	total curies released		
16	top-level menu choice, 1 to 4		
17	second choice or user name		
18	third choice or user dose factor		
19	mixing depth, meters		

Table 9. Summary of Data Register and Flag Use.

8/21/90 (3:52pm)

4.0 TYPICAL EXHAUST FLOW RATES FROM WESTINGHOUSE HANFORD COMPANY FACILITIES

4.1 100 AREA EFFLUENT STACKS

Table 10. 100-N Stacks.*

Stack emission point	Typical flow rate, cfm
116-N Stack	210,000
109-N Zone I Vent	120,000
109-N Cell 6 Vent	14,000
Zone II, EF 7, 8	23,000
Zone III, EF 10	130,000
Zone IV, EF 14, 15	16,000
105-N Transfer Area	28,000
105-N Spacer Decontamination Facility	4,800
105-N 14-ft Decontamination Facility	6,400
107-N Exhaust	7,300

*100 Area Environmental Releases for 1988 (WHC 1988).

Stack emission point	Typical flow rate, cfm
105-KE Vents 105-KW Vents	27,000
1706-KE 1706-KER	12,000 2,500

Table 11. 100-K Stacks.*

*100 Areas Environmental Releases for 1988 (WHC 1988).

4.2 200 EAST AREA EFFLUENT STACKS

Stack ID	Descriptor	Typical flow rate, cfm
291-A-1	200 ft	120,000
296-A-1	Q-Cell and PR Room	5,000
296-A-2	West Sample Gallery	4,000
296-A-3	East Sample Gallery	3,000
296-A-5A	Lab West	18,000
296-A-5B	Lab East	20,000
296-A-6	E Sample Gallery and U-Cell	20,000
296-A-7	W Sample Gallery and R-Cell	20,000
296-A-8	White Room Exhauster	16,000
296-A-10	Equipment Disposal Tunnel	4,000
296-A-14	Outback (293–A) Exhaust	5,000
296-A-24	Ammonia Offgas	1,500
296-A-31	Storage Gallery	12,000
296-A-32	Vacuum Pump Exhaust	1,800
296-A-33	Wall Exhauster, EF-3-5	4,000
296-A-34	Wall Exhauster, EF-3-6	6,000
296-A-35	Wall Exhauster, EF-3-7	7,000
296-A-36	Wall Exhauster, EF-3-8	4,300
296-A-37	Wall Exhauster, EF-3-9	8,000
296-A-38	Wall Exhauster, EF-3-10	2,300
296-A-39	SWP Lot'y Exhaust	unknown

Table 12. PUREX Stacks.*

*Effluent Discharges and Solid Waste Management Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

Table 13.	B Plant	/WESF	Stacks.*
-----------	---------	-------	----------

Stack ID	Descriptor	Typical flow rate, cfm
291-B-1	200 ft	40,000
296-B-5	271-В	1,500
296-B-10	WESF	20,000
296-B-13	221-BF, BCF Tanks	800
296-B-14	221-B Vessel Vent	250

*Effluent Discharges and Solid Waste Management Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

Stack ID	Descriptor	Typical flow rate, cfm
291-A-12	244-AR Vessel Vent (150 ft)	1,000
296-A-13	244–AR Canyon	6,000
296-A-17	A, AX, AY, AZ Tanks	4,000
296-A-18	101-AY Annulus	1,200
296-A-19	102-AY Annulus	1,200
296-P-17	Tank 105-A	2,000
296-A-20	AZ Annuli	2,000
296-A-21	242-A Evaporator	20,000
296-A-22	242-A Vessel Vent	700
296-A-25	244-A Catch Tank	160
296-A-26	204-AR Tank Car Building	2,000
296-A-27	AW Tanks	1,100
296-A-28	AW Annuli	4,600
296-A-29	AN Tanks	900
296-A-30	AN Annuli	6,000
296-A-40	AP Tanks	1,000
296-A-41	AP Annuli	10,000
296-B-28	244-BX Saltwell Vessel	300
296-C-5	244-CR Vault	3,000
296-P-16	Tanks 105-C and 106-C	3,500

Table 14. East Tank Farm Stacks.*

*Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

4.3 200 WEST AREA EFFLUENT STACKS

Stack ID	Descriptor	Typical flow rate, cfm
291-S-1	200 ft	20,000
296-S-2	202-S Sample Gallerv	600
296-S-4	202-S SWP Lobby	5,000
296-S-6	202-S Silo	10,000
296-S-7E	233-S Building Exhaust	9,000
296-S-7W	233-S Building Exhaust	9,000
296-S-16	218-S Tanks	150
296-S-21	222-S Laboratories	70,000

Yable 15. S Plant Stacks.*

*Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

11/1/90 (8:59am)

4-3

Stack ID	Descriptor	Typical flow rate, cfm	
291-T-1	200 ft	40,000	
296-T-11	224-T Storage East	13,000	
296-[-12	224-T Storage West	13,000	
296-T-13	221-T Roof	40,000	
296-W-1	Laundry	20,000	

Table 16. T Plant Stacks.*

*Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

Stack ID	Descriptor	Typical flow rate, cfm	
291-U-1	200 ft	28,000	
296-U-2	Powder Handling Offgas	1,400	
296-U-4	224-U Calciners	2,500	
296-U-13	224-U Load-out Room	5,000	

Table 17. U Plant Stacks.*

*Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

Stack ID	Descriptor	Typical flow rate, cfm
291-Z-1	200 ft (234-5,232,236,242)	240,000
296-Z-3	241-Z Sump and Vessels	1,800
296-2-5	2/36-ZB	10,000
296-2-6	2/36-ZA	11,000

Table 18. Z Plant Stacks.*

*Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

Stack ID	Descriptor	Typical flow rate, cfm
296-P-22	SY Annuli	450
296-P-23	SY Tanks	1.000
296-S-15	SX Tanks	5,000
296-S-18	242-S Building Exhaust	20,000
296-S-22	244-S Saltwell Receiver	200
296-T-17	242-T Cells	2,000
296-T-18	244-TX Saltwell Receiver	300
296-W-03	213-W Waste Compactor	2,500

Table 19. West Tank Farm Stacks.*

*Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

4.4 300 AREA EFFLUENT STACKS

Stack ID	Descriptor	Typical flow rate, cfm
303-M	Oxide Facility	3,000
306-E	UO, Laboratory	3,200
308	Glővebox	3,400
308	Etch and Clean	4,300
308	TRIGA Reactor	2,400
309	Containment	7,000
313	Engineering Hot Laboratory	ُ800
333	Building	3,200
340	Neutralization Tank and Vault	1,900
340	Decontamination Facility	1,000
340-B	Tank Car Loadout	8,500

Table 20. 300 Area [ffluent Stacks.*

*Effluent Report for 300, 400, and 1100 Area Operations for Calendar Year 1988 (WHC 1988).

4.5 400 AREA EFFLUENT STACKS

Stack emission point	Typical flow rate, cfm
Combined Exhaust	24,000
Lower Reactor Service Building	13,000
HTS-South	4,200
MASF Building Exhaust	16,000

Table 21. The 400 Area Effluent Stacks.*

*Effluent Report for 300, 400, and 1100 Area Operations for Calendar Year 1988 (WHC 1988).

5.0 SAMPLE PROBLEMS FOR ED - REVISION 3

5.1 STACK RELEASE OF HYDROGEN FLUORIDE

A. Scenario - Severe damage to process equipment at the Plutonium Finishing Plant has resulted in a release of hydrogen fluoride (HF) to the exhaust system. The accident is assumed to occur on May 31, at 10:00 pm. Winds are blowing toward the west at 5 mph. Calculate the HF concentration at the Site boundary and at Highway 240. The HF comes to PFP in 150-1b cylinders.

. Calcu	lator	Display	
---------	-------	---------	--

Hazard Evaluator Entry

(an arbitrary number)	USER mode switch; XEQ
ED - Rev 3	R/S
U.S.A. UNITS ?	R/S
MET = A ? (or any letter)	E (Table 2); R/S
$ME \mathbf{i} = \mathbf{E} \mathbf{i}$	K/S
D = 2,625.0 FI ? (or any number)	820 (Table 6); R/S
D = 820.0 FT ?	R/S
V = 2.2 MPH ? (or any number)	5; R/S
V = 5.0 MPH ?	R/S
H = 6.3 FT? (or any number)	200 (main stack); R/S
H = 200.0 FT ?	R/S
X = 15.00 MI? (or any number)	7.6 (Site Bdy): R/S
X = 7.60 MI?	R/S
Y = 0.0 FT? (assumed okay)	R/S
$\Sigma Y = 1.685.9 \text{ FT}$?	R/S
$\Sigma Z = 278.1 FT$?	R/S
X/Q = 2.52E-6?	R/S
DUR = 4.0 HR ? (or any number)	0.5 (assumed); R/S
DUR = 0.5 HR ?	R/S
RAD SOURCE?	3 (or any number): R/S
CHEM SOURCE?	R/S
ST. TOTAL = 1.2 ?	2: R/S
TOT IB RFL ?	150 (assumed): R/S
X = Y = MG/M3 = 9.5F-2	R/S
FORMULA WT?	19 (grams/mole) · R/S
$Y = V = 1 + 1F_1$	13 (gi am3/more), N/3
A T T T T T T T T T T T T T T T T T T T	

The above concentration is well below the U.S. Department of Energy protective action guide of 20 mg/m³.

Next, the Hazard Evaluator estimates the HF concentra-

1.1E-1	USER mode switch; A
X = 7.60 MI ?	2.8 (Hwy 240); R/S
X = 2.80 MI?	R/S
$\Sigma Y = 684.2 FT$?	R/S
$\Sigma Z = 175.8 FT$?	R/S

5-1

Calculator Display (continued)	Hazard Evaluator Entry
X/Q = 6.67E-6 ?	R/S
X, Y MG/M3 = 2.5E-1	R/S
FORMULA WT? X,Y PPM = 3.0E-1	R/S (already entered)
The above concentration is action guide. Next the Ha concentration at the Yakim 270 lb.	well below the protective zard Evaluator estimates the a Barricade for a release of
3.0E-1	USER mode switch; G
CHEM SOURCE?	USER mode switch; K/S
TOT IN DEL 2	K/S (already entered)
$Y = MC/M3 = A = 5E_1$	270; K/S
FORMILLA WT?	R/S (almoady ontened)
X Y PPM = 5 4F-1	N/S (arready entered)

5.2 GROUND RELEASE WITH DOWNWIND FIELD DATA

A. Scenario - A radioactive plume of unknown origin in the 241-C Tank Farm has caused measurable surface contamination in the vicinity of PUREX. The wind is currently blowing toward the SSE at 5 mph, at a stability best described as Class D. An air sample 3,600 ft downwind and 250 ft off the plume centerline has been running for 81 h when it is counted with field instruments and reads about 2,000 cpm above background. How much activity was released, and what dose would be estimated for the Site boundary? Use a mixing depth of 500 ft. Assume a detector efficiency of 10%, and an air sample flow rate of 2 cfm.

	в.	Ca	Icul	ator	Disp	ay	
--	----	----	------	------	------	----	--

Hazard Evaluator Entry

(an arbitrary number)	USER mode switch; XEQ
ED – Rev 3	R/S
U.S.A. UNITS ?	R/S
<pre>MET = E ? (leftover from previous) MET = D ?</pre>	D; R/S R/S
D = 820.0 FT ?	500; R/S
D = 500.0 FT ?	R/S
V = 5.0 MPH ?	R/S
H = 200.0 FT ?	5; R/S
H = 5.0 FI ?	R/S
X = 2.80 MI ?	3600; ENTER†;
X = 0.68 MI?	5280; +; R/S R/S
Y = 0.0 FI?	250; K/S
Y = 250.0 FT?	R/S
$\Sigma Y = 268.7 \text{ FT}$?	P/S
2Y = 268.7 H ?	R/S

11/1/90 (8:59am)
.

Calculator Display (continued)	Hazard Evaluator Entry
ΣZ = 110.5 FT ?	R/S
X/Q = 3.35E-5?	R/S
DUR = 0.5 HR ?	R/S
CHEM SOURCE?	3 (or any number); R/S
RAD SOURCE?	R/Š
ST, CI, AR, GD = 1 - 4	3: R/S
CONC OR DPM ?	20.000 (dpm): R/S
CU.FT SAMPLD?	81: ENTER1: 2: x:
162.0	R/S
2.0E-9 UCI/CC	R/S
HRS SAMPLED?	81: R/S
REL: 1.7E1 CI	R/S
X.Y UCI/CC= $3.2E-7$	R/S
a, B1, B2, NEW = 1-4	2 (worst beta): R/S
SR.RU.I.CS= 1-4	1: R/S
SR-90: 5.1E2 MR	R/S
ORGAN LIMITS	
This would be the bone dose fr Sr-90 if someone had been star station during the entire rele dose at the Site boundary, 12	rom inhalation of airborne nding near the air sample ease. To calculate the mi SSE, do the following:
5.1E2 X = 0.68 ML 2	USER mode switch; A

	USER MODE SWILLIN A
X = 0.68 MI ?	12; R/S
X = 12.00 MI ?	R/S
$\Sigma Y = 3,581.4 FT$?	B
Y = 200.0 FT?	0: R/S
Y = 0.0 FT?	R/S
$\Sigma Y = 3,581.4 FT$?	R/S
$\Sigma Z = 630.0 FT$?	R/S
X/Q = 1.07E-6 ?	R/S
$REL = 1.7E1 \ CI$	R/S
X, Y UCI/CC = 1.0E - 8	R'/S
SR-90: 1.6E1 MR	•

The projected offsite organ dose (bone) of 16 mrem would put this accident in the Alert category.

4

5-3/4

6.0 VERIFICATION OF ED - REVISION 3 CALCULATIONS

Verification: Code verification is the comparison of code results with the results of hand calculations and the results of other codes. In this section, values computed by ED – Revision 3 are compared with the GENII code, Version 1.436, and with hand calculations.

6.1 X/Q CALCULATION

- A. The atmospheric dispersion model is the same as that found in GENII, but without some of the advanced features such as building wake and plume rise. The calculator model does include plume reflection from both the ground and mixing layer.
- B. The GENII program was induced to supply X/Q values at specific stability classes and release heights by using special joint frequency data files. In addition, to obtain a value of X/Q with three meaningful digits, the X/Q value stored in the buffer file ENV.IN was used in the comparisons. The file used for calculating the Class F, ground level X/Q values is shown in the following chart.

Joint Frequency File for Ground Level, Class F, X/Q Computations

10 M - Pasquill F Created 6-Aug-90 PDR 10.0 1 1 .89 2.65 4.7 7.15 9.8 12.7 15.6 19.0 $0.0 \ 0.0$ $1.0 \ 0.0$ $0.0 \ 0.0$

- C. Verification of X/Q values began with a carefully selected series of test cases to exercise relevant portions of the code without unnecessary duplication. Ground level X/Q is verified first, then stack X/Q, then treatment of reflection from the mixing layer, wind speed effects, and finally, off-axis X/Q.
 - 1. The mixing depths in all cases is 1,000 m, (the value contained in the GENII code).
 - 2. The wind speed is 0.89 m/s, except where noted.

- 3. The distance of 1,000 m is chosen because this is a transition distance where the model changes from one set of parameters to another. The 100-m and 10-km distances verify near and far behavior.
- D. Ground level X/Q results from both ED and the computer program GENII (Version 1.436) are shown on the following tables. Note that GENII does not reveal the values of Sigma Y and Sigma Z that are used. Therefore, the Sigma values could not be compared.

P-G	100 m		1.000 m		10 km	
Class	Sigma Y	Sigma Z	Sigma Ý	Sigma Z	Sigma Y	Sigma Z
А	23.4	14.3	187.3	448.4	1,498.5	57.035
Β.	17.6	10.9	140.9	110.2	1.126.9	1.358.3
С	13.4	7.5	107.0	61.1	855.7	497.8
D	9.4	4.6	75.3	31.5	602.6	133.0
Ε	6.7	3.5	53.6	21.5	428.5	77.7
F	4.6	2.2	37.0	13.9	295.8	46.1
G	3.1	1.3	24.6	8.4	197.0	27.7

Table 22. Atmospheric Dispersion Parameters Calculated by ED.

P-G	Dist	<u>ance downwi</u>	nd (X)
Class	100 m	1,000 m	10 km
A	1.07 E-03	4.26 E-06	2.99 E-07
B	1.87 E-03	2.30 E-05	3.98 E-07
C	3.57 E-03	5.47 E-05	8.40 E-07
D	8.34 E-03	1.51 E-04	4.46 E-06
E	1.53 E-02	3.10 E-04	1.07 E-05
F	3.44 E-02	6.95 E-04	2.62 E-05
G	8.62 E-02	1.74 E-03	6.56 E-05

Table 23. Ground Level X/Q Values Computed by GENII.

P-G	<u> </u>	<u>nce downwin</u>	<u>d (X)</u>
Class		1,000 m	10 km
A	1.07 E-03	4.26 E-06	2.99 E-07
B	1.86 E-03	2.30 E-05	3.98 E-07
C	3.57 E-03	5.47 E-05	8.40 E-07
D	8.32 E-03	1.51 E-04	4.46 E-06
E	1.54 E-02	3.10 E-04	1.07 E-05
F	3.44 E-02	6.95 E-04	2.62 E-05
G	8.55 E-02	1.72 E-03	6.57 E-05

P-G	Dista	nce downwind	(X)	
Class	100 m	1,000 m	10 k	m
Α	0.0	0.0	0.0	
В	0.5	0.0	0.0	
С	0.0	0.0	0.0	
D	0.2	0.0	0.0	
E	-0.7	0.0	0.0	ŀ.
F	0.0	0.0	0.0	
G	0.8	1.2	-0.2	

Table 24. Percent Differences Between ED and GENII Ground Level X/Q Results.

Explanation of Differences: Most of the differences observed are due to the different representation of real numbers in the two different computers. The difference for the first two distances in the Class G row is due to a slight difference in calculating Simga Z. GENII calculates Sigma Z using the parameters shown in Table 28 (7.1, Section C) with the exception that Az(2) is 0.052 rather than 0.0516 shown on the table. The ED calculates Sigma Z for Class F and then multiplies by 0.6 to arrive at the Sigma Z for Class G. In effect, ED uses the value 0.0516 shown on the table.

E. Using the joint frequency file for 61 meter stack releases in the following chart, the GENII program computed a X/Q value of 3.32×10^{-5} s/m³ at Pasquill Class C, and at a distance of 1,000 m. The ED gives the same result.

Joint Frequency File for 61 m, Class C, X/Q Computations

61 M - Pasquill C Created 6-Aug-90 PDR 61.0 1 3 1 1 7.15 .89 2.65 9.8 12.7 4.7 15.6 19.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

F. To test the treatment of reflection from the mixing layer, the X/Q values at a few distances near the transition point ($\Sigma z = 1.2*D$) were compared. Results are shown in Table 25. The unusual release height of 900 m was used to test the effect of a release height that was near the mixing depth.

Table 25. Comparison of ED and GENII for Reflection from the Mixing Layer (using Pasquill B stability and mixing layer depth of 1,000 m).

Release height	Distance	Sigma Z	X/Q Val	Percent	
Kerease nergit	km	m	ED	GENII	difference
Ground level	5.0	635.6	9.47 E-07	9.47 E-07	0.0
Ground evel	7.0	918.8	5.66 E-07	5.66 E-07	0.0
Ground level	8.8	1.180.7	4.46 E-07	4.47 E-07	-0.2
Ground level	9.0	1,210.2	4.37 E-07	4.38 E-07	-0.2
900 m stack	5.0	635.6	5.52 E-07	5.52 E-07	0.0
900 m stack	7.0	918.8	5.33 E-07	5.33 E-07	0.0
900 m stack	8.8	1,180.7	4.45 E-07	4.46 E-07	-0.2
900 m stack	9.0	1,210.2	4.37 E-07	4.37 E-07	0.0

- G. One additional test of the mixing layer reflection is to enter a mixing depth equal to the release height. This should give an X/Q value twice as large as the no-reflection case (i.e., with a mixing depth much larger than the Sigma Z). For example, using Pasquill Class D stability, a release height of 61 m, and a distance of 1,000 m, the unreflected X/Q is $2.31 \times 10^{-5} \text{ s/m}^3$, while the X/Q with a mixing depth of 61 m is $4.63 \times 10^{-5} \text{ s/m}^3$.
- H. Two additional cases with wind speeds of 0.445 m/s and 1.78 m/s were used to verify the inverse ⊥ependence on wind speed.
 - 1. At 0.445 m/s, all the X/Q values are twice what they are at 0.89 m/s.
 - 2. Similarly, at 1.78 m/s, the X/Q values are halved. Only one row was tested, as the wind speed enters the calculation after the program calculates the Sigma Y and Sigma Z values.
- I. Finally, the off-axis (Y) behavior is verified. Using a value for Y that is 1.1774 (= SQRT(2*ln 2)) times greater than Sigma Y should reduce the X/Q by a factor of exactly 2. Similarly, applying a factor of 1.6651 (= SQRT(2*ln 4)) to Sigma Y reduces X/Q by a factor of exactly 4. Both changes were tested at three distances and two release heights. Only one stability class needs to be tested because the program calculates the off-axis factor after calculating Sigma Y and Sigma Z values.

6.2 DOWNWIND CHEMICAL CONCENTRATIONS

- A. The example input and results summarized in the following two subsections thoroughly test all features of the chemical source characterization portion of ED. Note that the lines that begin with "==>" are results computed using a spreadsheet to independently check ED.
- B. The following input data were used to verify the program using the ST option:

 $X/Q = 1.0 \times 10^{-4} \text{ s/m}^3$ Exhauster flow rate = 106,000 cfm (50 m³/s) Chemical formula weight = 17 g/mole (ammonia)

Stack concentration = 700 ppm ==> downwind concentration = 3.50 ppm ==> 2.66 mg/m³

Stack concentration = 700 mg/m³ ==> downwind concentration = $3.50 \text{ mg/m}^3 = => 4.61 \text{ ppm}$

C. The following data were used to verify the program using the TOTAL option:

X/Q = 1.0 x 10⁻⁴ s/m³ Release duration = 4 h Chemical formula weight = 17 g/mole (ammonia)

Total release amount = 600 lb ==> downwind concentration = 1.89 mg/m³ ==> 2.49 ppm

6.3 ESTIMATION OF TOTAL CURIES RELEASED

- A. The example input and results summarized in the following subsections thoroughly test all features of the radionuclide source characterization portion of ED. Note that the lines that begin with "==>" are results computed using a spreadsheet to independently check ED.
- B. The following input data were used to verify the program using the **ST** option for stack releases:

X/Q = 1.0 x 10^{-4} s/m³ Release duration = 4 h Exhauster flow rate = 106,000 cfm (50 m³/s) Stack concentration = 2.0 x 10^{-7} µCi/cc => total activity released = 0.144 Ci => downwind concentration = 1.00 x 10^{-9} µCi/cc

```
Activity on air sample = 80,000 dpm

Volume of air sampled = 10 ft<sup>3</sup>

==> stack concentration = 1.27 x 10^{-7} \mu Ci/cc

==> total activity released = 0.0917 Ci

==> downwind concentration = 6.37 x 10^{-1} \mu Ci/cc
```

C. The following data were used to verify the program using the CI option for entering the total activity released:

```
X/Q = 1.0 \times 10^{-4} \text{ s/m}^3
Release duration = 4 h
Total activity released = 5 Ci
=> downwind concentration = 3.47 x 10^{-8} \mu \text{Ci/cc}
```

D. The following data were used to verify the program using the AR option for an air concentration measurement downwind:

X/Q = 1.0 x 10⁻⁴ s/m³ Release duration = 4 h

Air concentration = 5.0 x $10^{-8} \ \mu \text{Ci/cc}$ Sampling period = 8 h ==> total activity released = 14.4 Ci ==> downwind concentration = 1.00 x $10^{-7} \ \mu \text{Ci/cc}$

Sampling period = 3 h
==> total activity released = 7.20 Ci
==> downwind concentration = 5.00 x 10⁻⁸ µCi/cc

```
Activity on air sample = 40,000 dpm

Volume of air sampled = 20 ft<sup>3</sup>

==> air concentration = 3.18 x 10<sup>-8</sup> µCi/cc

Sampling period = 4 h

==> total activity released = 4.58 Ci

==> downwind concentration = 3.18 x 10<sup>-8</sup> µCi/cc
```

E. The following data were used to verify the program using the GD option for a surface contamination measurement downwind:

 $X/Q = 1.0 \times 10^{-4} \text{ s/m}^3$ Release duration = 4 h

Surface contamination = 800 dpm/cm² Ground deposition speed = 0.15 cm/s ==> total activity released = 24.0 Ci ==> downwind concentration = 1.67 x 10⁻⁷ µCi/cc

6.4 DOSE CALCULATIONS

A. All possible radionuclide choices were tested in actual dose calculations with ED. Doses were calculated for an X/Q of

 $2/330 \text{ s/m}^3$ and a total release of 0.0005 Ci. These choices of dispersion factor and release amount produce doses that are numerically equal to the dose factor stored in the program.

- B. Several inert gas dose factors are listed in Table 26. The final column shows the values actually used by ED to simplify the dose calculation. The numbers in the last column are the submersion dose factors (rem/s per Ci/m³) divided by the breathing rate used in ED (330 cc/s). ED calculates the external dose by multiplying the dose factor by the breathing rate, the quantity released and the X/Q value.
- C. The inhalation dose factors used by ED are listed in Table 27. Table 27 lists more dose factors than are used by the program. The final column shows whether the EDE or the organ dose should be considered limiting.
 - 1. The EDE is limiting if the ratio of the organ to EDE is less than 3.
 - 2. The organ is limiting if the organ-to-EDE dose ratio is greater than 5.
 - 3. For ratios between 3 and 5, the actual ratio is printed in the table.
 - 4. The factors of 3 and 5 come from the emergency action level criteria.

Inert	Sv/h	Rem/s	Effective
gases	per Bq/m ³	per Ci/m	rem/μCi
41 Ar	2.17 E-10	2.23 E-01	6.76 E-04
85mKr	2.98 E-11	3.06 E-02	9.28 E-05
85 Kr	4.70 E-13	4.83 E-04	1.46 E-06
87 Kr	1.42 E-10	1.46 E-01	4.42 E-04
88 Kr	3.60 E-10	3.70 E-01	1.12 E-03
89 Kr	5.00 E+00	5.14 E+09	1.56 E+07
131m Xe	1.48 E-12	1.52 E-03	4.61 E-06
133m Xe	5.38 E-12	5.53 E-03	1.68 E-05
133 Xe	6.07 E-12	6.24 E-03	1.89 E-05
135m Xe	7.53 E-11	7.74 E-02	2.35 E-04
135 Xe	4.68 E-11	4.81 E-02	1.46 E-04
137 Xe	5.00 E+00	5.14 E+09	1.56 E+07
138 Xe	1.92 E-10	1.97 E-01	5.98 E-04

Table 26. External Dose Factors for Inert Gases.

Isotope	ICRP CLASS	Sv/ EDE	Bq Max organ	rem// EDE	uCi Max organ	Limiting
3.11	H20	1 73 F_11	1 73 F_11	9 60 E_05	9 60 E_05	EDE
140	ORG	$5.64 E_{-10}$	$5.64 E_{-10}$	2 NG F_N3	2 NG E-03	FDF
140	CO2	6 36 F-12	$6 36 F_{-12}$	2.09 L-05 2 35 F_05	2.09 L-05 2 35 F-05	FDF
140	0	7 83 F_13	7 83 F_13	2.33 E-05 2 90 F-06	2 90 F-06	FDF
5.4 Mn	. W	1 81 F_09	6 66 F-09	6 70 E-03	2.30 E-00 2 46 F-02	3 7
54Mn	n	1.01 = 0.01	2.56 F-09	5 25 F-03	9 47 F-03	FDF
6 ⁰ Co	Ŷ	5.91 E-08	3.45 E-07	2 19 F-01	1 28 F+00	Organ
6 ° Co	Ŵ	8.94 F-09	3.57 E-08	3.31 E-02	1.32 E-01	4.0
90Sr	Ÿ	3.51 F-07	2.86 F-06	1.30 F+00	1.06 F+01	Organ
aoγ	Ŷ	2.28 E-09	9.31 E-09	8.44 E-03	3.44 F-02	4.1
90Sr	Ď	6.47 E-08	7.27 E-07	2.39 E-01	2.69 F+00	Organ
907	Ŵ	2.13 E-09	2.78 E-10	7.88 E-03	1.03 F-03	EDF
103Ru	Ŷ	2.42 E-09	1.56 E-08	8.95 E-03	5.77 E-02	Organ
103Ru	Ŵ	1.75 E-09	9.86 E-09	6.48 E-03	3.65 E-02	Organ
103Ru	D	8.25 E-10	1.03 E-09	3.05 E-03	3.80 E-03	EDE
¹⁰⁶ Ru	Ŷ	1.29 E-07	1.04 E-06	4.77 E-01	3.85 E+00	Organ
106Ru	W	3.18 E-08	2.11 E-07	1.18 E-01	7.81 E-01	Organ
¹⁰⁶ Ru	D	1.52 E-08	1.80 E-08	5.62 E-02	6 E-02	EDĔ
1 2 9 I	D	4.69 E-08	1.56 E-06	1.74 E-01	5./7 E+00	Organ
131I	D	8.89 E-09	2.92 E-07	3.29 E-02	1.08 E+00	Organ
132 I	D	1.03 E-10	1.74 E-09	3.81 E-04	6.44 E-03	Organ
1 3 3 I	D	1.58 E-09	4.86 E-08	5.85 E-03	1.80 E-01	Organ
135 I	D	3.32 E-10	8.46 E-09	1.23 E-03	3.13 E-02	Organ
¹³⁷ Cs	D	8.63 E-09	8.82 E-09	3.19 E-02	3.26 E-02	EDĒ
144Ce	Y	1.01 E-07	7.91 E-07	3.74 E-01	2.93 E+00	Organ
144Ce	W	5.84 E-08	1.83 E-07	2.16 E-01	6.77 E-01	3.1
147Pm	Y	1.06 E-08	7.74 E-08	3.92 E-02	2.86 E-01	Organ
147Pm	W	6.97 E-09	1.02 E-07	2.58 E-02	3.77 E-01	Organ
¹⁹² Ir	Y	7.61 E-09	5.24 E-08	2.82 E-02	1.94 E-01	Organ
192 Ir	W	4.88 E-09	2.55 E-08	1.81 E-02	9.44 E-02	Organ
192 Ir	D	5.10 E-09	1.15 E-08	1.89 E-02	4.26 E-02	EDE
212Pb	D	4.56 E-08	3.71 E-07	1.69 E-01	1.37 E+00	Organ
^{2 2 6} Ra	W	2.32 E-06	1.61 E-05	8.58 E+00	5.96 E+01	Organ
232Th	W	4.43 E-04	1.11 E-02	1.64 E+03	4.11 E+04	Organ
232Th	Ŷ	3.11 E-04	4.99 E-03	1.15 E+03	1.85 E+04	Organ
2330	Ŷ	3.66 E-05	3.04 E-04	1.35 E+02	1.12 E+03	Organ
2330	W	2.16 E-06	1.62 E-05	7.99 E+00	5.99 E+01	Organ
2330	D	7.53 E-07	1.12 E-05	2.79 E+00	4.14 E+01	Organ
U	UO	3.44 E-05	2.86 E-04	1.27 E+02	1.06 E+03	Organ
U	U03	2.05 E-06	1.54 E-05	7.58 E+00	5.68 E+01	Organ
U	UNH	7.12 E-07	1.05 E-05	2.64 E+00	3.88 E+01	Organ

Table 27. Inhalation Dose Factors for Particulates.*

11/1/90 (8:59am)

W

W

Y

W

W

1.46 E-04

1.82 E-04

1.23 E-04

1.20 E-04

6.70 E-05

²³⁷Np

Pu 12%

Pu 12%

2 4 1 Am

244Cm

3.27 E-03

3.35 E-03

1.35 E-03

2.17 E-03

1.17 E-03

5.40 E+02

6.74 E+02

4.56 E+02

4.44 E+02

2.48 E+02

1.21 E+04

1.24 E+04

4.99 E+03

8.03 E+03

4.33 E+03

Organ

Organ

Organ

Organ

Organ

Teetene		Sv	/Bq	rem/	μCi	
Isocope	ICRP CLASS	EDE	Max organ	EDE	Max organ	Limiting
252Cf	Y	4.24 E-05	2.99 E-04	1.57 E+02	1.11 E+03	Organ
252Cf	W	3.70 E-05	6.86 E-04	1.37 E+02	2.54 E+03	Organ

Table 27. Inhalation Dose Factors for Particulates	(continued).*
--	---------------

*Federal Guidance Report Number 11 (EPA-520/1-88-020, September 1988).

7.0 CONCEPTUAL MODELS USED IN ED - REVISION 3

7.1 ATMOSPHERIC DISPERSION MODEL

A. A gaussian plume model is used for X/Q. Assuming that the wind blows steadily along the X-axis at a speed V, and that the vertical spread of the plume is reflected at both the ground plane (elevation 0) and the mixing layer plane (elevation D), then the X/Q value is computed using the following formula:

$$X/Q = \frac{EXP[-0.5*((H/\Sigma z)^{2}+(Y/\Sigma y)^{2})]}{\pi^{*}V^{*}\Sigma y^{*}\Sigma z} * [1 + EXP[2*(D/\Sigma z)^{2}*(1-H/D)] + EXP[2*(D/\Sigma z)^{2}*(1-H/D)]]$$

Note that if $\Sigma z > 1.2*D$, then the plume is uniformly distributed between the ground and the mixing layer. In this case the formula for X/Q simplifies to the following:

$$X/Q = \frac{EXP[-0.5*(Y/\Sigma y)^2]}{SQRT(2*\pi)*V*\Sigma y*D}$$

B. The Pasquill-Gifford curves for Sigma Y and Sigma Z (i.e., Σy and Σz) were approximated using the same formula as is used in GENII. However, distances less than 100 m are excluded. The following formula illustrates this:

Sigma =
$$A \times X^B$$
 + C

C. The parameters A, B, and C are listed below. For Sigma Y, Cy = 0, By = 0.9031, and Ay values are shown in Table 28. For Sigma Z, there are two distance ranges for each.

The parameters shown for Class G are the equivalent parameters that ED uses, in effect, when calculating Sigma values. The ED actually calculates Class G Sigma Z values by calculating Class F Sigma Z values and multiplying by 0.6. The Class G values for Az and Cz are just the Class F values multiplied by this factor.

7.2 DOWNWIND CHEMICAL CONCENTRATIONS

A. The downwind concentration is the release rate times the X/Q value, with appropriate conversion factors added to give the desired final concentration units.

Class	Ay	Az(2)	Az(3)	Bz(2)	Bz(3)	Cz(2)	Cz(3)
Α	0.3658	0.00066	0.00024	1.941	2.094	9.27	-9.6
В	0.2751	0.0382	0.055	1.149	1.098	3.3	2
С	0.2089	0.113	0.113	0.911	0.911	0	0
D	0.1471	0.222	1.26	0.725	0.516	-1.7	-13
E	0.1046	0.211	6.73	0.678	0.305	-1.3	-34
F	0.0722	0.086	18.05	0.74	0.18	-0.35	-48.6
G	0.0481	0.0516	10.83	0.74	0.18	-0.21	-29,16

Table 28. Parameters used by ED in the Calculation of Sigma Y and Sigma Z (By = 0.9031 and Cy = 0.0).

(2) means that the distance $X \le 1,000$ m

(3) means that X > 1,000 m.

B. The TOTAL option: If the total number of pounds estimated to have been released during the length of the release, then the downwind concentration, in mg/m^3 is given by the following formula:

				Pounds released *	* X/Q *	453,592	mg/lb
Downwind c	onc	(mg/m ³)	22	Release durati	ion	3,600 9	s/h

C. The ST option: If the exhaust stack flow rate (cfm) and the effluent concentration (in either ppm or mg/m^3) are known, then the downwind concentration can be estimated using the formula below. Note that the exhaust concentration and the downwind concentration have the same units.

Downwind conc = Exhaust conc * Flow rate $\times X/Q$

D. The conversion from mg/m^3 to ppm (by volume) is done assuming ideal gas behavior. In other words, one formula weight of the chemical is assumed to occupy a volume of 22.4 L. The formula for this conversion is shown below.

ppm (by volume) = $10^6 \times \text{mg/m}^3 \times \frac{22.4 \text{ L} \times 0.001 \text{ g/mg}}{\text{Formula weight} 1,000 \text{ L/m}^3}$

7.3 ESTIMATION OF TOTAL CURIES RELEASED

A. The ST option: The exhaust flow rate (cfm), the activity concentration at the point of release (μ Ci/cc), and the duration

8/24/90 (7:47am)

of the release (hours) can be used to compute the total activity released. The conversion factors ED applies are 2,119 cfm*s/m³ and 3,600 s/h. The following formula is used by ED:

Total Ci released = Exhaust conc * Flow rate * Exhaust time

B. The AR option: The average downwind air concentration (μ Ci/cc) and the air sample time can be used to estimate total activity released. The formula used by ED is the following:

Total Ci released = $\frac{Conc \text{ at } (X,Y) * Sample time}{X/Q \text{ at Air sampler}}$

Note that if the sample time is less than the release duration, then activity is scaled up by the ratio of release duration to sample time.

C. The GD option: Downwind surface contamination (distance per minute per square centimeter), the ground deposition speed (centimeters/ second), and the release duration can be used to estimate the total activity released. The ED uses the following formula:

Total Ci Released = $\frac{\text{Surface contamination}}{\text{Deposition speed * X/Q}} * \frac{10^6 \text{ cm}^3 \text{ per m}^3}{2.22 \times 10^{12} \text{ dpm/Ci}}$

7.4 DOWNWIND AIR CONCENTRATION AND DOSE EQUIVALENT

A. The air concentration downwind at (X,Y) is the release rate times the X/Q value. The ED uses the following formula:

Air conc at $(X,Y) = \frac{\text{Total Ci released}}{\text{Release duration } * X/Q} * \frac{1 \text{ h}}{3,600 \text{ s}}$

B. The inhalation dose is the product of the total activity released (Ci), the X/Q value, the assumed breathing rate (330 cc/s), and the inhalation dose factor (rem/ μ Ci inhaled). Inhalation dose commitment factors are listed in Table 27.

Inhalation Dose at (X,Y) = (Total Ci Released) * (X/Q) * (Breathing Rate) * (Dose Factor)

8/24/90 (7:47am)

C. The external dose from submersion in the plume is the product of the total activity released (Ci), the X/Q value, and the external dose rate factor (rem/s per Ci/m³). To facilitate the calculation ED divides the external dose rate factor by the breathing rate (330 cc/s) to produce a dose factor that can be treated as the inhalation dose factor. These effective dose factors are listed in Table 26.

7.5 DOSE FACTORS FOR PLUTONIUM AND URANIUM MIXTURES

A. Because mixtures of plutonium isotopes or uranium isotopes are handled instead of a pure isotopic form, the inhalation dose factors for common mixtures are used in ED. Tables 29 and 30 summarize the assumed composition for plutonium. Table 29 gives the inhalation dose factors for the individual isotopes of plutonium. Table 30 gives the composition and resulting composite/dose factor.

		S	v/Bq		·	rem	/µCi -	
Isotope	Clas	s Y	Clas	s W	Cla	ss Y	Cla	ss W
-	EDE	Bone	EDE	Bone	EDE	Bone	EDE	Bone
^{2 3 8} Pu	7.79 E-05	7.25 E-04	1.06 E-04	1.90 E-03	288	2680	392	7030
^{2 3 9} Pu	8.33 E-05	8.21 E-04	1.16 E-04	2.11 E-03	308	3040	429	7810
^{2 4 0} Pu	8.33 E-05	8.21 E-04	1.16 E-04	2.11 E-03	308	3040	429	7810
^{2 4 1} Pu	1.34 E-06	1.78 E-05	2.23 E-06	4.20 E-05	4.96	65.9	8.25	155
^{2 4 2} Pu	7.92 E-05	7.81 E-04	1.11 E-04	2.01 E-03	293	2890	411	7440
^{2 4 1} Am	8.82 E-05	8.28 E-04	1.20 E-04	2.17 E-03	326	3060	444	8030

Table 29. Plutonium Inhalation Dose Factors.

Table 30. Inhalation Dose Factors for a Mixture of Plutonium Isotopes.

Isotope	12%	Pu-240	Inhalation Dose Factors in Sv/Bq			
	Weight	Activity	Class Y Class W			
	Percent	Ci/g Pu	EDE	Bone	EDE	Bone
2 3 8 Pu	0.093	1.59 E-02	1.27 E-05	1.18 E-04	1.73 E-05	3.10 E-04
2 3 9 Pu	84.000	5.21 E-02	4.45 E-05	4.39 E-04	6.20 E-05	1.13 E-03
2 4 0 Pu	13.000	2.95 E-02	2.52 E-05	2.48 E-04	3.51 E-05	6.38 E-04
2 4 1 Pu	2.880	2.97 E+00	4.08 E-05	5.42 E-04	6.79 E-05	1.28 E-03
2 4 2 Pu	0.027	1.06 E-06	8.62 E-10	8.50 E-09	1.21 E-09	2.19 E-08
2 4 1 Am	<u>0.000</u>	0.00 E+00	0.00 E+00	0.00 E+00	0.00 E+00	0.00 E+00
Totals	100.000	9.75 E-02	1.23 E-04	1.35 E-03	1.82 E-04	3.35 E-03

B. Tables 31 through 34 summarize the calculation of the composite dose factors for uranium. Table 31 gives the inhalation EDE factors for the individual isotopes of uranium. Table 32 gives the organ dose factors. Table 33 gives the composition commonly used for N Reactor fuel, and Table 34 lists the resulting composite dose factors for the EDE and organ of concern.

Isotope	Class Y	Sv / Bq Class W	Class D	Class Y	rem / μCi Class W	Class D
2 3 4 U	3.58 E-05	2.13 E-06	7.37 E-07	132	7.88	2.73
235U	3.32 E-05	1.97 E-06	6.85 E-07	123	7.29	2.53
236U	3.39 E-05	2.01 E-06	7.01 E-07	125	7.44	2.59
238U	3.20 E-05	1.90 E-06	6.62 E-07	118	7.03	2.45
^{2 3 4} Th	9.47 E-09	8.04 E-09	8.04 E-09	0.0350	0.0297	0.0297

Table 31. Uranium Inhalation Dose Factors (EDE).

Table 32. Uranium Inhalation Dose Factors (Maximum Organ).

Isotope	Class Y Lung	Sv / Bq Class W Lung	Class D Bone	Class Y Lung	rem / μCi Class W Lung	Class D Bone
234U	2.98 E-04	1.60 E-05	1.09 E-05	1103	59.2	40.3
2350	2.76 E-04	1.48 E-05	1.01 E-05	1021	54.8	37.4
236U	2.82 E-04	1.51 E-05	1.04 E-05	1043	55.9	38.5
2·3 8 Ŭ	2.66 E-04	1.42 E-05	9.78 E-06	984	52.5	36.2
^{2 3 4} Th	6.39 E-08	4.66 E-08	7.83 E-09	0.236	0.172	0.0290

Table 33. Mixture of Uranium Isotopes -- N Reactor Fuel.

Weight percent	Ci/g	Alpha percent
0.0090 0.8360 0.0730 99.0820 <u>1.44 E-09</u>	5.87 E-07 1.81 E-08 1.58 E-09 3.33 E-07 <u>3.33 E-07</u>	62.47 1.92 0.17 35.44
	Weight percent 0.0090 0.8360 0.0730 99.0820 <u>1.44 E-09</u> 100.0000	Weight percentCi/g0.00905.87 E-070.83601.81 E-080.07301.58 E-0999.08203.33 E-071.44 E-093.33 E-07100.00009.40 E-07

8/24/90 (7:47am)

Isotope	Effectiv Class Y	ve dose equ Class W	ivalent Class D	Maximu Class Y	m organ dos Class W C	e lass D
2 3 4 U 2 3 5 U 2 3 6 U 2 3 8 U 2 3 8 U 2 3 4 Th	2.24 E-05 6.39 E-07 5.69 E-08 1.13 E-05 3.36 E-09	1.33 E-06 3.79 E-08 3.38 E-09 6.73 E-07 2.85 E-09	4.60 E-07 1.32 E-08 1.18 E-09 2.35 E-07 2.85 E-09	1.86 E-04 5.31 E-06 4.74 E-07 9.43 E-05 2.26 E-08	9.99 E-06 2.85 E-07 2.54 E-08 5.03 E-06 1.65 E-08	6.81 E-06 1.94 E-07 1.75 E-08 3.47 E-06 2.78 E-09
Totals	3.44 E-05	2.05 E-06	7.12 E-07	2.86 E-04	1.54 E-05	1.05 E-05

Table 34. Inhalation Dose Factors for the Mixture of Uranium Isotopes (Sv/Bq).

8.0 LINE-BY-LINE DESCRIPTION OF ED - REVISION 3

8.1 INTRODUCTION

- A. ED Revision 3 is divided into five distinct modules in a structured approach to the problem of organizing a lengthy program. The five modules are as follows:
 - Atmospheric dispersion
 - Choice of chemical or radiological release
 - Chemical calculation
 - Nuclide choice
 - Dose calculation
- B. A complete program listing is supplied at the end of this report. The descriptions in 8.1 Section D reference line numbers in the program listing.
- C. It is assumed in these descr ptions of the code that the reader has become acquainted with the basic syntax of the HP-41C programming language. The syntax is described in the owner's manual, including numerous examples.

	Registers		Flags
00	miscellaneous values	00	clear if EDE limits
01	X/Q , s/m^3	01	temporary for $X < 1$ km
02	unit conversion factor	02	temporary use for ppm
03	unit string	05	set for USA units
04	Stability Člass, MET, A to G	06	set for Class G
05	wind speed, V, m/s	07	set for chem release
06	distance, X, meters	08	set for ppm units
07	distance, Y, meters		
80	release height, H, meters		
09	release duration, DUR, hours		
10	AMT menu choice, 1 to 4		
11	conc or dpm value; formula wt		
12	cu.ft sampled; chem release rate		
13	stack conc; air conc; grd cont		
14	<pre>stack cfm; hours sampled; Vd</pre>		,
15	total curies released		
16	top-level menu choice, 1 to 4		
17	second choice or user name		
18	third choice or user dose factor		
19	mixing depth, meters		

Table 35. Summary of Data Register and Flag Use.

8.2 ATMOSPHERIC DISPERSION

- A. Lines 1 through 6 are the starting location for the program.
 - 1. These lines initialize two flags, display the program name and revision number, and stop execution.
 - 2. The label "ED3" is assigned to the key labeled "XEQ" for ready access through the USER mode of the calculator.
- B. Lines 7 through 31 display the current unit choice, and allow a switch to the alternate system.
 - 1. The label "U" is assigned to the key labeled "F."
 - 2. Flag 05 is set for English units, and cleared for metric units.
 - 3. Once the choice has been made, execution continues at line 18, where the commonly used unit of length is stored in registers 02 and 03 in the unit system selected.
 - 4. The final two lines (30 and 31) skip further input prompts when in USER mode, and the program immediately begins the calculation of atmospheric dispersion parameters beginning in line 127.
- C. Lines 32 through 46 display the current atmospheric stability class (A to G) and allow a new value to be entered.
 - 1. The label "P" is assigned to the key labeled "M."
 - 2. In USER mode, execution will jump to line 127 and begin the X/Q calculation.
- D. Lines 47 through 55 display the current atmospheric mixing depth and allow a new value to be entered.
 - 1. The label "MD" is assigned to the key labeled "D."
 - 2. A subroutine at label 09 (lines 321 to 331) is used to convert the depth in the X register to the proper units and display the result. After pressing "R/S" the program converts the value in the X register to meters and returns to the line following the line that called this subroutine.
 - 3. In USER mode, execution will jump to line 127 and begin the X/Q calculation.
- E. Lines 56 through 81 display the current wind speed and allow a new value to be entered.

1. The label "V" is assigned to the key labeled "C."

8/24/90 (7:53am)

- 2. Lines 59 through 69 ensure that the proper units (mph or m/s) are displayed.
- 3. In USER mode, execution will jump to line 127 and begin the X/Q calculation.
- F. Lines 82 through 90 display the current release height and allow a new value to be entered.
 - 1. The label "HT" is assigned to the key labeled "H."
 - 2. A subroutine at label 09 (lines 321 through 331) is used to convert the release height in the X register to the proper units and display the result. After pressing "R/S" the program converts the value in the X register to meters and returns to the line following the line that called this subroutine.
 - 3. In USER mode, execution will jump to line 127 and begin the X/Q calculation.
- G. Lines 91 through 119 display the current downwind distance and allow a new value to be entered.
 - 1. The label "X" is assigned to the key labeled "A."
 - 2. Lines 94 through 111 ensure that the proper units (miles or kilometers) are displayed.
 - 3. Lines 112 through 114 ensure that no distance less than 0.1 K can be entered.
 - 4. In USER mode, execution will jump to line 127 and begin the X/Q calculation.
- H. Lines 120 through 126 display the current plume offset distance and allow a new value to be entered.
 - 1. The label "Y" is assigned to the key labeled "B."
 - 2. A subroutine at label 09 (lines 321 through 331) is used to convert the plume offset in the X register to the proper units and display the result. After pressing "R/S" the program converts the value in the X register to meters and returns to the line following the line that called this subroutine.
- I. Lines 127 through 383 calculate X/Q from the input data provided in steps A through H above.
 - 1. Lines 128 through 137 prepare for the calculation by converting the distance to meters and comparing it to 1,000 m. Flag 01 is set if the distance is less than or equal to 1,000 m.

- 2. Lines 138 through 163 branch, according to stability class, to the location with the constants that are needed to compute Sigma Y and Sigma Z. Note that if a value for stability class other than A through F has been entered, then the program assumes the value will be class F.
- 3. Lines 164 through 176 insert the values for Cz, Az, and Bz to be used in calculating the Class A Sigma Z. Lines 178 through 180 actually compute Sigma Z. Line 181 inserts the value for Ay, in preparation for the jump to line 278, where Sigma Y is computed.
- 4. Lines 183 through 277 repeat the previous step for stability classes B to F. Class G is treated somewhat differently in that the Sigma Z for class G is 0.6 times the Sigma Z for class F (lines 269 through 273).
- 5. Lines 278 through 293 compute and display the value for Sigma Y. Note that this value may be changed during the call to the subroutine at label 09 (lines 321 through 331).
- 6. Before displaying the value for Sigma Z, lines 294 through 307 compute a portion of the X/Q formula shown below, and store it in register 00.

$$\frac{\text{EXP}[-0.5 * (Y/\Sigma y)^{2}]}{\pi * V * \Sigma y}$$

- 7. Lines 308 through 311 display the value of Sigma Z computed earlier.
- 8. Lines 312 through 320 compute the remaining portion of the X/Q formula for the case where there is uniform mixing between the ground and the mixing layer. Full use is made of the calculator stack to make efficient use of the computational resources.
- 9. Lines 332 through 383 compute the remaining portion of the X/Q formula for conditions where plume reflection from the mixing layer may be important. Note that no tests for large negative arguments to the exponential function are necessary because the calculator's exponential function automatically sets the result equal to zero.
- J. Lines 384 through 396 display the current value for X/Q and allow a new value to be entered.
 - 1. The label "X/Q" is assigned to the key labeled "J."

- 2. In USER mode, execution will stop at this location to display the computed X/Q value. When "R/S" is pressed, execution will jump to line 426, where the program branches to either the chemical or radioactive calculation.
- K. Lines 397 through 409 display the current release duration and allow a new value to be entered.
 - 1. The label "T" is assigned to the key labeled "E."
 - 2. In USER mode, execution will jump to line 426, where the program branches to either the chemical or radioactive calculation.

8.3 CHOICE OF CHEMICAL OR RADIOLOGICAL RELEASE

- A. Lines 410 through 422 display the current selection for type of source, and allow a switch to the alternate.
 - 1. The label "Q" is assigned to the key labeled "G."
 - 2. Flag 07 is set for chemical releases, and is cleared for radioactive releases.
- B. Once the choice has been made, execution continues at line 423 where execution branches according whether or not the calculator is in USER mode.
 - 1. In USER mode, the data input steps are skipped. For chemical releases the program goes to line 476. For radioactive releases the program continues at line 575, recalling the total curies released and then jumping to the display of this total activity in line 595.
 - 2. If not in USER mode, execution proceeds to line 430. For chemical releases the program continues at line 434, while for radioactive releases the program continues at line 511.
- C. Note that if this section is entered in USER mode, and no change is made, the calculator remains in USER mode. However, if the source type is changed, then the calculator is taken out of USER mode to force subsequent data entry.

8.4 CHEMICAL CALCULATION

A. Lines 434 through 437 request entry of a choice for either a stack release or total release calculation. The current choice is displayed in the X register.

- 1. Execution will branch in line 437 according to the number present in the X register when execution continues.
- 2. If a number other than 1 or 2 has been entered, the program will jump to an incorrect location and all subsequent calculations will be invalid.
- B. If a stack calculation was selected, then execution continues at line 438.
 - 1. Lines 439 through 442 request input of the stack concentration.
 - 2. Lines 443 through 453 display the current units assumed for the stack concentration, and allow a switch to the alternate units.
 - 3. Lines 454 through 458 request input of the stack flow rate, in cubic feet per minute.
 - 4. Lines 459 through 463 compute the chemical release rate.
 - 5. Line 464 jumps to line 476 for the calculation and display of downwind concentration.
- C. If total pounds released was selected, then execution continues at line 465.
 - 1. Lines 465 through 469 request input of the total pounds of chemical released.
 - 2. Lines 470 through 475 calculate the chemical release rate.
- D. Lines 476 through 484 compute the downwind air concentration.
 - 1. Flag 02 is set to match flag 08. Flag 02 determines the units that are displayed in the subroutine at label 09.
 - 2. The subroutine at label 09 (lines 499 through 509) is used to display the concentration in the X register in the proper units. After pressing "R/S" the program returns to the line following the line which called this subroutine.
- E. Lines 485 through 488 request input of the formula weight of the chemical. This is needed to convert to the alternate units.
- F. Lines 489 through 509 convert to the alternate units and display the result. Here the subroutine at label 09 is used as before, with the exception that the RTN statement causes program execution to stop. Pressing "R/S" again will cause the program to start over at line 1.

8.5 ESTIMATION OF TOTAL CURIES RELEASED

- A. Lines 511 through 515 allow selection of the type of source information to use.
 - 1. Execution will branch in line 515 according to the number present in the X register when execution continues.
 - 2. If a number other than 1, 2, 3, or 4 has been entered, the program will jump to an incorrect location and all subsequent calculations will be invalid.
- B. Selections numbered 1 and 3 are computed first, because both begin with the entry of an air concentration.
 - 1. Lines 516 through 521 request input of the air concentration (in μ Ci/cc) or the activity on the sample filter (in dpm).
 - 2. Lines 522 through 525 test whether the number entered was less than 1. If so, it is assumed that an air concentration was entered, and execution continues on line 541 or line 545 depending on the type of source calculation.
 - 3. Lines 526 through 529 request input of the volume of air sampled (in cubic feet).
 - 4. Lines 530 through 539 compute and display the air concentration.
 - 5. Line 540 jumps to either line 541 or line 545 depending on the type of source calculation.
- C. Selection number 1, for input of exhaust stack data, requests input of the stack flow rate (in cfm) in lines 541 through 544.
 - 1. Note that execution does not stop until line 563.
 - 2. Lines 568 through 574 calculate the total activity released, which is displayed in lines 595 through 602.
- D. Selection number 3, for input of downwind concentration data, requests input of the sample duration period in lines 545 through 548.
 - 1. Note that execution does not stop until line 563.
 - 2. Lines 578 through 588 calculate the total activity released, which is displayed in lines 595 through 602.

- E. Selection number 2, for input of total activity released, requests input of total curies in lines 549 through 553. Execution then jumps to the downwind air concentration calculation beginning at line 603.
- F. Selection number 4, for input of surface contamination data, requests input of dpm/cm^5 in lines 555 through 559.
 - 1. Lines 560 through 563 request input of the ground deposition speed (in centimeters per second).
 - 2. Lines 589 through 594 calculate the total activity released, which is displayed in lines 595 through 602.
- G. Before beginning the nuclide selection, two important quantities are displayed.
 - 1. Lines 595 through 602 display the total activity released.
 - 2. Lines 603 through 613 compute and display the downwind air concentration.
 - 3. Lines 614 and 615 skip the nuclide selection menus by jumping to line 686 if the calculator is in USER mode.

8.6 RADIONUCLIDE IDENTITY

- A. Lines 616 through 625 allow selection of the nuclide menu to use.
 - 1. Execution will branch in line 625 according to the number present in the Y register.
 - 2. If a number other than 1, 2, 3, or 4 has been entered, the program will jump to an incorrect location and all subsequent calculations will be invalid.
- B. Selection number 4, to input new inhalation dose factors, requests the name and dose factor in lines 626 through 638. Execution then jumps to line 691 for the calculation of inhalation dose.
- C. Selection number 1 enters the submenus at line 639. Menu choice number 2 enters its submenus at line 655. Finally, selection number 3 enters its submenus at line 670.
- D. Execution of all menu choices eventually branch to line 686 to begin the dose calculation. Note that in certain cases the organ limiting flag 00 is set.

8.7 DOSE CALCULATIONS

- A. Lines 686 through 695 test for new dose factors before proceeding.
- B. Lines 696 through 707 compute a branching address based on the menu choices entered previously. The formula used is the following:

8 * (REG 016) + 2 * (REG 017) + (REG 018) - 11

where

REG 016 is the top-level menu choice (1, 2, or 3) REG 017 is the second-level menu choice (1, 2, 3, or 4) REG 018 is the third-level menu choice (1, 2, or 3)

Table 36 summarizes the calculation of the dose factor address. Line 707 jumps to the label with the dose factors requested. For example, if the analyst has selected B1 (REG 016 = 2), RU (REG 017 = 2), and SOL (REG 018 = 2), execution will jump to label $8 \times 2 + 2 \times 2 + 2 - 11 = 11$, which is on line 755.

REG 016:	1	2	3
top menu:	a,	B1,	B2,
REG 017:	1 2 3 4	1 2 3 4	1 2 3
nuclide:	PU, AM, NP, U	SR, RU, I, CS	CO, KR, H
REG 018:	1,2 2 2 1,2,3	2 1,2 1,2 2	1,2 2 2
address:	00 01 02 05 06 07 08	09 10 11 12 13 15	16 17 19 21

Table 36. Calculation of Dose Factor Address.

- C. Lines 708 through 796 insert the name, and the dose factors for the EDE and worst organ into the stack for later computation.
 - 1. In certain cases, flag 00 is set to indicate that the organ dose will be limiting. For most nuclides, the organ flag was set (if needed) at the nuclide selection menus.
 - 2. For Kr-85 and H-3, the organ dose factor equals the EDE and leads to the shortcut shown in lines 794 through 796.
- D. Inhalation dose is computed and displayed in lines 797 through 819. The limiting dose (EDE or organ) is displayed first.

- 1. The limiting dose is stored in the X Register. Flag 00 is set (and visible in the display) if the organ dose is limiting.
- 2. The dose to the non-limiting organ can only be seen by interchanging the X and Y registers with the "X <> Y" key.
- E. Lines 820 and 821 restore the typical configuration in which the calculator is operated (scientific with two digits after the decimal point and not in USER mode).

9.0 PROGRAM LISTING (sheet 1 of 6)

			30 200 27
1	LBLTED3	43 610 -9-	07 70(1) 08 870 87
		44+LBL 00	70 610 93
	END 2979 BYTES	45 FS? 27	91+LBL *X*
		46 GTO 93	92 RCL 96
	91+1 81 - FD3-	47+LBL "HD"	93 *X= *
	42 rf 41	48 RCL 19	94 FC? 05
	92 01 91 97 CE 92	49 "]= "	95 GTO 80
	04 • CD _ DEV 7 •	50 YED 99	96 1.609
	94 EU 7 KET 3	51 970 19	97 /
	BO PRUMPT	50 520 22	98+LBL 90
	96 CF 27	57 (************************************	99 FTX 2
	97+LBL "0"		100 OPCI Y
	08 CF 22	04 r57 27	101 CCO 35
	09 * METRIC ?*	55 GIU 93	1990 - MT 3- 1911 - MT 3-
	10 FS? 05	56+LBL "Y"	
	11 "U.S.A. UNITS ?"	57 RCL 05	103 FU? 05
	12 PROMPT	58 ·V= ·	194 - KM ?-
	13 FC? 22	59 FC7 85	1 95 CF 22
	14 GTO: 80	60 GTO 00	196 PROMPT
	15 FC2C 95	61 .447	197 FC? 85
	12 CE 95	62 /	108 GTO 00
	17 070 elte	63+1 81 99	109 1.609
		64 FTY 1	110 *
		15.0001 Y	111+i BL 90
	19 FU7 95	20 200 05	112 1
	29 GTU 99	00 F3(0J (7 a) M00 0a	117 9/-97
	21 • FT ?*	67 TP AFA (* 20. 000 05	
	22.3048	58 FU / 83	115 CTO 04
	23 GTO 01	69 TH M/S 27	113 310 90
	24+LBL 90	79 CF 22	
	25 T H 2T	71 PROMPT	117 610 -3-
	26 1	72 FC? 95	118 F37 27
	27+LBL 91	73 GTO 90	119 GTO 03
	28 ASTO 93	74 .447	12 9+ LBL 'Y'
	29 STD 92	75 +	121 RCL 97
	70 557 27	76+LBL 90	122 •Y= •
	71 670 97	77 STO 05	123 XEQ 09
	72 ALDI +0+	79 597 22	124 STO 07
	367106 F 77 06 37	79 CTO +V+	125 FS2'22
	33 GF 23 74 5 HFT - 5	00 507 07	126 CT0 -Y-
	34 ° ME; = °	00 F2; 61 01 070 07	127-4 91 47
	SO HRUL 04	うし ほいげ ひひ うつん(つ) #417 m	
	36 * ?*	32+L6L 71-	120 07 00 120 05 al
	37 AON	83 RUL 98	127 UF D1 170 D01 84
	38 PRONPT	84 "H= "	100 KUL 00
	39 AOFF	85 XEQ 09	131 1.23
	49 FC? 23	36 STO 99	132 *
	41 GTO 99	87 FS7 22	133 STO 91
	42 ASTO 34	88 GTO "HT"	134 LASTX

9.0 PROGRAM LISTING (sheet 2 of 6)

133 KC Y	181 .3659	227 -
136 XC=T	13Z GTO 98	228 CHS
137 SF 87	183+LBL 92	229 .1471
138 RCL 04	184 FS?C 91	239 GTO 88
139 "A"	185 GTO 90	231+LBL 95
140 ASTO Y	186 2	232 FS?C 91
141 X=Y?	187 .955	233 610 89
142 GTD At	188 PC1 91	274 74
147 -8-	199 1 998	375 4 77
144 OSTO Y	100 CTD 41	274 DCI 31
145 V-V-		230 KUL 91
14C CTD 02		237 .300
147 000	192 3.3	238 GIU 91
	193 .0382	2 39+LBL 9 0
148 ASTO Y	194 RCL 91	249 1.3
149 X=Y?	195 1.149	241 .211
150 GTO 93	196+LBL 91	242 RCL 01
151 - D-	197 YtX	243 .673
152 ASTO Y	198 *	244+LBL 91
153 X=Y?	199 +	245 444
154 GTO 94	299 . 2751	246 *
155 -5-	291 CTO 98	247 -
156 OSTO Y	201 115 50	240 CUC
150 1515 1	2027LDL 50	240 675
150 CTA DE	203 65 81	247 .1040
	204 .113	230 610 88
109 -6-	205 RCL 91	251+LBL 96
160 HSTU Y	296 .911	252 FS?C 01
161 X=Y?	297 Y t X	253 GTO 99
162 SF 96	298 *	254 48.6
163 GTO 96	299 .2089	255 18.95
164+LBL 91	210 GTO 08	256 RCL 01
165 FS?C 01	211+LBL 94	257 .18
166 GTO 99	212 ES20 A1	258 GTO 01
167 -9.6	217 GTA 99	25941 81 89
168 24 E-5	214 17	260 75
169 PC1 A1	217 IJ 215 1 26	200 .00,
107 KCC 91 170 9 904	213 1.29	201 .000
171 070 01	216 KUL 91	202 KLL 91
	217 .516	263 . (4
1/24686 80	218 610 91	264+LBL 01
173 9.27	219+LBL 80	265 YtX
174 66 E-5	229 1.7	266 *
175 RCL 01	221 .222	267 -
176 1.941	222 RCL 91	268 CHS
177+LBL 91	223.725	269 FC? 96
178 YtX	224+LBL 01	279 GTO 99
179 *	225 YAX	271 .6
188 -	226 #	170

8/22/90 (2:11pm)

9.0 PROGRAM LISTING (sheet 3 of 6)

	273+LBL 00	319 /	365 *
	274 FC7 06	329 GTO 94	366 2
	275 .8722	321+LBL 09	367 *
	276 FS? 96	322 RCL 02	368 ETX
	277 .0481	323 /	369 +
	278+LBL 08	324 FIX 1	379 RCL 08
	279 RCL 01	325 ARCL X	371 RCL 01
	280 . 9031	326 ARCL 93	372 /
	281 Y+X	327 CF 22	373 3+2
	282 *	328 PROMPT	374 -2 -
	283 STA 80	329 RCL 02	375 /
	284 3457	330 +	376 EtX
	285 STO 91	331 RTN	377 RCL 01
	296 PC1 98	332+1 BL 89	378./
	200 NAL 30	737 LOSTX	779 .
	401 41- 300 10	774 001 01	7994 91 04
	200 10	775 /	791 DC1 00
· · · ·	287 821 (776 440	701 KUL 00
	290 FIX I	330 ATC	JOC + 707 (TO A)
	271 KUN 200 UED 40	770 -	303 510 71
	292 XEQ 09	3-38 *	389+LBL "7/4"
	293 STO 80	339 1	383 UF 22
	294 RCL 97	349 RUL 98	386 301 2
н. -	295 XC>Y	341 RCL 19	387 RUL 01
	296 /	342 /	388 .X\A=.
·	297 312	343 -	389 ARCL 3
	298 -2	344 LASTX	390
	299 /	345 RUN	391 PROMPT
	309 EtX	346 =	392 STO 01
	301 RCL 90	347 EtX	393 FS? 22
	382 RCL 85	348 1	394 GTO "X/9"
	3 93 PI	349 +	395 FS? 27
	384 *	350 LASTX	396 GTO 91
	395 *	351 Rt	397+LBL -T-
	386 /	352 +	398 RCL 09
	307 STO 09	353 LASTX	399 FIX 1
	3 98 RCL 91	354 XC> T	499 "DUR= "
	389 *22= *	355 *	491 ARCL X
	310 XEQ 09	356 LASTX	492 ** HR ?*
	311 STO 01	357 RDN	493 CF 22
	312 1.2	358 EtX	484 PROMPT
	313 RCL 19	359 +	485 STO 89
	314 #	360 3424	486 FS? 22
	315 2249	361 CHS	407 GT0 -T-
	716 CTO 99	362 2	498 FS2 27
	717 1 257	363 +	499 101 91
1	311 11635 719 10CTV	364 84	4184 BI -0-
1	310 CH31V	VUT NI	TLUTLUL I

9.0 PROGRAM LISTING (sheet 4 of 6)

			· · · · ·
411 CF	22 4	T PROMPT	583 ES2 82
412 -R	AD- 4	58 STO 14	584
413 FS	? 97 4	59 RCL 13	585 FC7 82
414 °C	HEN- 4	50 +	506 "HMG/H3="
415	SOURCE?" 4	51 2119	507 ARCL X
416 PR	OMPT 4	52 /	SAR PROMPT
417 FC	? 22 4	53 ST0 12	509 RTN
418 GT	0 99 4	54 GTO 88	518 GTO "FB3"
419 FC	20.97 4	5+1 BL 92	511+1 BL BZ
429 SE	97 4	56 RCL 15	512 *ST.CI.AR.GD=1-4*
421 CF	27 4	7 -TOT B REL ?-	513 PROMPT
422 GT	0 - 2 - 4	S8 PROMPT	514 STO 19
423+LB	L 99 44	59 STA 15	SIS CTO IND IA
424 FC	? 27 4	70 RC1 49	5164 RI A1
425 GT	0 99 4	71 2	5174 BL 93
426+1 B	1 91 4	72 126	513 801 11
427 ES	7 117 4	77 ±	519 "CONC OP DPM?"
428 GT	N 98	74 CF 88	529 PPOMPT
429 GT	1) 10 d	75 STA 12	521 CTO 11
43001 B	1 99 4	764 RI 98	522 CTO 17
431 80	1 19 4	77 °F #2	527 1
431 R0	2 97 4	78 557 88	524 4542
477 CT	13 97 4	70 CE 92	525 CTO IND 19
474 -9	T. TOTOL =1.22* 44	29 DF1 12	526 PM 12
435 28	NHP T 4		527 -CH ET SONDI 82-
436 ST	în 19 du		528 DOANDT
430 GT		72 - 87 STA 60	529 STO 12
47941 R		DA YEO 09	570 PC1 11
479 PC	1 13	25 DC1 11	571 YOY
449 -5	TACK CONC? -	CODWH 0 UT2-	572 /
441 98	INPT 4	27 PORNOCA NI:	577 6297 57
442 ST	n 13 44	HR STOLIS	574 /
44761 R		10 370 LL	575 CTO 17
444 -1	ic.∪		576 10 10
445 69	12 112 : +		577 00M1 17
445 -	PP# 7- 4		578 % INT/00*
447 CE	1.27 · 4		579 DOMPT
448 29		14 ±	540 CTG TUD 10
449 FC	7 22 40	17 15 FC? 48	SATA RE AT
450 CT		AC /	542 001 14
451 60	20 98 4	17 EP70 82	547 •STOCK CEN 2*
452 35	- A1	HR GE A2	544 CTD NO
497 61	19. C 40	70 JF UE 1944 Rf 189	5454 RE 97
45441			546 001 14
194760	14 C	1 GPT 1	547 -4809 COMPI CD2+
ARC +0	на 17 — Он 170 г у сги ра — Си	20 49.9 4 21 Juli 1	549 CTA 30
0.7	unda vent Ji		UTU UIU UIU

9.0 PROGRAM LISTING (sheet 5 of 6)

549+LBL 82 550 RCL 15 551 -CURIES REL?-552 PROMPT 553 STO 15 554 GTO 96 555+LBL 94 556 RCL 13 557 "DPH/SQ.CH. ?" 558 PROMPT 559 STO 13 560 RCL 14 561 "DEP. SP? CH/S" 562+LBL 80 563 PROMPT 564 STO 14 565 RCL 13 566 3()4 567 GTO IND 10 568+LBL 91 569 * 579 RCL 89 571 * 572 1.7 573 * 574 GTO 05 575+LBL 10 576 RCL 15 577 GTO 85 578+LBL 93 579 RCL 89 589 X>Y? 581 X(>Y 582 RDW 583 * 584 RCL 91 585 / 586 3688 587 * 588 GTO 05 589+LBL 94 590 / 591 RCL 91 592 / 593 222 E4 594 /

595+LBL 85 596 STO 15 597 SCI 1 598 SF 21 599 *REL: * 600 ARCL 15 601 *+ CI* 602 PROMPT 603+LBL 96 684 RCL 01 685 * 686 RCL 89 607 / . . . 608 3609 689 / 619 SCI 1 611 "X,Y UCI/CC=" 612 ARCL X 613 PROMPT 614 FS? 27 615 GTO 11 616+LBL -ISO-617 RCL 16 613 "a,81,82,NEW=1-4" 619 PROMPT 629 STO 16 621 4 622 + 624 CF 90 625 GTO IND Y 626+LBL 98 627 "ISO NAME ?" 628 CF 23 629 AON 630 PROMPT 631 ROFF 632 FS? 23 633 ASTO 17 634 RCL 18 635 *REM/UCI ?* 636 PROMPT 637 STO 18 638 GTO 08 639+LBL 95 649 "PU, AN, NP, U=1-4?"

641 PROMPT 642 STO 17 643 RCL 18 644 SF 89 645 GTO IND Y 646+LBL 01 647 "NO3, 02 =1, 2" 648 GTO 99 649+LBL 82 650+LBL 03 651 GTO 01 652+LBL 04--653 "W0,003,0NH=1-3" 654 GTO 00 655+LBL 06 656 "SR,RU,I,CS=1-4" 657 PROMPT 658 STO 17 658 STO 17 659 RCL 18 669 GTO IND Y 661+LBL 93 662 SF 99 663 *[129, [131=1,2* 664 GTO 99 665+LBL 01 666+LBL 94 667 GTO 03 668+LBL 82 669 GTO 01 679+LBL 97 671 "CO, KR, H3=1-3?" 672 PROMPT 673 STO 17 674 RCL 18 675 GTO IND Y 676+LBL 81 677 "INSOL, SOL=1,2" 678+LBL 80 679 prompt 680 GTO 99 681+LBL 92 682+LBL 93 683 2 684+LBL 99 685 STO 18 686+LBL 11

9.0 PROGRAM LISTING (sheet 6 of 6)

	687 4	734 -103-	781+LBL 17
	688 RCL 16	735 7.58	782 SF 99
	689 X≠Y?	736 56.8	783 "CO-60 SOL"
	690 GTO 80	737 GTO 94	784 .9331
	691+LBL 08	738+LBL 08	785.132
	692. CLA	739 -UNH-	786 GTO 04
	693 ARCL 17	740 2.64	787+LBL 19
	694 RCL 18	741 38.3	783 *KR -85*
	695 GTO 84	742 GTO 94	789 146 E-8
	696+LBL 80	743+LBL 99	799 GTO 80
	697 3	744 "SR-90"	791+LBL 21
1	698 *	745 SF 00	792 • 11 - 3 •
	699 RCL 17	746 .247	793 96 E-6
	799 RCL 17	747 2.69	794+LBI_ 00
1	701 +	748 GTO 94	795 ENTERT
	792 +	749+LBL 10	726 X<>Y
	7 93 RCL 18	750 SF 09	797+LBL 34
	794 +	751 -RU196 INS-	798 SCI 1
	705 11	752 .477	799 33 E4
	796 -	753 3.85	800 RCL 15
	797 GTO IND X	754 GIU 94	891 *
	798+LBL 00	755+LBL 11	302 RUL 01
	789 -PU NU3-	756 "KU106 SUL"	803 -
	(18 5/4	(3(.8362	384 *
	711 12409	(38 .0000 750 010 04	100 ALX
	712 510 94	707 1310 19 760-101 10	000 LHOIA
	(13+L8L 81	760-LBL 12	000 500 00
	714 "PU UZ" 715 452	(01 -1-147 760 174	070 F3: 77 020 4/14
	(1J 4J0 716 4000	(94 +1(4 767 6 77	077 AV/1 010 -L
	(10 4770 717 CTO 04	(00 J.() 764 (***) 04	010 P
	7104L04 07	707 1910 07 7654 01 17	011 HRUL A 017 - L HD -
	719 -00-341-	766 +1-171-	RIT PONPT
	779 AAA	767 0729	814 REEP
	721 9979	768 1 98	815 • FIE•
ľ	722 CTO 94	769 CTO 94	816 FS2 AD
	723+1 BL 85	779+1 BL 15	817 - ORGAN-
	724 -NP-237-	771 -05-137-	813 ** LINITS*
	725 549	772 .0319	819 AVIEN
	726 12189	773 .0326	829 SCI 2
	727 GTO 04	774 GTO 94	821 CF 27
	728+LBL 96	775+LBL 16	822 END
	729 -110-	776 SF 99	
	739 127	777 -CO-60 INS-	
	731 1060	778 .219	
	732 GTO 94	779 1.28	
	733+LBL 97	789 GTO 04	
1			

10.0 REFERENCES

- Eckerman, K. F., A. B. Wolbarst, and A. C. B. Richardson, September 1988, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion, Federal Guidance Report No. 11, EPA-520/1-88-020, Environmental Protection Agency.
- Houston, J. R., D. L. Strenge, and E. C. Watson, 1974, DACRIN: A Computer Program for Calculating Organ Dose from Acute or Chronic Radionuclide Inhalation, BNWL-B-389, Pacific Northwest Laboratory, Richland, Washington.
- Napier, B. A., R. A. Peloquin, D. L. Strenge, and J. V. Ramsdell, December 1988, GENII - The Hanford Environmental Radiation Dosimetry Software System, PNL-6584, Pacific Northwest Laboratory, Richland, Washington.
- Rittmann, P. D., August 1984, Seven Health Physics Calculator Programs for the HP-41CV, RHO-HS-ST-5P, Rockwell Hanford Operation, Richland, Washington.
- Slade, D. H. (Ed.), 1968, Meteorology and Atomic Energy, USAEC Report TID-24190, NTIS.
- Strenge, D. L., 1975, DACRIN Modification of Gastrointestinal Tract Dose, BNWL-B-389 SUPP, Pacific Northwest Laboratory, Richland, Washington.
- WHC, 1988, 100 Areas Environmental Releases for 1988, WHC-EP-0165-1, Westinghouse Hanford Company, Richland, Washington.
- WHC, 1988, Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas, WHC-EP-0141-1, Westinghouse Hanford Company, Richland, Washington.
- WHC, 1988, Effluent Report for 300, 400, and 1100 Area Operations for Calendar Year 1988, WHC-EP-0267, Westinghouse Hanford Company, Richland, Washington.

10/30/90 (2:37pm)

APPENDIX A

Internal Letter

Date May 18, 1984

 Name
 Organization
 Internal
 Address)

 •
 R. H. Sudmann
 •

No: 72322-84-WU-243

FROM: (Name, Organization, Internal Address, Phone)

• P. D. Rittmann • 3-3542

Subject: . HP-41CV Program for Rapid Assessment of Environmental Doses

An HP-41-CV program to enable users to quickly compute inhalation doses following a release of radioactive material to the air has been thoroughly tested and validated in the attached analysis. The program currently prompts for input data such as release height, wind speed, and stack flow rate in common English units (ft, mph, cfm) as a convenience to users who normally use these units.

User instructions and appropriate data tables for stack parameters and distances will be distributed under a separate cover letter.

Mann

P. D. Rittmann Radiological Engineering and Effluent Controls West Area Unit

PDR/tjk

cc:	D. E	. Bihl
	G.F	. Boothe
	D. D	. Brekke
	W. A	. Decker
	D.	Paine
	D. R	Howe

H J. Goldberg L. N. Sutton J. A. Bates D. A. Marsh T. Chiao

	WHC-EP-0368	
Rockwell International Rockwell Hanford Operations Energy Systems Group R. H. Sud majora	DESIGN ANALYSIS	PAGE 1 0 5 12 JOB NO. <u>G-056-PDR-84</u> ADDI 30 1984
OCATION 272 U		By Paul Rittingin
UBJECT		CHECKED BY

I. <u>Problem</u>		n an	н. Н	
Compare the HP-41CV program DACRIN results, and hand	ram "ED" calculations	dose calcula where ne	tions wit cessary.	4
I. Assumptions / Inpul	Isotope	% by ut	Ci/ 40 , Pu	G: F 1G
A, ru composition:	Pu-238	.093	15.9	.163
Lune model · (ICRP 30)	Pu-239	84.0	52.1	, 535
	Pu-240	13.0	29,5	.302

		Total a	· 97.4 G/49	
	Pu-242	.027	.00104	1.07 × 10 5
Pullis class Y	Pu-241	2.88	2980	30.6
Pu(ND3), is Class W	Pu-240	13.0	29,5	.302
lung model: (ICRP 30)	Pu-239	84.0	52.1	,535

Lung model (ICRP 30) UNH is class D UD; is class W (U,08 + UD, are class T)

(NOTE: U-natural has .489 G' U-238, U-234 +Th-234, and .0226 G' U-235.)

 $\left(\right)$
WHC-EP-0368 **Rockwell International Rockwell Hanford Operations** PAGE_ Energy Systems Group DESIGN ANALYSIS JOB NO. 6-056- PDR-84 FOR ___ 1984 DATE May 2 Paul LOCATION _ Hmann SUBJECT_ CHECKED BY C. Sr 90/Y-90 Since stack concentrations would be given as gross beta MG/CC, and both sn and r emit a beta, one curie of A SN-90 is taken to be 0.5 G Sr-90

and 0.5 G Y-90. D. Other dose factors compositions 1. | G Cs-137 is 1.0 G Cs-137 and 0.946 G Ba-137m 2. | G I-131

				·····	105.	
Pu-242	.011	,00043	6.2 E-6	1.58	.0621	4.01 E-4
Pu-241	,225	232	3,32	5.97	6150	39.7
Pu -240	4.12	9.35	.134	20,8	47.2	.305
Pu-239	95.63	59.3	.849	71,3	44.2	.286
Pu-238	.007	1.20	.0172	,37	63.4	.409
Isotope	st 70	G/Ky	G' for 1 C'x	w+ %	C/Kg	G: for 16 a
3. 4 %	Plutonium The following	N and ing Compos	20 % itions wer	enriched eassumed	Plutoni to indi	ium

4. 180 day MFP

5189	,0482	Ag 110m	.000265	Ba 137m	.00986
5r40	. 009 34	5n 123	.000 49 2	(e 141	0171
Y 90	,00934	56 125	00059	Ce 144	.173
Y 91	.0781	Te 125m	.000164	Pr 144	. 173
Zr95	,11)	Te 127m	.00103	Pm 147	.0329
N645	.211	Te 127	.00100	Pm 148m	001653
Ry 103	.0232	Te 129m	.000696	Pro 148	000038
Rh 103m	.0232	Te 129	,000446	1m 118	000110
Ru 106	.0312	Cs 134	.00153	Eu 154	000075
 fix 106	.0312	Cs 137	0104	5m 151	.0000 26

A-3

WHC-	EP-	0368
------	-----	------

FOR

LOCATION _

SUBJECT _____

DEGLONI ANALYZON	PAGE
DESIGN ANALYSIS	JOB NO. 6-05
	DATE MAY
	BY <u>Paul</u>
	CHECKED BY

6-PDR-84

1984

tuan in

II. Results

Using DACRIN, and assuming lum AMAD particles and inputting the deposition fractions used in ICRP 30, Dose sactors (rem/mainhaled) were computed, and are listed on the following page. The dose factors selected for use in the HP-41CV program are given below: Plutonium: 12 70 Pu-240 was assumed Pu NOz class W : 53 reim to lung 1st yr 2650 rem/mi to boke 50 yr Pulla is class Y: 21.9 rem/uci to lung 1st yr 970 rem/uli to bone 50 yr Uranium: 190 envicted Uranium was assumed UNH is class D: 22.1 1011/16 to hove 1st yr 38.6 rem/46 to bone 50 yr 45.5 rem/uli to lung 1st yr UD3 15 Class W: 45.8 resulati to lung 50 yr strontiem 1.15 remuci to bone 1st year 13.3 rem/uc to bone 50 year I-13) 1.19 rem/uc to thyroid both 1st yr + 50 yr MFP ,155 rem to lung 1st year .388 rem/MG: to bone 50 year

A-4

THYROID	00	00	00	00	00	00	00 11/11	00 MIN	00 11 00	00 W 03	00	00	00	00	00	00	00	00 Nilra	00	00 00	00	00	00	00	00	00	00	00	00	00 7r	00	00	00	00	19+000 4	1×+000 <	44-000
LLINGS	48-001	13-001	100+19	100+89	78+002	17+002	55-001	55-001'	<u>55+001 <−− .</u>	58+001 4-	30+002	52+002	19+001	23+001	07+002	19+002	-> 100+62	33+001	19+002 ← .	ts+002 .	33+001	96+001	17+002	14+002	100+01	14+001	26+002 .	54+002	500-2t	47-003	. 100-22	79-001	04-002	17-002	<u>50-003</u> 1.	50-003 I.	
NE	1004	-001 7.1	000 4	-001 4.	-001 1.7	-000 4.	-001 7.	+001 · 7.	-000 4.	+001 4.1	-001 1.8	000 4.5	-001 5.	+003 5.3	-000 2.0	-002 S.	-001 5.1	-003 5.3	-000 2.	-002 5.	-001 5.	003 003	-000 2.	002 5.4	-002 5.4	-003 5.	000 2.3	003 5.(. 6 000-	-001 9.4	-001 3.	-000 3.1	-002 1.(002 1.	003 2.4	-003 X.	
B	2.194	0.841	±0.0 00	1.004	5.74-	474	-> 2.21+	->3.864	5, 334	1.014	5.78-	4.50+	4.074	1.75+	2.684	6.63+	8.894	-> 2.65+	100 °C	↓ 9.70+	7.024	2.29+	4.63+	8.49+	1.05+	2.90+	6.92+	1.05+	1.154	1.33+	-ນິນ ເ	6.95+	2 4.21-	2 5.01-	3 2.54-	0 K. 04-	
SPLEE	00.	.00	00.	00.	00.	. 00	00.	00.	00	.00	00.	.00	00.	00.	00.	00.	00	00.	00.	00.	00.	00.	00.	.00	00.	00.	00.	.00	00.	.00	00	.00	4.80-00	4.64-00	1.27-00		
. LĪVER	1.02-002	1,02-002	1.82-003	1.82-003	9.69-005	9.69-005	8.52-003	8.52-003	1.51-003	1.51-003	8.08-005	8.08-005	2.81+001	1.02+003	1.85+000	3.97+002	4.16+001	1.23+003	2.74+000	4.67+002	3.67+001	1.15+003	2.42+000	4.41+002	4.65+001	1.28+003	3.07+000	4.83+002	00	00	.00	.00	6.08-002	6.46-002	3.44-003	0.44-003	3.10-002 3 96-002
SYBNEYS	8.69+000	8.69+000	2.25+000	2.27 + 000	2.75 - 001	1.01+000	8.77+000	S. 77+000 · ·	2.27+000	2.29+000	2.78-001	1.02+000	7.85+000	3.34+002	5.18-001	1.28+002	1.61+001	4.85+002	1.06+000	1.79+002	1.36+001	4.54+002	8.98-001	1.70+002	1.89+001	5.30+002	1.25+000	1.93+002	00.	.00	.00	00.	2.25-002	2.25-002	6.04-003	6.04-003 5 15-003	6.107004 0.002000
ΟΤΑΚ ΕΩΟΥ	.14+000	.32+000	. 35-001	08-001	.00-002	. 71-001	16+000	34+000.1	40-001	.14-001	.05-002	74-001	73+000	10+001	14-001	.09+001	.48+000	15+002	.29-001	.21+001	S1+000	924001	. 85-001	69+001	000+80	241002	. 48-001	52+001	, 43-002	, 93-001	71-002	. 66-001	.00-002	49-002	08-003	200-003	000-100
ت رم	14 2	50 Yr 2	ເງິ -	50 ¢.	7 1	50 S	-	50 3	5	, 50 E.	2 1	50	1	, 50 ©		05	() - -	50 1.	N	50 4.	1 1	, 50 S.	1	ی ا	1 1 4	50 1	N - 1	50 4	7 1 0	50 8.	0 1	v 50 4.	4	50 4.		20	N 50
entre inhal	0		 - -	hum w		\succ	. 0	72 Eur- U	1.1 1.1	C140 11	ר א			1/0 M	^	۲ ۲		270 W	7 ~		7. 2.	14 64 47	2) 5 Yr V	-		1 70 L	P.1	*	۲. ۲.	r 90	(40 V	•	A (21)	2 da - (37m 4	-131 E		MFP P/1

WHC-EP-0368

Dose Factors From DACRIN using Inicron particles

A-5

		WHC -	EP-0368			
OR	kwell Internations well Hanford Operations y Systems Group	DESIC	GN ANALYS	DIS PA JO DA	GE5 B NO. <u>G-U56-PDR-84</u> ITEMay 3 , 1984	
UBJECT			an a	ВҮ Сн	ECKED BY	
The fr 1. C	Howing tes heck for c 504 or	ts were c correct 4/ 2 Cy, Cz	onducted, Q calcula	and are tion, includ sector ave	detailed below: ling interpolation for raging (durations of 8	r += 24h
2. !	For curie is correctl separate i	releases y compute >ACRIN calc	, that d, and culation.	average g dose resu	round concentration Hs agree with a	'n _
3,	For stack	releases,	that gr	ound conce	intrations are	
	correct, a	nd that	dose re	sults are a	also correct	
Test_	Results :	· · · ·			``	
y	Q valid	ation (notice the	excellent	agreement)	
X (meters)	X/Q DACRIN	*/Q "ED"	X (miles)	Release	Particulars	
350 -	5.75 E-3	5.75 E-3	.218 4	=1 m/sec	10 min => ~ u= ,024	'
8500	1.08E-4	1.08 E-4	5.28 h	= M	very stable	
750 -	1.47 E-3	1.47 E -3	.466	same as ab	ove except	-
8500	7, 15 E -5	7,15 E -5	5.78	60 mi	m release => $\nabla_{\phi} u = .04$	

750

15500

4000

24000

75 D

24000

350

4000

350

8500

2.85 E-4

1.41 E-5

6.84 E-8

5.91 E-7

8,04 E-6

1.90 E -7

6.29 E-4

8.36 E-6

6.50 E-5

5.96E-7

5.28

.466

9.63

2.49

14.9

.466

14.9

218

2.49

.218

5,28

2.85 E-4

1.41 E-5

6.92 E-8

5.91 E-7

8.04 E-6

1.90 E-7

6.29 E-4

8.86 E-6

6.50 E-5

5.96 = -7

same

U= 5m/sec

h = 60 m

u= 1 m/see

h = | M

U= IM/ER

h = 60m

same as

Neutral =>

(1 hour release duration)

CI S

u = 5 M/SPC

above, except

Mod. Stable

above

8 hr ⇒ 50 m= 0.70

 $C_y = C_z = 0.12$

Cy=.21 (z=.17

Unstable

 $C_y = C_z = 0.30$

Neutral

except

=> 50u= .25

WHC-	EP-	0368
------	-----	------

Rockwell International Rockwell Hanford Operations Energy Systems Group

DESIGN ANALYSIS

FOR	
LOCATION	••••••••••••••••••••••••••••••••••••••
CUD ISCT	

PAGE 6 JOB NO. <u>G-056-PDR-84</u> DATE May 3, 1984 BY Paul Rithmann CHECKED BY M

Interpolation is accomplished using values given on the next page. Values are not extrapolated beyond the bounds of the table, thus 10 min durations give the same of as I minute veleases, or 20 m/sec winds have the same ou as 10 m/sec winds. test cases: 1 min, 5m/sec 0,4= ,200 $\theta_{\Theta} u = \left(\frac{.10 - .024}{2.5 - 1.0}\right) (2.0 - 1.0) + .024 = .075$ 1 min, 2 m/sec 90 min; 15m/sec Op 11 = 0.400 240 min , 7.8 M/sec og u = .540 300 min , , 5 m/222 Jou = .120 10 min , .5m/sec Sou = .024 $\delta_0 u = \left(\frac{.22 - .12}{.5 - ..., 5}\right) (4 - 2.5) + .12 = .180$ 30min , 4-m/sec ground level (<10m) $C_y = .210$ $C_z = .170$ N , .5 M/see $C_{Y} = C_{z} = \left(\frac{.30 - .35}{.5 - 1}\right)(z.5 - 1) + .35 = .331$ UN , 2.5 M/EDL N, 15 m/sec $C_y = .140$ $C_z = .130$ elevated (h > 10 m) $C_{y} = C_{z} = .300$ UN , , 5 m/=ec $Cy = C_2 = \left(\frac{.12 - .15}{.5 - 1}\right)\left(2.5 - 1\right) + .15 = .139$ N , 2.5 m/sec UN, 15m/500 $C_{y} = C_{z} = 0.240$ agree with the above test cases. -> All results using "ED"

page 7 MM

		()	. 8u)	and the second second second
release	1	wind speeds		
duration	I m/sec	2.5 m/sec	5 m/sec	10 m/sec
10 min	.024	.10	.20	.30
60 min	.04	.15	.25	25
120 min	.06	.25	.35	.35
240 min	.10	.40	.50	60
480 min	.18	.60	.70	.90

Values for Wind Meander ($\sigma_{\theta}u$)

Values for Sutton's Parameters, $\textbf{C}_{\textbf{y}}$ and $\textbf{C}_{\textbf{z}}$

Release Level	Wind Speed	C_y, C_z	n = .20 UNSTABLE	n = .25 NEUTRAL	
	1 m/sec	C _y C _z	.35 .35	.21 .17	
GROUND	5 m/sec	C _y C _z	.30 .30	.15 .14	
	10 m/sec	Cy Cz	.28 .28	.14 .13	
	1 m/sec	C _y ,C _z	.30	.15	
ELEVATED	5 m/sec	C _y ,C _z	.26	.12	
	10 m/sec	C _y ,C _z	.24	.11	

Rockwell International Rockwell Hanford Operations Energy Systems Group

WHC-EP-0368

DESIGN ANALYSIS

FOR		,					
LOCATION							
SUBJEC	т						

PAGE	8
JOB NO. 6-05	6-808-34
DATE May	3,1984
BY Paul	Rittmann
CHECKED BY	NAM

sector Averaged 4/0 values are used if the release duration exceeds 8 hours. These are computed using the formula $\Psi/\rho = \frac{8 f_{\mp}}{\pi} = -\left(\frac{h^2}{2\sigma_z^2}\right)$ (sector averaged, 22.5° sector) in place of the usual formula for centenline 4/Q: $\Psi/Q = (\pi u \sigma_z \sigma_y)^{-1} e^{-(\frac{h}{2\sigma_z})}$ (centerline, y=0) a simple method to check "ED" sector averaging is to

use the "Er" it displays in the course of listing the input. $(\Psi/Q)_{SA} = (\Psi/Q)_{center} \left(\stackrel{\sim}{\times} ^{8} \stackrel{\approx}{\mathbb{F}} \right)$ one sample is sufficient and is printed below:

Notice that $\frac{3.3 \times 10^5 \text{ sec/m}^3}{8.7 \times 10^5 \text{ sec/m}^3} = .379$

Á-9

while $\left(\frac{311 \, \text{st}}{\text{s}_{280} \, \text{st}}\right) 8 \sqrt{\frac{2}{17}} = .376$

which is close enough

CZ = 0.1702Y = 311. FT ΣZ = 252. FT N X/0=3.3E-5 MET = NU = 1.1 MPH X = 1.00 MIDUR. = 12.0 HR H = 18.0 FT02 = 0.170EY = 827. FT SZ = 252. FT

H = 10.0 FTCY = 0.210

E.T.A.=53.6 MIN N X/0=8.7E-5 MET = NU = 1.1 MPH X = 1.00 MIDUR. = 1.0 HR

WHC-EP-0368 HOCKWEII International **Rockwell Hanford Operations** 9 PAGE Energy Systems Group DESIGN ANALYSIS JOB NO. 6 - 056 - PDR-34 May 4 1984 FOR DATE Hingun LOCATION _ Paul SUBJECT CHECKED BY result companison : (DACRIN results are 2. Dose written in) E.T.A.=2.5 MIH E.T.A.=5.8 MIN E.T.A.=2.5 MIN VS X/Q=2.8E-4 VS X/0=5.7E-3 N X/Q=8.0E-6 2.85-04 5.75-03 8.04-06 *:: GRD UCI/CC:7.9E-8 GRD UCI/CC:9.6E-6 GRD UCI/CC:2.2E-9 UNH PUN03 SR90 BONE 1 Y=2.2E3 MR -> 2.20 rem LUNG 1 Y=1:1E5 HR - 106 MM BONE 1 Y=3,2E0 MR →3,23 Mrem BONE 584=5.3E6 MR-5330 rem BONE 58Y=3.8E3 MR → 3.85 rem BONE 58Y=3.7E1 MR -> 37.5 mrem 2.20+03 *** 1.07+05 *** 3.23+09 *** 3.85+03 *** 5.33+06 *** 3.74+81 *** MET = VSMET = VSMET = NU = 2.2 HPH U = 11.2 MPH U = 11.2 MPH X = 0.47 HIX = 0.22 MI X = 0.47 MIDUR.= 1.0 HR DUR.= 0.17 HR DUR.= 1.0 HR H = 3.3 FTH = 3.3 FTH = 197. FT SIGU= 0.250 SIGU= 0.824 CY = 0.120 $\Sigma Y = 118$. FT $\Sigma Y = 27.5$ FT CZ = 0.120ΣZ = 20.2 FT $\Sigma Z = 21.4 FT$ ΣY = 91.2 FT CI REL:1.0E0 CI REL:1.0E0 ΣZ = 91.2 FT TYPE: PUNO3 TYPE: UNH CI REL:1.0E0 TYPE: SR90 Assumed breathing rate is 350 cc/sec . E.T.A.=12.5 MIN E.T.A.=13.3 MIN VS X/9=1.5E-3 E.T.A.=5.8 MIN MS X/Q=6.9E-8 1.47-03 *** UH X/Q=6.5E-5. 6.92-08 GRD UCI/CC:4.1E-7 6.50-05 GRD UCI/CC:2.4E-12 PU02 GRD UCI/CC:1.8E-8 LUNG 1 Y=1.1E5 HR + 113 rem 003 1131 BONE 584=5.0E5 MR - 500 rem LUNG 1 Y=1.1EB MR - 1.09 MICM THYROID 1 Y=2.7E1 MR - 27.0 mmrm LUNG 50Y=1.1E0 MR -> 1.10 mrem 1.13+05 *** THYROID 58Y=2.7E1 MR -> 27.0 mmm 1.10+00 5.00+05 *** *** 2.71+01 *** 1.11+00 *** MET = VSMET = UNMET = MSU = 2.2 MPH U = 2.2 MPH U = 11.2 MPHX = 0.47 M1 X = 0.22 MI X = 2.5 MIDUR.= 1.0 HR DUR. = 1.0 HR H = 3.3 FTDUR.= 8.0 HR H = 197. FT SIGU= 0.040 H = 197. FT CY = 0.300 $\Sigma Y = 97. FT$ SIGU= 0.700 CZ = 0.300ΣY = 1,084. FT $\Sigma Z = 23.8 FT$ $\Sigma Y = 136$. FT $\Sigma Z = 62.3 FT$ CI REL:1.0E0 ΣZ = 136. FT TYPE: PU02 CI REL:1.0E0 CI REL: 1.0E0 TYPE: U03 **TYPE: I131**

BD-6400-060.1 (N-2-79)

Rockwell International Rockwell Hanford Operations Energy Systems Group DESIGN ANALYSIS	
	1)
OR DATE MAY 4	1984
OCATION By Paul R	Hmann
UBJECT CHECKED BY	1
Enterising release type O Consumption of the	1
Entry Preuse gra & for manual dose factor entry,	and
using the dose factors for CS-137 given on page 4	(whole body is
	critical organ
E.T.A. = 5.8 MIN	
N X/Q=6.3E-4	
6.29-04 ***	
GRD UCI/CC: 1.7E-7	herv
USIST = 0 CO MD = 8.61 MIRPH	
594=9.9FA MP - 9.88 mrem close to the calculator re:	sults
8.89+99 ***	
9.88+99 ***	
MET = N	
U = 2.2 MPH	·
X = 0.22 MI	
JUK.= 1.0 HK	
n - 3.3 r r	
C7 = 0.170	
$\Sigma Y = 82.0 FT$	
$\Sigma Z = 66.4 FT$	
CI REL:1.0E9	
TYPE: CS137	
DF 1 Y=4.0E-2	
UF 30T=4.3L-2	
Fully for the MED chaice (1901 1007 11 monto	A Curd)
Finally, too the mill choice (1800 1210 N-reactor	r fuer)
E T 0 -00 0 MTH	
MS X/0=5.9F-7 *MFP*	
5.91-97 ### 1. Y=3.2E-2 MR	
GRD UCI/CC:2.1E-11 50Y=8.0E-2 MR	1
MFP 3.21-02	***
LUNG 1 Y=3.2E-2 MR 8.03-02	***
BUNE 50Y=8.0E-2 MR	
3,21-02 ***	
8.03-02 *** These we use input $U = 11.2 \text{ MPH}$	1
8.03-02 *** These were impuled $U = 11.2 \text{ MPH}$ X = 14.9 MI MET = MS: MSING Namual impule X = 14.9 MI DUR. = 8.0 HR	
8.03-02 *** These were impuled to $X = 11.2 \text{ MPH}$ MET = MS using MFP DUR.= 8.0 HR U = 11.2 MPH H = 197. FT	
8.03-02***These were manual inpul $U = 11.2 \text{ MPH}$ X = 14.9 MIMET = MSusing MFPMFPDUR.= 8.0 HR H = 197. FTU = 11.2 MPH $V = 14.9 \text{ MI}$ $V = 11.2 \text{ MPH}$ F + Le $V = 10.2 \text{ MPH}$ F + LeX = 14.9 MI $V = 11.2 \text{ MPH}$ F + Le $V = 11.2 \text{ MPH}$ F + Le $V = 11.2 \text{ MPH}$ F + Le	
8.03-02***These were manual input $U = 11.2 MPH$ X = 14.9 MI U = 11.2 MPH U = 11.2 MPH X = 14.9 MI F = 14.9 MI DUR. = 8.0 HR $U = 11.2 MPH$ U = 11.2 MPH H = 197. FT FT FT FT FT SIGUE 9.700 Here Fulctors $U = 11.2 MPH$ SIGUE 9.700 FT SIGUE 9.700 FY = 2,953. FT	
8.03-02***These were manual input $U = 11.2 MPH$ X = 14.9 MI DUR. = 8.0 HR H = 197. FT $MET = MS$ U = 11.2 MPH X = 14.9 MI DUR. = 8.0 HR H = 197. FT $Using MFP$ H = 197. FT DUR. = 8.0 HR H = 197. FT $U = 11.2 MPH$ Using MFP FT DUR. = 8.0 HR DUR. = 8.0 HR FT $V = 11.2 MPH$ U = 11.2 MPH DUR. = 8.0 HR DUR. = 8.0 HR FT $U = 11.2 MPH$ SIGUE FT $V = 11.2 MPH$ U = 11.2 MPH DUR. = 8.0 HR DUR. = 8.0 HR FT $U = 11.2 MPH$ SIGUE FT $V = 11.2 MPH$ SIGUE FT $V = 11.2 MPH$ SIGUE SIGUE DUR. = 8.0 HR SIGUE<	
8.03-02***These were $U = 11.2 MPH$ MET = MSusing Nanual input $X = 14.9 MI$ $U = 11.2 MPH$ $using Nanual inputX = 14.9 MIU = 11.2 MPHusing Nanual inputU = 11.2 MPHX = 14.9 MIusing Nanual inputU = 11.2 MPHU = 11.2 MPHusing Nanual inputU = 11.2 MPHX = 14.9 MIusing Nanual inputU = 11.2 MPHU = 11.2 MPHusing Nanual inputU = 11.2 MPHU = 11.2 MPHU = 11.2 MPHU = 11.2 MPHU = 11.2 MPHusing Nanual inputU = 11.2 MPHU =$	Dut
8.03-02***These were relation input $U = 11.2 MPH$ $X = 14.9 MI$ MET = MS U = 11.2 MPH X = 14.9 MI X = 14.9 MI DUR.= 8.0 HR H = 197. FT DUR.= 8.0 HR H = 197. FT H = 197. FT SIGU= 0.700 SY = 2,953. FTU = 11.2 MPH X = 14.9 MI DF the MFP Ft core of SIGU= 0.700 Dose Falctors dose Falctors U = 11.2 MPH SIGU= 0.700 Type = 11.2 MPH SIGU= 0.700	Ъ*

A-11

-

CI REL: 1.0E0 TYPE: MFP

(

(

. 1

FOR	DESIGN ANALYSIS	PAGE JOB NO. G - 056- FOR-94 DATEMAY 4, 1984 BYPAHRI/MAIIM CHECKED BYMA
3. To check the to verify g formulas are	dose calculations for round concentrations for used:	or stack releases and for both types, the following
lump release Grd Coac Inhal, Dose =	$= \begin{pmatrix} X_{\varphi} \\ \varphi \end{pmatrix} \begin{pmatrix} Q \\ Dur, \end{pmatrix} = \begin{pmatrix} X_{\varphi} \\ \varphi \end{pmatrix} (BR) (DF) (Q) =$	$\binom{\text{sur}}{\text{m}^3}$ $\binom{\text{Gireleased}}{\text{no. hours}}$ $\binom{\text{sur}}{\text{in}^3}$ $\binom{\text{cur}^3}{\text{suc}}$ $\binom{\text{rein}}{\text{mGi}}$ $\binom{\text{Gireleased}}{\text{Girel}}$
Stack releases Grd Cone	$= \left(\frac{X}{Q}\right) \left(\text{STK CFM}\right) \left(\text{ST}$	$K(Conc) = \left(\frac{sq}{M^3}\right) \left(\frac{ft^3}{Min}\right) \left(\frac{mL'}{cc}\right)$
Inhal. Poze =	(X/Q)(B,R)(D,F,)(STK Effective) $(\frac{Sme}{m^{2}})(\frac{C}{2})(\frac{rem}{mG})(\frac{Ft^{3}}{min})$	M) (STK Conc) (Dwr.) =) (4 G') (herere)
To verify the lump case on page 9.	release ground con with $X/R = 5.75 \times 10^{-10}$	c., consider the first $\overline{0}^{3}$ says and Dur = 10 min

und 1.0 C' released,
Grd Cone =
$$(5.75 \times 10^3 \frac{\text{sec}}{\text{m}^2}) \left(\frac{1 \text{ Ci}}{10 \text{ min}}\right) \left(\frac{1 \text{ min}}{60 \text{ size}}\right) \left(\frac{10^6 \text{ mG}}{\text{Ci}}\right) \left(\frac{1 \text{ m}^2}{10 \text{ mec}}\right) = 9.6 \times 10^6 \frac{\text{mG}}{\text{ce}}$$

at any set is

The inhalation doses were verified using DACRIN.

The second second state of the second s

		WHC-EP-0368
Find	well International well Hanford Operations by Systems Group	DESIGN ANALYSIS PAGE 12 JOB NO. G - 056 - 508 - 84 JOB NO. G - 056 - 508 - 84 DATE May 4, 1984 BY PAGE
LOCATION -		CHECKED BY
To v was I	erify the st chosen since hour release of (10 ⁵ mc)	ack velec.se results, the following test case it releases one curie of Sr 90; $\overline{F} = 10^5 \mu G/cc$ at a stack flow rate of 58,858.5M. $1(58,758 \frac{ft^3}{min}) \left(\frac{60 min}{hc}\right) \left(\frac{28,316 cc}{5t^3}\right) \left(\frac{10^6 c'}{mG}\right) = 1.000 Gi$
	E.T.A.=2.5 MIN N X/Q=8.0E-6 GRD UCI/CC:2.2E- SRタゆ Bone 1 Y=3.2E0 MI Bone 50Y=3.7E1 M	, R 3 these results are the same use the doses R 3 computed on page 9 for the Sr90 case
	MET = N $U = 11.2 HPH$ $X = 0.47 MI$ $DUR. = 1.0 HR$ $H = 197. FT$ $CY = 0.120$ $CZ = 0.120$ $CY = 91.2 FT$ $CZ = 91.2 FT$ $STK CFM=5.89E4$ $STK UCI/CC: 1.0E$ $TYPE : ST$	-5 290
I	<u>Conclusio</u> The progr in exceller hand calc	n am computes doses from airborne releases at agreement with DACRIN, and appropriate ulations validate the other numeric results.

SE

BD-640(J-060.1 (N-2-79)

14

3

A DE R

.

- III

.

"ED" Original Version

(Apri) 1984) LBL'ED **1679 BYTES** END, 91+LBL *ED* 02+LBL J previous stability 03 CF 27 B6 CF 86 choice recalled 07 RCL 05 choice to prompt 08 "VS/NS/N/UN=0/1/" 09 *H2,3* 19 PROMPT 11 STO 05 12 FS? 27 13 GTO 01 14+LBL B 15 RCL 00 16 .447 - 1 mph = .447 m/sec 17 / 18 -WIND SP? MPH-19 PROMPT 20.447 e wind speed is stored in units 21 * 22 STO 00 of m/see 23 RCL 01 24 FS? 27 25 GTO 00 26+LBL C 27 RCL 01 28 1689 < 1 mile = 1609 m 29 / 30 "DISTANCE? MI" 31 PROMPT 32 1609 34 STO 01 - distance is stored in units of meters. 35+LBL 00 36 SF 21 37 RCL 00 38 / 39 STO 02 40 60 41 / c Estimated 42 FIX 1 Time of 43 *E.T.A.=* Arriva/ 44 ARCL X 45 - H MIH-46 AVIEW 47 FS? 27 48 GTO 01 49+LBL D 50 RUL 04

51 "REL DUR? HR" 52 PROMPT 53 STO 84 54 CF 07 1 is duration > 8 hr 55 8 then sector 56 X(Y? average 57 SF 07 🕽 58 RDN 59 24) is duration = 24 hz 60 XXY? 61 GTO D) then return to duration prempt 62 FS? 27 63 GTO 91 64+LBL E 65 PCL 03 1m= 3,28 ft 66 3.28 67 * 68 *REL HT? FT* 69 PROMPT 70 3.28 71 / 72 STO 03 & histored in units of m 73+LBL 91 74 CF 27 75 GTO IND 05 76+LBL 80 77 40 78 1/X Very 79 -34 80 -YSstable 81 -88 E-5 82 GTO 00 83+LBL 91 84.33 Ь Modi 85 MS* 86 -97 stable 87 -25 E-5 - k2 38+LBL 00 89 RCL 02 90 Xt2 91 * 92 EtX-1 Computes 93 * for 94 X<>Y GZ 95 RCL 02 V5 +MS 96 * 97 + 98 SQRT 99 STO 86 100 FS? 07 191 GTO 91 192 XEQ 13 -> obtains value for (rou) 103 232 194 * 105 13

186 + 107 STO 08 - A 108 RCL 07 109 Xt2 110 2 111 * 112.20 113 STO 09 - ~ 114 RCL 02 115 X<>Y 116 / 117 CHS Computes 118 EtX-1 119 RCL 09 120 * 121 RCL 02 +MS V5 122 + 123 RCL 08 124 * 125 SORT 126 GTO 84 127+LBL 02 Neutral 128 •N* (1- 2) 129 .875 -130 GTO 00 131+LBL 03 unstable 132 "UN" ← (1- +) 133.9 134+LBL 00 135 STO 09 136 SF 06 137 XEO 23 - obtains CY and Cz 138 RCL 08 139 RCL 01 140 RCL 09 computes 141 Y1X 5z 142 2 143 SØRT N + UN 144 / 145 * ensures oz = 2000 m 146 2 E3 147 X>Y? 148 X<>Y 149 STO 06 150 LASTX computes 5y 151 RCL 07 (for N+UN 152 * 153 FC2 07 154 GTO 04 155+LBL 01 156 RCL 01 157 6.383 = 81 异 158 / 159+LBL 84 160 SF 21

161 STO 10 162 ASTO 11 163 RCL 03 164 RCL 96 165 / 166 X+2 167 CHS computes 168 E†X Y/Q 169 SRRT 170 RCL 06 171 / 172 RCL 10 173 / 174 PI 175 / 176 RCL 00 177 / 178 STO 12 179 SCL 1 180 "H X/Q=" 181 ARCL X 182 AVIEW 183 CF 09 184 XEO 07 185+LBL F 186 CF 27 187 RCL 13 188 *STACK CFM ?* 189 PROMPT 190 STO 13 191 X=0? 192 GTO 00 193 RCL 14 194 *STK CONC ?* 195 PROMPT 196 STO 14 197 RCL 13 198 * 2831600 199 2119 = ++1 Losec 200 GTO 01 201 .LBL 00 202 RCL 14 203 *CI REL ?* 204 PROMPT 205 STO 14 206 RCL 04 207 3600 208 * 299+LBL 01 210 / 211 SF 21 212 RCL 12 213 * 214 SCI 1 215 PGRD UCI/CC:*

T

216 ARCL X 217 AVIEW 213+LBL G 219 CF 27 220 RCL 15 221 *PU,U,BETA=1,2,3* 222 PROMPT 223 STO 15 224 X≠0? 225 GTO 00 226 CF 23 227 * NAME ?* 228 AON 229 PROMPT 230 AOFF 231 FS? 23 232 ASTO 17 233 -1-234 RCL 16 235 XEQ 01 236 STO 16 237 -50-238 RCL 18 239 XEQ 01 240 STO 18 241 RCL 16 242 X<>Y 243 SF 02 244 GTO 16 245+LBL 01 246 "H YR R/UCI?" 247 PRUMPT 243 RTN 249+LBL 89 250 CF 05 251 CF 98 252 RCL 16 253 SORT 254 GTO IND 15 255+LBL 01 256 *N03, 02 =1, 2* 257 PROMPT 258 Xt2 259 STO 16 260 SF 01 261 GTO IND 16 262+LBL 91 263 53 lyr 1270 Pu 264 "PUN03" Class W 50 yr 265 2650 ram/mGi inhaled 266 GTO 00 267+LBL 04 268 219 12070 Pu 269 "PU02" class Y 278 978

271 GTO 00 272+LBL 02 273 "UNH, U03=1, 2" 274 PROMPT 275 X+2 276 STO 16 277 GTO IND 16 278+LBL 01 279 22.1 280 SF 08 U class D 281 "UNH" 282 38.6 283 GTO 00 284+LBL 94 285 45.5 U class W 286 "003" 287 45.8 288 GTO 00 289+LBL 03 290 *SR, I, MFP=1,2,* 291 **3* 292 PROMPT 293 X+2 294 STO 16 295 GTO IND 16 296+LBL 81 297 1.15 50 - 90 + 5-90 298 SF 08 class D 299 "SR90" 300 13.3 301 GTO 00 302+LBL 04 303 1.19 I-131 304 ENTERT 305 SF 05 306 X(>Y 307 -1131-308 GTO 00 309+LBL 09 12 70 MFP 310 .155 311 SF 01 solu hle 312 -MFP* 313.388 314+LBL 00 315 ASTO 17 316 FC? 55 317 CF 21 318+LBL 16 319 SF 12 320 CLA 321 ARCL 17 322 AVIEW 323 CF 12 324 SCI 1 325 RCL 13

326 X=0?		
327 GTD 99	382+LBL G	437 ARCI X
328 RCL 04	383 GTO G	438 "I- HR"
329 *	384+LBL 00	439 OVIEN
379 59 47 = 28316cc, 60mm. See	385 CLA	440 "H = "
771 + 5t3 M -4	386 FS2 82	441 PC1 07
772 FTO Q1 1m ³ 10 ² mm ⁴ , 10	797 PTN	442 VEN 07
777ALDI 00 1001	788 +1 INC +	AA7 ETY 7
774 DDU	709 507 80	AAA ECO 04
THE TE ADDIC 10 MEM. 10	700 DONE -	445 CTO 00
Trem	701 EC2C 01	443 610 00
336*LBL 01	700 (F 80	440 F37 U7
337 KUL 14	372 JF 00 707 FC2 AF	447 GIU 01
338 *	373 F37 00 704 - TUVDOTD -	448 5160= -
339 RCL 12	394 THYRULD	449 HKUL 07
340 *	395 RIN	450 HYIER
341 1 E4	<u>396+LBL 87</u>	451 GTO 01
342 *	397 CF 22	452+LBL 00
343 *	398 "INPUT LIST ?"	453 °CY = "
344 STO 09	399 PROMPT	454 ARCL 07
345 X<>Y	400 FC? 22	455 FC? 07
346 LASTX	401 RTN	456 AVIEN
347 *	492+L6L I	457 °CZ = °
348 SF 21	403 FS? 27	458 ARCL 08
349 XEQ 00	404 CF 09	459 AVIEN
350 -+1 Y=-	405 FS? 09	468+LBL 81
351 ARCL X	496 GTO 02	461 °EY = "
352 ** MR*	407 SF 21	462 RCL 10
353 AVIEN - 1st year dose	498 SF 12	463 XEQ 03
354 XEQ 00	409 "NET = "	464 "27 = "
355 CE 02	410 ARCL 11	465 RCL 86
756 PCI A9	411 AVIEN	466 XED 03
757 +L50Y=+	412 CF 12	467 FS2 27
750 ODCI V	417 FTY 1	468 CTO 92
750 HRUL A 750 HL MDH	414 = 11 = 1	469 010 02
760 AUTEL - 50 yr dose	415 PC1 A9	470 DTN
700 HTLM /	416 447	471ALDI 02
361 SF 197		471 PCL 02
JOZ ACH DI 207 Adh	410 ODCL V	472 NUL () 477 Nugo
353 HUY	ATO PL NOUP	474 CTO 00
354 SF 27	17 F 117 F 1171	474 610 00
JOJ+LBL H	401 HU - H	470 001 C 477 BOTK OCH-5
366 "FF KEHBY FF"	400.0	470 "31K UFM="
JET PRUMPI	422 C	977 HKUL X
368+LBL J	423 KLL 01	478 HVIEN
369 GTO J LLese	424 1589	479 "STK UC1/CC:"
370+LBL A PICC	425 /	480 GTO 01
371 GTO A Species	426 X(=Y?	<u>481+LBL 99</u>
372+LBL B jocution	427 FIX 2	<u>482 CI REL</u>
373 GTO B CUSER	428 ARCL X	483+LBL 01
374+LBL C OT WIT	429 "H MI"	484 SCI 1
375 GTO C mode labels	430 AVIEN	485 ARCL 14
376+LBL D	431 FIX 1	486 AVIEW
377 GTO D	432 "DUR.= "	487 SF 12
378+LBL E	433 1	488 •TYPE: •
379 GTO E /	434 RCL 04	489 ARCL 17
380+LBL F /	435 X(Y?	490 AVIEN
381 GTO F	436 FIX 2	491 CF 12

testra a la la construction de la c

492 PCI 15	547 X(=Y?	(07 070 07
407 VARO	548 GTO 01	603 510 07
473 XFU/	54941 BL 80	604 FS?C 02
494 GTO 00	550 DDU	605 GTO 00
495 *DF 1 Y=*	JJD RUN	686 24
496 ARCL 16	551 ENTERT	607 XED 20
497 OVIEU	552+LBL 01	(00 CT 07
400 +DE 50Y-+	553 X=Y?	600 51- 07
476 DF J01-	554 SF 02 - in dicages	609 RCL 07
499 HKUL 18	555 PIN EXACT	610 RCL 09 1, Jan Oplates
500 AVIEW	EEC VILL Speed	611 / linterport
501+LBL 00		612 RCL 00 Listingen
502 ADV	337 310 98	613 PCI 98 1 percent
593 ANV	558 -	cia - wind speed
584 562 27	559 STO 09	
504 10: 21 505 DTN	560 5	615 *
	561 ST* 18	616 +
206+LBL (H	562 STO 12	617 STO 87
507 GTO H	547 FE Q1	618+LBL 00
508+LBL I		619 CF 81
509 GTO 1	564 6	620 PTN
519+1 BL 93	565 1/X	
	566 RCL 84	621+LBL 20
J11 J.20	567 X(=Y?	622 RCL 10
512 *	548 GTO 89	623 -
513 FIX 0	500 BIC 00	624 ENTERT
514 95		625 X<>Y
515 X>Y?	5/0 1	626 1
516 FIX 1	571 X(>Y) assigns number	
517 DNI	572 X<=Y?	
517 RUM	573 GTO AI \ corresponding	628 XEU IND X
518 2	574 BSE 12	629 FS? 01
519 X>Y?	575 2 / to release	630 RTN
520 FIX 2		631 XEQ IND Z
521 RDN	ore wind duration	632 -
522 ARCI X	5/7 X(=Y?	677 LOSTY 1 1-49
527 · FT·	578 GTO 01	cza vivu linterpolate
524 OUTEU	579 DSE 12	
J24 HTIER For DTU	580 4	635 RUL 12 between
JZJ KIN LOC	581 X()Y	636 / we case
526+LBL 13 COMPUTES	582 X(=Y2	637 RCL 04
527 5 GAU	597 CTO 81	638 RCL 11 Jurations
528 STO 10	505 010 01 504 DCC 10	639 - /
529 CF 02	584 DSE 12	649 *
530 1	585 8	641 +
571 PCI 00	586 X<>Y	642 DTN
572 4/-42	587 X(=Y?	
	588 GTO 01	643*LBL 00
533 510 64	589+LBL 00	644 .024
5.14 USE 10 assigns numer	590 RIN	645 RTN
535 2.5 /	SOI CHTCDA	646+LBL 01 Inble
536 X()Y (correct young)		647 .94
537 X(=Y? 1+ +he wind	<u> </u>	648 RTN values
578 GTO 91	593 X=Y?	64941 PL 92
579 DEF 19 Speed	594 SF 01 E- INdicates along	
507 000 10	595 RDN exact performe	50 . WO 50 W
	596 X()Y duration	631 RIN
541 X()Y	597 STD 11	652*LBL 03
542 X(=Y? /	500	653 .1
543 GTO 01 /		654 RTN
544 DSE 10 /	J77 X() 12	655+LBL 94
545 10	600 SI+ 10	656 18
546 9/19	601 29	757 DTU
979 0171	200 VED 00	OUT BIR

A-17

WHC-EP-0368

CEONIDI C				717 001 00 11			1	768 ST* 07	
608+LBL 8	50			713 KUL 00 \	\.		1	769 ST* 88	1. A.
659.1				/14 X(=Y?	$\mathbf{\Lambda}$			770 DNN	
660 RTN				715 GTO 00		LANS OWN	<i>er</i>	771 071 07	
661+LBL 8	96		-1	716 DSE 12	1055	ignir innin		771 514 67	
662.15			Y 4.	717.5	1	acronding	to	772 XCY	
667 PTN		이 가 있는 것같은 것이 있다.		718 8728	Corr	cspending)	773 ST+ 08	
	37	$-4p + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$		710 V/-V0	h.	would spa	:d	774 RTH	
0047LDL 8	97			717 61-17	Pre	with a start		775+LBL 00	-
665 .25		and the second sec	the second	720 610 01	1			776 21	
666 PTN				721 DSE 12 /				777 17	$\mathbf{\nabla}$
667+LBL 🛛	98			722 10				(((.1) 770 pru	c
668.4				723 X()Y /				778-KIN	LYALZ
669 RTH				724 X(=Y2				779+LBL 01	values
67941 DI 0	20			725 CTO A1				780.15	
271 2	97 			706ALDL 00				781 .14	from the
0/1 .0				120VLBL 00				782 RTN	· · ·) -
672 RIN				727 RDN				7974101 02	table
673+LBL 1	19			728 ENTERT				700VLDL 02	
674.2				729+LBL 01				/84 .14	4
675 RTH				730 X=Y?				785.13	
676+LBI 1	11			771 SF 02				786 PTN	
477 25				772 DBN				787+LBL 03	
0/1 .2J				102 KPP 777 0780				788.15	· · ·
DIS KIN				7.33 8(21				789 ENTERA	/
679+LBL 1	12			734 STO 10				700 DTN	V
680.35				735 -				720 610	•
681 RTN				736 STO 11				791+LBL 04	
682+LBI	13			737 CLST				792.12	
697 5	••			778 PC1 05				793 ENTERT	
000 .0 204 DTN				700 RUL 00				794 RTH	
- 564 KIN				7372				795+LBL 85	
682+LBL 1	14			7419 -				796 11	1
686 .7				741 6			1	707 ENTEDA	
687 RTN				742 *			'	(2) ENVERI	
688+LBL 1	15			743 5920 01				798 RIN	
689 . 3				744 7				799 • LBL 06	
200 PTN				745 +				800.35	
070 KIN				190 T				801 ENTERT	
- 691+LEL 1	10			746 51- 12				802 PTN	
692.35				747 3				997ALDI 87	
693 RTN		n		748 RCL 12				0007606 01	
694+LBL 1	17	1		749 -				804	
695 .45				750 XED IND X				802 ENTERS	•
696 PTN				751 STO 88				806 RTN	
- 697▲I DI - 1	10	,		753 V/NV				807+LBL 08	
57(YLDL 1	1¢	JAN .		7 JE AN / 1		(88828	
698.6		vulue '		753 510 07		j –		SUD ENTERT	
699 RTN		\uparrow		754 FS2C 02				OTO DIN	
700+LBL 1	19			755 RTN			I	010 K(P	
701.9				756 DSE Z				811+FEF 6A	
792 RTN				757 XEQ IND 7	1			812 .3	
70741 DI	77	- mailer		750 CT. 00	•			813 ENTERT	
704 00 00	<u> </u>	computes		750 J/ VO				814 RTN	
104 UF 01	1	Cud C-		707 8571				815+LBL 10	
THO RUL A	93			160 51- 01				816 .26	
796 10	٦			761 RCL 11				017 ENTEDA	
707 X(=Y)	? \	h >10m =		762 ST/ 07	'			OLI CHIER!	
708 SF 01	1 5	elevated		763 ST/ 08				818 KIN	
709 3	/	celease		764 PDN				819•LBL 11	
710 910	12			765 201 00				820.24	
- 110 010 1 - 711 CF 04	1 C 3			700 ROL 00 700 DOL 10				821 ENTER†	
711 UF MA	2	1		766 KUL 19				972 END	
712 1			1	767 -				· (

767 -A-18

1

APPENDIX B

Internal Letter

Date. 7/20/84

Rockwell International

No . 72322-84-WU-320

TO: (Name, Organization, Internal Address)

D. E. Bihl

P. D. Rittmann

FROM: (Name, Organization, Internal Address; Phone)

Subject: . Validation Of "ED" Revision 1

The HP-41CV calculator program for rapid assessment of environmental doses from inhalation of airborne releases has been revised and upgraded in the following areas:

- 1. Isotopic choices have been added, increasing the number of possibilities from 7 to 19.
- 2. Estimated time arrival (ETA) is given in units of minutes if ETA is less than 99 minutes. Otherwise it is given in units of hours.

The attached comparison of current results with previous results simply validates the calculator results by their agreement with DACRIN and SUBDOSA (for Kr-85).

If you have any questions, contact me on 3-3542.

kittmann

P. D. Rittmann Radiological Engineering and Effluent Controls

PDR/tjk

The second s

- cc: J. A. Bates G. F. Boothe D. D. Brekke T. Chiao W. A. Decker H. J. Goldberg D. B. Howe D. A. Marsh D. Paine R. H. Sudmann
 - L. N. Sutton

Rockwell International Rockwell Hanford Operations Energy Systems Group	WHC-EP-0368 DESIGN ANALYSIS	PAGE 1 05 6 JOB NO. <u>G-RE-PDR-82-84</u>
LOCATION 222	-U	BY Pau RIHMANN
SUBJECT Velidation 05	ED'-Rev	CHECKED BY LNS

I <u>Problem</u> Ensure the "ED" - Rev I, emergency dose calculation program for the HP-41CY performs correctly.

II. Method

Rev 1 contains additional dose factors, which are summarized on the next page. Arrows denote those dose factors used by "ED". Dose results from Rev I were compared with dose results computed by DACRIN, and in the case of Kr-85, SUBDOSA. These results are summarized in Internal Letter 72322-84-WU-243, May 18, 1984, PD Rittmann to RH Sudmann, "HP=41CV Program for Rapid Assessment of Environmental Doses" in which the original version of "ED" was validated.

Kr-85 dose factors were obtained from a SUBDOSA run by dividing the 7 mg/cm² beta dose and the 5 cm depth gamma dose by the 4/Q used.

beta: .0463 remm³ Gi-sec gamma: 5.0 x10⁴ remm³ The distance chosen for the gamma dose factor was great enough that it would approximate a semiinfinite cloud: B-2

	•	Post Time	トキー			•		
Isotopia / mixture	i	(4xys)	Body	Kidney	Liver	Bone	Lung	Thyreid
e e	Þ	3.65+002 1.83+004	2.34+000 2.34+000	S.77+000 S.77+000	8.52-003 8.52-003	r 2.21+001← 3.86+001+	7.55-001	00
1.10		3. 65+002	5.40-001	2.27+000	1.51-003	5, 33+000	4.55+001	00
Enriched	3	1.83+004	5.14-001	2.29+000	1.51-003	1.01+001	4.53+001+	00
MNININ I	٦	3.65+002	6.06-002	2.78-001	8.08-005 0.00 00F	5.78-001	1.80+002+	00
		1.83+004	1 95+000	1.02+000	8. US-003	4.50+000	+ . 32+002 +	00-
6 2° hu	3	1.83+004	8.49+001	3.53+002	1.04+003	1.86+003+	5.24+001	00
	>	3.65+002	1.28-001	5.85-001	1.96+000	3.07+000	2.08+002 ←	00.
(p/1 s)	-	1.83+004	3.22+001	1.34+002	4.05+002	7.04+002+	5.23+002	00.
179. P.	3	3.65+002 1.83+004	3.43+000 1.15+002	1.61+001 4.85+002	4.16+001	8. S9+001 2. 65+003 -	5.29+001 • 5.33+001	00
		3.65+002	2.29-001	1.06+000	2.74+000	5.85+000	2.19+002 ←	00
(1860)	~	1.83+004	4.21+001	1.79+002	4.67+002	9.70+002+	5.43+002	• 00
- 4A - VOO	c	3.65+002	7.63-002	00.	00.	1.15+000+	9.47-003	00.
Sr 70 + 170	2	1.83+004	8.93-001	.00	ΟŬ	1.33+001←	9.47-003	.00
100-00	3	3.65+002	1.63+000	1.11+001	2.84+001	3.61+001	5.57+001 ←	• 00
	2	1.83+004	6.52+001	4.75+002	1.03+003	1.64+003 -	5.60+001	00
(2-137		3.65+002	4.00-002	2.25-002	6.08-002	4.21-002	1.04-002	00.
	2	1.83+004	4.49-002	Z. Z5-002	€.46-002+	5.01-002	1.17-002	00.
	10	3.65+002	2.08-003	6.04-003	3.44-003	2.54-003	2.60-003	1.19+0006
both (I -	ا م	1.83+004	2.08-003	6.04-003	3.44-003	2.54-003	2.60-003	1.19+0006
		3.65+002	5,33-003	3.68-003	1.67-003	2.06-003	7.55-004	4.1S+000€
$Class = \begin{bmatrix} T - I \end{bmatrix}$	۲.ا	1.83+004	5.79-003	3.68-003	1.67-003	2.06-003	7.55-004	4.55+000←
		3.65+002	4.23-003	00.	3.11-003	00.	3.91-001	00.
	3	1.83+004	4.25-003	.00	3.13-003	00.	3.94-001←	00.
	>	3.65+002	2.57-003	• 00	1.89-003	°0.	1.50+000-	00.
	-	1.83+004	3.11-003	.00.	2.29-003	00.	3.17+000←	.00
	2	3.65+002	3.59-004←	3.59-004	3.59-004	1.79-003	3.59-004	3.59-004
		1.83+004	3,59-004	. 3.59-004	3.59-004	1.79-003~	3.59-004	3.59-004
	[-	3.65+002	7.69-005←	7.69-005	7.69-005	00	7.69-005	7.69-005
H->	7	1.83+004	7.69-005←	7.69-005	7.69-005	00	7.69-005	7.69-005
	- ,	3.65+002	1.05-002	2.73-002	3.55-002	1.34-001	1.38-001-	1.17-005
29°MTP	501.	1.83+004	2.74-002	3.44-002	4.34-002	4.00-001-	1.33-001	1.17-005
(, , , , , , , , , , , , , , , , , , ,	1	3.65+002	3.63-003	3.03-003	3.66-003	5.47-002	4.87-001-	4-006
(Pagl).	-1.3< u	1.83+004	1.93-002	4.43-003	5.55-003	2.89-001	6.34-001-	4.45-006
	-			+ 		-		pn LA
F	able	ot Dose	hacters ter	Acute In	Malalley In	I and inhal	led ,	ye. Is
							•	2

WHC-EP-0368

B-3

WHC-EP-0368

DESIGN ANALYSIS

FOR	
OCATION	
SUBJECT	

PAGE		3		
JOB NO.	G-RE	-PPR.	- 82 -	84
DATE _	July	16,	1984	
BY	Paul !	RìĦ	many	
CHECKE	DBY _L	NS		

Even though Kr-85 is an external hazard, to simplify program execution, an effective inhalation dose factor was aveated by dividing the above dose factors by 350 cc/sec. skin dose is the sum of the beta and gamma dose factors. (The 0 cm depth gamma dose is less than 700 higher than the 5 cm gamma dose, thus this approximation is valid).

skin: $1.34 \times 10^{-4} \text{ mG}$ other organs: $1.43 = -6 \frac{\text{rem}}{\text{mG}}$ The doses computed by "ED" are the following: <u>Ist year</u>: critical organ dose, where weighting Sactors are used to determine critical organ. total body: bone': other organ = 5:30:15

<u>50 year</u>: maximum organ dose, since 50 year committments are normally used to evaluate risk to the public.

Comparisons are outlined on the next three pages.

WHC-EP-0368 Page 4 MS The dose results highlighted by the right bracket E.T.A. = 5.8 MIN are the same as those listed on page 9 of VS X/Q=5.7E-3 GRD UCI/CC:9.6E-6 the referenced analysis. The dose results with 12%N03 LUNG 1 Y=1.1E5 MR are added dose factor results. the 2 BONE 50Y=5.3E6 MR MET = VSU = 2.2 MPH X = 0.22 MI E.T.A.=2.5 MIN DUR. = 0.17 HR E.T.A.=2.5 MIN N X/0=8.0E-6 H = 3.3 FTVS X/0=2.8E-4 GRD UCI/CC:2.2E-9 SIGU= 0.024 GRD UCI/CC:7.9E-8 SR/Y90 $\Sigma Y = 27.5 FT$ BONE 1 Y=3.2E0 MR LINH $\Sigma Z = 21.4 FT$ BONE 1 Y=2.2E3 MR BONE 50Y=3.7E1 MR CI REL: 1.90E0 BONE 50Y=3.8E3 MR TYPE: 12%NO3 MET = NU = 11.2 MPHMET = VSU = 11.2 MPHX = 0.47 MIDUR. = 1.0 HR X = 0.47 MI 6% NO3 ¥ DUR. = 1.0 HR H = 197 FTLUNG 1 Y=1.0E5 MR CY = 0.120H = 3.3 FTBONE 58Y=3.7E6 MR CZ = 0.120SIGU= 0.250 $\Sigma Y = 91.2 FT$ $\Sigma Y = 118 FT$ $\Sigma Z = 91.2 FT$ $\Sigma Z = 20.2 \text{ FT}$ AM241 CI REL: 1.00E0 CI REL: 1.00E0 LUNG 1 Y=1.1E5 MR H TYPE: SR/Y90 TYPE: UNH BONE 50Y=3.3E6 MR E.T.A. = 5.8 MIN E.T.A.=13.3 MIN E.T.A.=12.5 MIN UN X/0=6.5E-5 MS X/Q=6.9E-8 VS X/0=1.5E-3 GRD UCI/CC:1.8E-8 GRD UC1/CC:4.1E-7 GRD UCI/CC:2.4E-12 I131 003 12% 02 THYROD 1 Y=2.7E1 MR LUNG 1 Y=1.1E0 MR LUNG 1 Y=1.1E5 MR LUNG 50Y=1.1E0 MR THYROD 50Y=2.7E1 MR BONE 50Y=5.0E5 MR MET = UNMET = MSMET = VSU = 2.2 MPH U = 11.2 MPHU = 2.2 MPH X = 0.22 MI X = 2.5 MIX = 0.47 MI DUR. = 1.9 HR DUR. = 1.9 HR DUR. = 8.0 HR H = 197 FT H = 197 FT H = 3.3 FTCY = 0.300SIGU= 0.700 SIGU= 0.040 CZ = 0.300 $\Sigma Y = 1084 FT$ $\Sigma Y = 97 FT$ $\Sigma Y = 136 FT$ 2Z = 62.3 FT $\Sigma Z = 23.8 FT$ ΣZ = 136 FT CI REL: 1.00E0 CI REL: 1.00E0 CI REL: 1.00E0 TYPE: UO3 TYPE: 12% 02 TYPE: 1131 0308 6% 02 # I129 LUNG 1 Y=4.4E0 NR LUNG 1 Y=1.1E5 MR * * THYROD 1 Y=9.5E1 MR LUNG 50Y=1.1E1 MR BONE 50Y=3.6E5 NR THYROD 50Y=1.0E2 MR

B-5

page 5 LNS

These results agree with the results on page 10 of the referenced analysis. E.T.A.=5.8 NIN N X/Q=6.3E-4 GRD UCI/CC:1.7E-7 E.T.A. =80.0 MIN CS137 MS X/Q=5.9E-7 BODY 1 Y=8.8E0 MR ≯ GRD UCI/CC:2.1E-11 LIVER 50Y=1.4E1 MR FP-SOL LUNG 1 Y=2.9E-2 MR MET = NBONE 50Y=8.3E-2 MR J U = 2.2 MPH X = 0.22 MIMET =' MS DUR.= 1.0 HR U = 11.2 MPH H = 3.3 FTX = 14.9 MICY = 0.210DUR.= 8.0 HR CZ = 0.170H = 197 FTΣY = 82.0 FT SIGU= 0.700 $\Sigma Z = 66.4 FT$ $\Sigma Y = 2953 FT$ CI REL: 1.00E0 $\Sigma Z = 134 \text{ FT}$ TYPE: CS137 CI REL: 1.00E0 TYPE: FP-SOL FP-INS LUNG 1 Y=1.0E-1 MR X LUHG 50Y=1.3E-1 MR The difference in dose factors CO-INS for MEP-soluble follows from LUNG 1 Y=3.1E-1 MR ⋪ LUNG 50Y=6.6E-1 MR a some what different choice CO-SOL of inhalation (lung clearance) LUNG 1 Y=0.1E-2 MR Å LUNG 50Y=8.2E-2 MR categories for the isotopes. C - 14BOBY 1 Y=7.4E-5 MR ⋪ BONE 50Y=3.7E-4 MR KR-85 In this analysis, ICRP 30 SKIN 1 Y=2.8E-5 MR Ħ SKIN 50Y=2.8E-5 MR

> H-3 BODY 1 Y=1.6E-5 MR BODY 50Y=1.6E-5 MR

B-6

choices for soluble & insoluble

are assigned to each isotope

independent of the others.

page 6 LNS

These results agree with the results on page 12 of the referenced analysis. E.T.A. =2.5 MIN N X/Q=8.0E-6 GRD UCI/CC:2.2E-9 SR/Y90 based on stored BONE 1 Y=3.2E0 MR BONE 50Y=3.7E1 MR dose factors MET = NU = 11.2 MPHX = 0.47 MIDUR.= 1.0 HR H = 197. FT CY = 0.120CZ = 0.120ΣY = 91.2 FT $\Sigma Z = 91.2 FT$ STK CFM=5.8054 STK UCI/CC:1.00E-5 TYPE: SR/Y90 *SR90* 3 based on manual input of BONES 1 Y=3.2E0 MR isotope name and dose factor / organ BONES 50Y=3.7E1 MR STK CFM=5.89E4 for lyr + 50 yr committments STK UCI/CC:1.00E-5 TYPE: *SR90*

DF 1 Y=1.15E0 DF 50Y=1.33F1

III, Conclusion The revised "ED" program correctly calculates acute inhalation doses using the dose factors on page 2 of the current analysis.

APPENDIX C

WHC-EP-0368

Internal Letter

Date August 9, 1984

TO: (Name Organization, Internal Address) **Rockwell International**

. 72322-84-WU-340 No

FROM: Name, Organization, Internal Address, Phone)

Those Listed

·	Ρ.	D.	Rittmann
•			1

User Instructions For The Emergency Response HP-41CV Program Subject .

Attached are the detailed user instructions for the program "ED" developed for the HP-41CV to facilitate estimates of inhalation doses following accidental airborne releases. Detailed documentation of meteorology models, dose models and a program listing will be sent under a separate cover letter.

If you have any questions on program use, or suggestions to improve the program, please contact me on 3-3542.

Pau ann

P. D. Rittmann Radiological Engineering and Effluent Controls

PDR/tjk

- cc: J. A. Bates
 - D. E. Bihl
 - G. F. Boothe
 - D. D. Brekke
 - Τ. Chiao
 - G. Christensen
 - W. A. Decker
 - H. J. Goldberg
 - D. B. Howe
 - D. A. Marsh

 - D. Paine R. H. Sudmann
 - L. N. Sutton

INSTRUCTIONS FOR "ED" - EMERGENCY DOSE CALCULATION PROGRAM FOR THE HP-41CV

A. Getting Started

- 1. Switch the calculator to USER mode, i.e., make the small word "USER" appear on the left side of the display.
- 2. Press the button labeled "XEQ" which is located to the right of the tan colored button. The words "ED-REV 1" should appear in the display. If the display shows "XEQ " then the program is not in the calculator, or is improperly loaded. The program can be reloaded as follows:
 - a. Clear the calculator memory, i.e. turn off the calculator, press and hold the "← " button. The "MEMORY LOST" display appears to indicate the calculator is ready.
 - b. Allocate 21 registers for data storage by pressing the keys "XEQ" "ALPHA" "S" "I" "Z" "E" "ALPHA" "O" "2" "1".
 - c. Switch to USER mode and begin feeding cards into the card reader until all 19 tracks of "ED" are entered.
 - d. After "ED" is loaded, it can be started up using the steps in Part A.1. and A.2. above.
- B. ATMOSPHERIC DISPERSION. Once the "ED-REV 1" prompt appears, press R/S to begin the data entry prompts for calculating atmospheric dispersion.
 - 1. "VS, MS, N, UN = 0-3". This prompt requires entry of a number (0, 1, 2, or 3) to indicate which atmospheric stability class applies to this release: VS = Very Stable (0), MS = Moderately Stable (1), N = Neutral (2), UN = Unstable (3). The stability class can be determined one of two ways:
 - a. Phone the Hanford Meteorological Station, (HMS), 373-2716 and ask for the current stability class, wind speed and direction. All three will be needed.
 - b. Or, estimate the stability class from the following tables

Day Time

Wind Speed	Clear	Cloudy	Overcast
< 10 mph	UN	UN	UN
>10 mph	UN	N	N

Nighttime

Wind Speed	< 50% Clouds	>50% Clouds
< 5 mph	MS	MS
5-10 mph	Ν	MS
> 10 mph	N	N

Enter your selection (0, 1, 2 or 3) and press "R/S"

2. "WIND SP? MPH" This prompt is asking for the wind speed at the point of release in units of miles per hour. If the HMS could not be reached, then wind speed estimates can be used. Enter the wind speed and press "R/S".

NOTE: Convert wind speed in meters-per-second to miles-per-hour by dividing by .447 (1 mph = 0.477 m/sec).

3. "DISTANCE? MI" This prompt requires entry of the number of miles downwind to the individual of interest. A crucial question at this point is "Which way is the wind blowing?" HMS gives the wind direction, or if HMS cannot be reached, the direction can be estimated. Be careful not to mis-interpret HMS wind direction reports. "Wind direction" normally is the direction the wind is coming from. To track a release plume you must have the direction the wind is blowing toward, i.e., the direction the released activity will travel. If you phone HMS, ask the meteorologist to clarify which way the wind is blowing in terms of the geographical area it blows toward.

After the direction of travel of the plume is established, pull out a map of Hanford and lay a ruler along this direction at the point of release. Select an appropriate location within \pm 10° of the wind direction to determine inhalation dose (e.g. Highway 240, site boundary, FFTF, N-Reactor, 2750E, etc.). Use the calculator if necessary to convert the ruler measurement to miles. Enter the distance and press "R/S".

NOTE: Convert meters to miles by dividing by 1609. (1 mile = 1609 meters).

- 4. "E.T.A. = ____". This is the time of flight result (estimated time of arrival). In other words, how long it will take the puff to travel the distance at the wind speed you entered. Press "R/S" to continue program execution.
- 5. "REL DUR? HR". This prompt is asking for the release duration in hours. Any number greater than zero up to and including 24 hours is acceptable. Durations greater than 8 hours result in sector averaged X/Q values. Enter the release duration and press "R/S".

"REL HT? FT". This prompt is asking for the release height in feet. 6. If significant plume rise is observed, a release height greater than the stack height can be used. Normally, just the stack height is entered at this point.

If a stack's height is less than 2.5 times the height of nearby buildings, building wake turbulence brings the stack's effluent down to ground level. Thus, in the 200 areas there are only 200 foot stacks and ground level stacks, with the exception of the 150 foot vessel vent stack on top of 244 AR. Enter the release height, and press R/S.

- The X/Q value is displayed next. The display shows the stability 7. class and the computed X/Q value in seconds per cubic meter. Press "R/S" to go on.
- "INPUT LIST?". This prompt gives you the option of reviewing the 8. meteorology inputs and related results. If you do not wish to review your input, press "R/S" and the calculator will go to paragraph C.l., below. If you want to review input, enter any number and press "R/S". Press "R/S" to view successive inputs.
 - " shows the stability class "MET = a.
 - Ь.
 - "U = _____MPH" shows wind speed "X = _____MI" shows downwind distance "DUR = _____HR" shows release duration с.
 - d. HR" shows release duration
 - "H = FT" shows release durat "SIGU = or "CY = " "CT" e.
 - f. ", "CŽ = "show the parameter used in the X/Q computation. If the release duration exceeds 8 hours, only the Cz parameter will be displayed.
 - "ΣY = FT" shows the computed σy value used. It is a measure g. of the spread of the plume horizontally from the centerline at the distance chosen.
 - "ΣZ = FT" shows the computed σ_z value used. It is a measure h. of the spread of the plume vertically.
- C. Release Amount and Type
 - "STACK CFM?". This prompt actually offers a choice on whether the 1. release quantity will be determined from stack flow rate and concentration, or total curies released. These two data entry paths are described as follows:
 - If there was a stack release, and a stack air concentration is a. known, find the flow rate for the stack on the Tables at the end of these instructions. Enter this flow rate and press "R/S". The next prompt is "STK CONC?" and requires entry of the measured stack air concentration in units of microcuries per cubic centimeter. Enter the concentration and press "R/S" and the program continues with paragraph C.2. below.

- b. If the release is not from a stack, or has been estimated as a lump sum total number of curies released, then data entry should be done as follows. When the "STACK CFM?" prompt appears enter zero cfm and press "R/S". The next prompt will be "CI REL?". Enter the total number of curies released and press "R/S".
- 2. "GRD UCI/CC: ". This shows the computed average ground level concentration at the previously entered downwind distance. The units are microcuries per cubic centimeter. Because this message is too large for one display, the calculator scrolls the message to the left. Thus the "GRD" disappears in a few seconds. To see the entire message again, press the "ALPHA" button and watch it scroll left. Be sure to press the "ALPHA" button a second time before continuing. This will make sure the calculator is not in "ALPHA" mode, i.e., that the small word "ALPHA" does not appear on the right side of the display.
- 3. "a, FP, AP, NEW = 1-4". This prompt gives the categories of isotopes available to the user. Alpha emitters, fission products, activation products or new dose factors are chosen by entering 1, 2, 3, or 4 and pressing "R/S". The results of each choice are explained below.

a. "a" (enter 1): This chooses the alpha emitter menu, "12%, 6%, AM, U = 1-4".

The choices are summarized in the table below.

Category	Number Entry	Explanation
12%	1	180d, 12% Pu-240
6%	2	180d, 6% Pu-240
ΛM	3	Am-241, class W
U.	4	Uranium

If a "1" or "2" is entered, the program prompts with "NO3, O2 = 1,2". Selecting nitrate (1) means class W plutonium dose factors are used; choosing oxide (2) means class Y plutonium dose factors are used.

If "3" is entered the dose results come next.

If "4" is entered, the program prompts with "UO, UO3, UNH = 1-3". "UO" is class Y uranium compounds such as UO2 or U308. "UO3" is class W, and "UNH" is class D. b.

с.

"FP" (enter 2): This choses the fission product menu, "SR, I, MFP, CS = 1-4". The choices are summarized in the table table

ne	churces	are	summar	izea	۱n	the	table	be	IOW.

Category	Number Entry	Explanation
SR	1	Sr-90 plus Y-90 in a 50-50 mix
I	2	I-129 or I-131
MFP	3	180d, 12% Pu-240, mixed fission products
CS	4	Cs-137

If a "1" or "4" is entered the dose results come next. If a "2" is entered, the next prompt is "I129, I131 = 1, 2" which allows one to choose either isotope.

If a "3" is entered, the next prompt is "INSOL, SOL = 1, 2" which allows one to chose the approximate chemical form of the MFP.

"AP" (enter 3): This chooses the activation product menu, "CO, C, KR, H = 1-4".

These choices are summarized in the table below:

Category	Number Input	Explanation
CO	١	Co-60
C	2	C-14
KR	3	Kr-85
H	4	H-3

If a "1" is entered, the program prompts with "INSOL, SOL = 1,2". Insoluble chemical forms of cobalt are oxides, hydroxides, halides and nitrates. Other cobalt compounds are considered soluble (class w).

If "2", "3", or "4" is entered, the program computes dose results next.

- "NEW" (enter 4): This allows you to input your own dose d. factors. After pressing "R/S", the "NAME?" prompt appears together with the small word "ALPHA" which indicates the calculator is in alpha mode. Press the appropriate blue lettered keys to spell out the name of this isotope or mixture. Numbers are entered in alpha mode by first pressing the shift key (tan colored), then pressing the number. Up to 24 characters may be entered, but the program will only retain six, so abbreviate accordingly. The next prompt, "I YR R/UCI?", is asking for numeric input of the new dose factor for first year dose in units of rem per microcurie inhaled. Press "R/S" and the "CRIT ORGAN?" prompt appears. The calculator is again in "ALPHA" mode, so use the blue lettered keys to spell out the organ for which the previously entered first year dose factor applies. Again, only six characters will be retained so abbreviate as necessary. Press "R/S" and the 50 year committed dose factor and organ prompts appear. Enter the appropriate data and press "R/S". The program then computes first year and 50 year organ doses using the dose factors just entered.
- 4. Dose results are displayed as follows:
 - a. The name of the isotope or mixture is displayed momentarily. Do not press "R/S" to continue, The small word "PRGM" on the right side of the display means the program is running.
 - b. After the name display comes the first year dose result, which has the general format

" (organ name) 1Y = MR".

The dose result has units of mrem. The organ is on the left, and since the display scrolls left. in a few seconds the organ cannot be seen.

- c. The 50 year dose committments have the same format as the first year committments. Press "ALPHA" to take another look, or "K/S" to continue.
- 5. "INPUT LIST?" As before, this prompt gives the option of reviewing input data. If you do not wish to review input, then press "R/S" and the program returns to the beginning prompt "ED REV 1". If you would like to review your input, enter any number and press "R/S". Press "R/S" to view successive inputs.
 - a. If a stack flow rate was entered, the first and second displays are "STK CFM = ____ and "STK UCI/CC: ____ showing the stack flow rate and stack air concentration. If zero was entered as the flow rate, then the first and only display is "CI REL: _____" showing the number of curies released.

- b. "TYPE: ". Shows the isotope or mixture selected for dose computation. If the "NEW" option was selected in step C.3 above, then the name you entered is shown. Also, on the next displays will be the first year and 50 year dose factors which were entered. If the "NEW" option was not selected then the program returns to the beginning prompt "ED-REV 1" after displaying the material type.
- D. Running Additional Cases
 - Check whether the small word "USER" disappears on the left side of the display. If it doesn't, press the USER key to place the calculator in "USER" mode.
 - 2. The top two rows of keys (blue labels A through I) are assigned so that changes can easily be made at any point in the sequence of data entry described in parts B and C above. For example, to change the distance down wind, press the key with the blue label "C" and the prompt "DISTANCE? MI" will appear. You can enter a new distance and press "R/S" or just press "R/S" and the previous distance will be used. (To see what the previous entry was, just press the "← " key to clear the display.) The program will now execute skipping all further data entry prompts. The E.T.A. and X/Q results will be shown, and then will come the dose results. Key reassignments for "USER" mode are listed below:

Internal Label	Blue Label	Program Display When Pressed In "USER" Mode
ED	K	"ED-REV 1"
MET	Α	"VS, MS, N, UN = 0-3"
мрн	В	"WIND SP? MPH"
DIST	C	"DISTANCE? MI"
DUR	D	"REL DUR? HR"
нт	E	"REL HT? FT"
CFM	F	"STACK CFM?"
CI	G	"STK CONC? or "CI REL?"
ISO	H	"a, FP, AP, NEW = 1-4"
INPUT	I	"MET =" and other input data

- 3. General Notes:
 - a. On any data entry prompt, the value input on the previous run will be used unless a new value is entered. Thus the entire calculation can be duplicated from the "ED-REV 1" prompt to the dose result simply by pressing "R/S" again and again.
 - b. Menu prompts are arranged so that the more severe consequence results from a lower number entry as a general rule, So, when in doubt, take the lower number choice.
 - c. The choice between soluble or insoluble can be made on the basis of the general physical form of the material. Liquids are soluble; solids are insoluble; fires always produce insoluble material.
 - d. Plutonium and uranium quantities are commonly given in units of mass, such as grams or pounds. Relationships to convert from mass to activity are listed below. In use they are simply multiplied by the given mass. Note that here "Ci" refers to curies of alpha emitters only.

12% Pu:	.097 Ci/g	or	44 Ci/lb	
6% Pu:	.075 Ci/g	or	34 Ci/lb	
U:	8.2 E-7 Ci/g	or	3.7 E-4 Ci/lb	or
	.82 Ci/Mt	or	.74 Ci/ton	

UNH Solution: 4 lb U/gal as received from PUREX 10 lb U/gal entering calciner

e. In the event of a criticality, the inhalation and external doses from the short lived inert gases and iodine should be estimated from the table on the next page. This table provides upper bounds on possible doses at each distance for an event with 1.0 E+19 fissions spread over eight hours. Current values for atmospheric stability and wind speed are not needed.

C-9

	8 Hour Release	
	Adverse Meteorology,	Req. Guide 3.35)
	Fissions,	from NRC
2	l And Inhalation Doses From 10 ¹⁹	(Release quantities
	External	

	Distance (miles) Distance (meters)	.25 mi 400 m	0.50 mi 800 m	2.7 mi 4.4 Km	5.3 mi 8.5 Km	7.8 mi 12.5 Km	10 mi 15.5 Km
	Stability Class	z	VS	VS	MS	MS	VS
Ground	Wind Speed (mph)	2.2	2.2	5.6	1	1	Ţ
Level	Total Body (mrem)	600	220	14	S	3.3	2.7
	Thyroid (mrem)	3000	930	52	19		7.3
	Stability Class	NN	z	z	MS	WS	MS
Elevated (200 foot	Wind Speed	2.2	2.2	2.2	2.2	2.2	2.2
stack)	Total Body (mrem)	220	160	12	2.0	.84	.37
	Thyroid (mrem)	630	530	19	18	10	6.2

WHC-EP-0368

C-10

PUREX STACKS:

St	ack Number	EDP Code	Name	Typical High Flow Rate (cfm)
	291-A-1	A552	PUREX 200'	130,000
	296-A-1	A540	Q-Cell	4,000
	296-A-2	A542	W. Sample Gallery	3,600
	296-A-3	A543	E. Sample Gallery	3.500
	296-A-5A	A545	LAB West	8,000
	296-A-5B	A546	LAB East	18,000
	296-A-6	A547	E Sample Gallery & U	Cell 13,000
	296-A-7	A548	W Sample Gallery & R	Cell 15,000
	296-A-8	A549	White Room Exhauster	16,000
	296-A-10	A550	Equip. Disposal Tunne	5,000
	296-A-14	A544	Outback (293-A) Exhau	st 5,000
	296-A-24	A539	Ammonia Scrubber Wast	e Conc. 1,700
	296-A-31	A562	Storage Gallery	12,000
	296-A-32	A563	Vacuum Pump Exhaust	1,800
	296-A-33	A578	Wall Exhauster, EF-3-	5 4,000
	296-A-34	A579	Wall Exhauster EF-3-6	6,000
	296-A-35	A580	Wall Exhauster EF-3-7	7,000
	296··A-36	A582	Wall Exhauster EF-3-8	4,300
	296-A-37	A583	Wall Exhauster EF-3-9	7,000
	296-A-38	A584	Wall Exhauster EF-3-1	0 2,300
	296-A-39	A516	SWP Lobby Exhaust	Unknown
£.

a la

B-Plant/WESF

Stack Number	EDP Code	Name	Typical High Flow Rate
291-B-1	B691	B-Plant Canyon 200 ft	40,000
296-B-5	- B ି 26	271-B	1,600
296-B-10	B748	WESF	18,000
296-B-13	B690	221-BF, BCP Tanks	900
296-B-14	B678	221-B Vessel Vent	200
East Tank Farm Stacks:			
296-A-12	E058	244-AR Vessel Vent 150 ft.	450
296-A-13	E052	244-AR Canyon	4,000
296-A-17	E059	A, AX, AY, AZ Tanks	4,000
296-P-1	E120	Tank 105-A	1,500
296-A-20	E197	AZ Annuli	2,000
296-A-21	E645	242-A Evaporator	16,000
296-A-22	E643	242-A Vessel Vent	600
296-A-25	E080	244-A Catch Tank	150
296-A-26	E297	204-AR Unloading Facility	1,800
296-A-27	E270	AW Tanks	1,100
296-A-28	E272	AW Annuli	4,600
296-A-29	E901	AN Tanks	800
296-A-30	E903	AN Annuli	5,000
296-B-28	E886	244-BX Saltwell Vessel	200
291-C-1	E073	201-C, 200 ft.	9,000
296-C-5	E069	244-CR Vault	2,900
296-P-16	E-068	Tanks 105, 106-C	3,500

C-12

S-Plant Stacks:

Stack Number	EDP Code	Name	Typical High Flow Rate (cfm)
2 9 1-5-1	S006	202-S Canyon, 200 Ft	20,000
296-S-2	S032	202-S Sample Gallery	1,500
296-S-4	S008	202-S SWP Lobby	900
296-S-6	S004	202-5 Silo	10,000
296-S-7E	S015	233-S Building Exhaust	8,500
296-S-7W	S016	233-S Building Exhaust	8,500
296-S-16	S264	218-S Tanks	200
296-5-21	S289	222-S Lab	70,000
T-Plant Stacks:			
291-T-1	T785	221-T Canyon, 200 Ft	40,000
296-7-11	T783	224-T East	13,000
296-T-12	T784	224-T West	13,000
296-T-13	T786	221-T Roof	40,000
296-W-1	L100	Laundry	25,000
U-Plant Stacks:			
296-U-1	U771	221-U Canyon, 200 ft	12,000
296-U-2	U133	Powder Handling Offgas	700
296-U-4	U777	224-U Calcinators	2,500 .
296-U-13	U878	224-U Load-out Room	4,500

Z-Plant Stacks:

Stack Number	<i><u>ĽDP</u></i> Code	Name	Typical High Flow Rate (cfm)
291-2-1	Z810	234-5, 232-Z, 236-Z, 242-Z	240,000
296-Z-3	Z813	241-Z Sump & Vessel	1,300
296-Z-5	Z913	2736-ZB	10,000
296-Z-6	Z802	2736-ZA	12,000
West Tank Farm Stac	<u>ks:</u>		i.
296-P-22	W191	SY Annuli	400
296-P-23	W190	SY Tanks	800
296-S-15	WIII	SX Tanks	5,000
296-S-18	W19E	242-S Building Exhaust	20,000
296-5-22	W880	244-S Salt Well Receiver	180
296-T-17	W117	242-T Cells	2,000
296-T-18	W882	244-TX Salt Well Receiver	200

APPENDIX D

WHC-EP-0368

Internal Letter

DateFebruary 19, 1985

72310-85-WG-049

TO.

Those Listed

Name Organ Jalion Internal Address)

FROM _ Name Digenization Interna Address Phone;

P. D. Rittmann

.

3-3542

Subject Revision 2 of the HP-41CV Emergency Dose Program

Ref: Internal Letter 72320-84-WU-340, August 9, 1984, P. D. Rittmann to those Listed, "User Instructions for the Emergency Response HP-41CV Program"

The HP-41CV handheld calculator program for computing inhalation doses following an environmental release, has been revised as a result of the recent C-Farm incident to include the following features:

- 1. The Hanford atmospheric dispersion model has been replaced by the Pasquill-Gifford dispersion model. This change makes the program compatible with current reporting methods used by the Hanford Meteorology Staticn.
- 2. Calculation of integrated exposures (X/Q) not directly on the plume centerline is available. This facilitates the interpretation of environmental air sample results in cases where the release plume does not blow directly towards the sampler.
- 3. Values for X/Q generated by other dispersion models (for example, PNL-3777, or the Hanford model) may be directly entered and used by the program in place of the Pasquill choices.
- 4. Total curies released may be computed based on stack or environmental air concentration data, or even ground contamination data.

Attached are the revised instructions and supplementary tables. Program documentation and method verification will be sent in a separate letter. If you have any questions, suggestions, or would like a copy of the program, please contact me at the above number.

tmann

P. D. Rittmann Radiological Engineering and Effluent Controls

PDR/tjj

WHC-EP-0368

C

6

6

DISTRIBUTION

R.	C.	Aldrich	W. D. Killand
D.	D.	Beers	R. P. Knight
D.	Ε.	Bihl	R. A. Kulick
G.	F.	Boothe	T. P. Lynch
Μ.	c.	Bratley	D. A. Marsh
D.	D.	Brekke	G. G. Meade
R.	Ε.	Broz	P. D. Nelson
к.	J.	Cameron	D. Paine
Τ.		Chiao	B. D. Pickett
G.		Christensen	J. J. Pietrusiewicz
G.	Μ.	Cooley	B. J. Saueressig
D.	۸.	Conners	R. C. Stupka
₩.	Α.	Decker	R. H. Sudmann
D.	R.	Ellingson	L. N. Sutton
Н.	J.	Goldberg	R. E. Wheeler
C.	J.	Hall	R. L. Kathren (PNL)
Μ.	E.	Hevland	W. D. McCormack (PNL)
D.	в.	Howe	B. J. McMurray (PNL)
G.	s.	Kephart	J. V. St angeland (PNL)

INSTRUCTIONS FOR "ED-REV 2"

EMERGENCY DOSE CALCULATION PROGRAM FOR THE HP-41CV

A. <u>Getting Started</u>

(

Ċ

- Switch the calculator to USER mode, i.e., make the small word "USER" appear on the left side of the display.
- 2. Press the button labeled "XEQ" which is located to the right of the tan colored button. The words "ED-REV 2" should appear in the display. If the display shows "XEQ ____ " then the program is not in the calculator, or is improperly loaded. The program can be reloaded as follows:
 - a. Clear the calculator memory, i.e. turn off the calculator, turn it back on while holding the " ~ " button. The "MEMORY LOST" display appears to indicate the calculator is ready.
 - b. Allocate 20 registers for data storage by pressing the keys "XEQ" "ALPHA" "S" "I" "Z" "E" "ALPHA" "O" "2" "O".
 - c. Switch to USER mode and begin feeding cards into the card reader until all 17 tracks of "ED" are entered.
 - d. After "ED" is loaded, it can be started up using the steps in Part A.1. and A.2. above.
- B. <u>ATMOSPHERIC DISPERSION</u>. Once the "ED-REV 2" prompt appears, press R/S to begin the data entry prompts for calculating atmospheric dispersion.
 - 1. "MET? A-G = 1-7". This prompt requires entry of a number from 1 to 7 corresponding to the atmospheric stability class present at the time of the release.

The stability class can be determined one of two way:

- a. Phone the Hanford Meteorological Station (HMS), 373-2716, and ask for the <u>stability class</u>, <u>wind speed</u>, and <u>direction</u>. All three will be needed.
- b. Or, estimate the stability class from the following table:

	Dayt	Daytime Cloud Cover			Cloud Cover
Wind Speed	Little	Half	Overcast	> Half	< Half
<5	A	Α	B	Ε	F
5	A-B	8	С	E	F
10	В	B-C	С	D	E
15	C	C-D	D	D	D
>15	С	D	D	D	D

D-3

2. "WIND SP? MPH" This prompt is asking for the wind speed at the point of release in units of miles per hour. If the HMS could not be reached, then wind speed estimates can be used. Enter the wind speed and press "R/S".

NOTE: Convert wind speed in meters-per-second to miles-per-hour by dividing by .447 (1 mph = 0.477 m/sec).

3. "DISTANCE? MI" This prompt requires entry of the number of miles downwind to the location of interest. A crucial question at this point is "Which way is the wind blowing?" HMS gives the wind direction, in degrees measured clockwise from north. If HMS cannot be reached, the direction can be estimated. Be careful not to misinterpret HNS wind direction reports. "Wind direction" normally is the direction the wind is coming from. To track a release plume you must have the direction the wind is blowing toward, i.e., the direction the released activity will travel. If you phone HMS, ask the meteorologist to clarify which way the wind is blowing in terms of the geographical area it blows toward.

After the direction of travel of the plume is established, pull out a map of Hanford and lay a ruler along this direction at the point of release. Select an appropriate location e.g. Highway 240, site boundary, onsite building, or air sampler. Use the calculator if necessary to convert the ruler measurement to miles. Enter the distance and press "R/S".

NOTE: Convert meters to miles by dividing by 1609. (1 mile = 1609 meters).

- 4. "E.T.A. = _____". This is the time of flight result (estimated time of arrival). In other words, how long it will take the puff to travel the distance at the wind speed you entered. Press "R/S" to continue program execution.
- 5. "OFFSET? FT". This prompt is requesting the distance measured from the plume centerline to the location of interest. If the location of interest is very close to the plume centerline, just enter a zero.
- 6. "REL HT? FT". This prompt is asking for the release height in feet. If significant plume rise is observed, a release height greater than the stack height can be used. Normally, just the stack height is entered at this point.

If a stack's height is less than 2.5 times the height of nearby buildings, building wake turbulence brings the stack's effluent down to ground level. Thus, in the 200 areas there are only 200 foot stacks and ground level stacks, with the exception of the 150 foot vessel vent stack on top of 244-AR. Enter the release height, and press R/S.

7. "REL DUR? HR". This prompt is asking for the release duration in hours. Any number greater than zero up to and including 24 hours is acceptable. Durations greater than 8 hours result in sector averaged X/Q values. Enter the release duration and press "R/S".

6...

- 8. The X/Q value is displayed next. The display shows the stability class and the computed X/Q value in seconds per cubic meter. Press "R/S" to go on.
- 9 "INPUT LIST?". This prompt gives you the option of reviewing the meteorology inputs and related results. If you do not wish to review your input, press "R/S" and the calculator will go to paragraph C.1., below. If you want to review input, enter any number and press "R/S". Press "R/S" to view successive inputs.
 - "MET = PG __" shows the Pasquill-Gifford stability class a.
 - "U = ____ MPH" shows wind speed **b**.
 - "X = _____ MI" shows downwind distance с.
 - $"Y = __FT"$ shows the plume offset distance d.
 - e.
 - f.
 - "H = ____ FT" shows release height "DUR = ____ HR" shows release duration " ΣY = ____ FT" shows the computed by value used. It is a measure g. of the spread of the plume horizontally from the centerline at the distance chosen.
 - $^{m}\Sigma Z =$ FT^m shows the computed σz value used. It is a measure h. of the spread of the plume vertically.
 - $^{m}X/Q =$ shows the value for X/Q used in later calculations. j.
- 10. If you would like to enter your own X7Q from PNL-3777, Revision 1, or another atmospheric dispersion model, switch to USER mode and press the key with the blue "J". At the "ENTER X/Q" prompt, switch the calculator out of USER mode, enter the X/Q, and press "R/S".

C. <u>Release Amount and Type</u>

¢:

Ę

() ·

- "ST, CI, AR, GD = 1-4". This prompt offers four ways to establish the 1. number of curies released:
 - 1 = ST = stack release using a measured stack concentration
 - 2 = CI = direct entry of curies released
 - 3 = AR = using a measured ground level air concentration downwind
 - 4 = GD = using a surface contamination measurement downwind
 - "ST" (enter 1) This is the option to use with a stack release, a. where the average stack concentration (gross beta or gross alpha) during the release is known.
 - (1) "STK UCI/CC?" Enter the average stack concentration in units of micro-curies per cubic centimeter of air.
 - (11) "STACK CFM?" Look up the appropriate value on the tables at the end of this guide.
 - b. "CI" (enter 2) This allows direct entry of the number of curies released. The next prompt will be "CI REL?".
 - c. "AR" (enter 3) This enables one to interpret downwind air concentration measurements. The X/Q computed earlier must be at the location the air sample was taken.

- (1) "AIR UCI/CC?" Enter the average air conceltration measured at the air sampler. Use gross beta or gross alpha.
 (11) "UPS SAMPLET?" Enter the number of bound over which the
- (11) "HRS SAMPLED?" Enter the number of hours over which the sample was taken.
- NOTE: As long as the sample period includes the entire release, or else begins and ends during the release, the program will work fine. Otherwise, the curie estimate will be too small, according to the portion of the release that was not sampled.
- d. "GD" (enter 4) In the absence of downwind air sample data, the measured surface contamination can be used to estimate air concentrations and even the total curies released.
 - (1) "DPM/SQ.CM?" Enter the measured surface contamination downwind. If direct survey data is available, the detector face area must be taken into account. Use the following table:

Probe	Face Area		
P-11	15	Cm ²	
PAM	^ 54	Cm ²	

- (11) "DÉP.SP? CM/S" Enter an appropriate value for the ground deposition speed. Typically this is around 0.1 cm/sec, although it may be higher for certain chemical forms (iodine) and varies with humidity, surface moisture, vegetation.
- NOTE: An excellent way to measure deposition speed is by having air sample and ground contamination results for the same location. The deposition speed is computed by dividing the ground contamination by the air concentration, and then dividing this result by the sample time, where the sample time is long enough to include the entire release.
- 2. After entering the necessary information, the program now computes and displays the estimated curies releases, as well as the average air concentration during the release at the downwind location.
 - a. "REL:___CI" This is the number of curies released. Press "R/S" to continue.
 - b. "GRD UCI/CC = ____" This is the computed average ground level concentration during the release at the downwind location. Press "R/S" to continue.
 - NOTE: Because this message is too large to fit in the display, the calculator scrolls the message to the left. The word "GRD" dissappears in a few seconds. To see the entire message again, press the "ALPHA" button and watch it scroll left. Be sure to press the "ALPHA" button again to take the calculator out of "ALPHA" mode, i.e., make sure the small word "ALPHA" does not appear on the right side of the display.

- 3. "a, FP, AP, NEW = 1-4". This prompt gives the categories of isotopes available to the user. Alpha emitters, fission products, activation products or new dose factors are chosen by entering 1, 2, 3, or 4 and pressing "R/S". The results of each choice are explained below.
 - a. "a" (enter 1): This chooses the alpha emitter menu, "12%, 6%, AM, U = 1-4".

The choices are summarized in the table below.

(::::

بزبه بم

Category	Number Entry	Explanation
12%	1	180d, 12% Pu-240
6%	2	180d, 6% Pu-240
AM	3	Am-241, class W
U	4	Uranium

If a "1" or "2" is entered, the program prompts with "N03, 02 = 1,2". Selecting nitrate (1) means class W plutonium dose factors are used; choosing oxide (2) means class Y plutonium dose factors are used.

If "3" is entered the dose results come next.

If "4" is entered, the program prompts with "UO, UO3, UNH = 1-3". "UO" is class Y uranium compounds such as UO2 or U308. "UO3" is class W, and "UNH" is class D. b. "FP" (enter 2): This choses the fission product menu, "SR, I, MFP; CS = 1-4".

ine	choices	are	summarized	11	the	table	Delow.	

6

E: ``

Category	Number Entry	Explanation
SR	1	Sr-90 plus Y-90 in a 50-50 mix
I	2	I-129 or I-131
MFP	3	180d, 12% Pu-240, mixed fission products
CS	4	Cs-137

If a "1" or "4" is entered the dose results come next. If a "2" is entered, the next prompt is "I129, I131 = 1, 2" which allows one to choose either isotope.

If a "3" is entered, the next prompt is "INSOL, SOL = 1, 2" which allows one to chose the approximate chemical form of the MFP.

c. "AP" (enter 3): This chooses the activation product menu, "CO, C, KR, $H = 1-4^{n}$. These choices are summarized in the table below:

Category	Number <u>Input</u>	Explanation
00	1	Co-60
C	2	C-14
KR	3	Kr-85
н	4	H-3

If a "1" is entered, the program prompts with "INSOL, SOL = 1,2". Insoluble chemical forms of cobalt are oxides, hydroxides, halides and nitrates. Other cobalt compounds are considered soluble (class W).

If "2", "3", or "4" is entered, the program computes dose results next.

D-8

- d. "NEW" (enter 4): This allows you to input your own dose factors. After pressing "R/S", the "NAME?" prompt appears together with the small word "ALPHA" which indicates the calculator is in alpha mode. Press the appropriate blue lettered keys to spell out the name of this isotope or mixture. Numbers are entered in alpha mode by first pressing the shift key (tan colored), then pressing the number. Up to 24 characters may be entered, but the program will only retain six, so abbreviate accordingly. The next prompt, "1 YR R/UCI?", is asking for numeric input of the new dose factor for first year dose in units of rem per microcurie inhaled. Press "R/S" and the "CRIT ORGAN?" prompt appears. The calculator is again in "ALPHA" mode, so use the blue lettered keys to spell out the organ for which the previously entered first year dose factor applies. Again, only six characters will be retained so abbreviate as necessary. Press "R/S" and the 50 year committed dose factor and organ prompts appear. Enter the appropriate data and press "R/S". The program then computes first year and 50 year organ doses using the dose factors just entered.
- 4. Dose results are displayed as follows:

6

ſ.

ř.

- a. The name of the isotope or mixture is displayed momentarily. Do not press "R/S" to continue, since the small word "PRGM" on the right side of the display means the program is running.
- b. After the name display comes the first year dose result, which has the general format

 $(organ_name)$ 1Y = MR".

The dose result has units of mrem. The organ is on the left, and since the display scrolls left, in a few seconds the organ cannot be seen.

- c. The 50 year dose committments have the same format as the first year committments. Press "ALPHA" to take another look, or "R/S" to continue.
- 5. "INPUT LIST?" As before, this prompt gives the option of reviewing input data. If you do not wish to review input, then press "R/S" and the program returns to the beginning prompt "ED - REV 2". If you would like to review your input, enter any number and press "R/S". Press "R/S" to view successive inputs.
- D. Running Additional Cases
- Check whether the small word "USER" disappears on the left side of the display. If it doesn't, press the USER key to place the calculator in "USER" mode.

6

Ê

2. The top two rows of keys (blue labels A through K) are assigned so that changes can easily be made at any point in the sequence of data entry described in parts B and C above. For example, to change the distance down wind, press the key with the blue label "C" and the prompt "DISTANCE? MI" will appear. You can enter a new distance and press "R/S" or just press "R/S" and the previous distance will be used. (To see what the previous entry was, just press the " " key to clear the display.) The program will now execute skipping all further data entry prompts. The E.T.A., X/Q and CI results will be shown, and then will come the dose results. Key reassignments for "USER" mode are listed below:

Internal Label	Blue Label	Program Display When Pressed
ED	κ	"ED-REV 2"
MET	Α	"VS, MS, N, UN = $0-3$ "
MPH	В	"WIND SP? MPH"
DIST	С	"DISTANCE? MI"
OFFSET	D	"OFFSET? FT"
HT	E	"REL HT? FT"
DUR	F	"REL DUR? HR"
AMT	G	"ST, CI, AR, $GD = 1-4$ "
ISO	H	"a, FP, AP, NEW = $1-4$ "
INPUT	I	"MET =" and other input data
X/Q	J	"ENTER X/Q"

D-10

3. General Notes:

(?)

į.,

- a. On any data entry prompt, the value input on the previous run will be used unless a new value is entered. Thus the entire calculation can be duplicated from the "ED-REV 2" prompt to the dose result simply by pressing "R/S" again and again.
- b. Menu prompts are arranged so that the more sev a consequence results from a lower number entry as a general rule, 30, when in doubt, take the lower number choice.
- c. The choice between soluble or insoluble can be made on the basis of the general physical form of the material. Liquids are soluble; solids are insoluble; fires always produce insoluble material.
- d. Plutonium and uranium quantities are commonly given in units of mass, such as grams or pounds. Relationships to convert from mass to activity are listed below. In use they are simply multiplied by the given mass. Note that here "Ci" refers to curies of alpha emitters only.

12% Pu:	.097 Ci/g	or 1	44 C1/1b	
6% Pu:	.075 Ci/g	or	34 C1/1b	
U:	8.2 E-7 Ci/g	or	3.7 E-4 Ci/1b	or
	.82 C1/Mt	or	.74 Ci/ton	

UNH Solution: 4 1b U/gal as received from PUREX 10 1b U/gal entering calciner

e. In the event of a criticality, the inhalation and external doses from the short lived inert gases and iodine should be estimated from the table on the next page. This table provides upper bounds on possible doses at each distance for an event with 1.0 E+19 fissions spread over eight hours. Current values for atmospheric stability and wind speed are not needed.

le] ease
3 Hour R
Meteorology, {
Adverse
Fissions,
EIG
From]
Doses
Inhalation
And
External

(

(

лана Короло

ā

Guide 3.35)	
Reg.	
NRC	
from	
quantities	
(Release	

	Distance (miles)	.25 mî	0.50 mf	2.7 mt	5.3 m1	7.8 ml	10 m1
	Distance (meters)	400 m	800 m	4.4 Ka	8.5 Km	12.5 Km	15.5 Km
	Stability Class	z	۸S	۸S	WS	SM	٧S
Ground Level	Wind Speed (mph)	2.2	2.2	5.6	11		=
)-12	Total Body (mrem)	600	220	14	'n	3.3	2.7
	Thyroid (mrem)	3060	930	52	19	11	7 . 3
	Stability Class	CN	Z	Z	SM	SM	MS
Elevated (200 foot	Wind Speed	2.2	2.2	2.2	2.2	2.2	2.2
Stack)	Total Body (mrem)	220	160	12	2.0	.84	.37
	Thyrold (mrem)	630	530	61	18	10	6.2

WHC-EP-0368

••

•

ł

1.6

PUREX STACKS:

(....

 \mathbf{C}

4

£.

Stack Number	EDP Code	Name Fl	pical High ow Rate (cfm)
291-A-1	A552	PUREX 2001	130,000
296-A-1	A540	Q-Cell	4,000
296-A-2	A542	W. Sample Gallery	3,600
296-A-3	A543	E. Sample Gallery	3,500
296-A-5A	A545	LAB West	8,000
296-A-5 B	A546	LAB East	18,000
296-A-6	A547	E Sample Gallery & U Cell	13,000
296-A-7	A548	W Sample Gallery & R Cell	20,000
296-A-8	A549	White Room Exhauster	16,000
296-A-10	A5 50	Equip, Disposal Tunnel	- 5,000
296-A-14	A544	Outback (293-A) Exhaust	5,000
296-A-24	A539	Ammonia Scrubber Waste Co	nc. 1,700
296-A-31	A562	Storage Gallery	12,000
296-A-32	A563	Vacuum Pump Exhaust	1,800
296 -A-3 3	A573	Wall Exhauster, EF-3-5	4,000
296-A-34	A579	Wall Exhauster EF-3-6	6,000
296-A-35	AS 8 0	Wall Exhauster EF-3-7	7,000
296-A-36	A582	Wall Exhauster EF-3-8	4,300
296-A-37	A5 83	Wall Exhauster EF-3-9	8,000
296-A-38	A5 84	Wall Exhauster EF-3-10	2,300
296-A-39	A5 16	SWP Lobby Exhaust	Unknown

B-Plant/WESF

Ç.

(

E

Stack Number	EDP Code	Name	Typical High <u>Flow Rate</u>
291-B-1	B691	B-Plant Canyon 200 Ft.	40,000
296 - B-5	B686	271-B	1,600
296-B-10	B748	WESF	18,000
296-B-13	B690	221-BF, BCP Tanks	900
296-B-14	B678	221-B Vessel Vent	200
<u>East Tank Farm Stacks:</u>		•	
296-A-12	E058	244-AR Vessel Vent 150 ft.	450
296-A-13	E052	244-AR Canyon	4,000
296-A-17	E059	A, AX, AY, AZ Tanks	4,000
296-A-18	E060	101 AY Annulus	- 1,200
296-A-19	E061	102 AY Annulus	1,000
296-P-1	E120	Tank 105-A	1,500
296-A-20	E197	AZ Annuli	2,000
296-A-21	E645	242-A Evaporator	16,000
296-A-22	E643	242-A Vessel Vent	600
296-A-25	E080	244-A Catch Tank	150
296-A-26	E297	204-AR Unloading Facility	2,000
296-A-27	E270	AW Tanks	1,100
296-A-28	E 2 72	AW Annuli	4,600
296-A-29	E901	AN Tanks	900
296-A-30	E903	AN Annult	5,000
296-B-28	E886	244-BX Saltwell Vessel	200
291-C-1	E073	201-C, 200 ft.	11,000
296-C-5	E069	244-CR Vault	3,000
296-P-16	E068	Tanks 105, 106-C	3,500
296 - P-27	None	Tank 111-C	400

S-Plant Stacks:

(Ti)

(:)

(

	<u>Stack_Number</u>	EDP Code	Name	Typical High Flow Rate (cfm)
	291-5-1	S00 6	202-S Canyon, 200 Ft	20,000
	296-S-2	S03 2	202-S Sample Gallery	1,500
	296~5-4	S008	202-S SWP Lobby	5,000
	296-5-6	S004	202-S S110	10,000
	296-S-7E	\$015	233-S Building Exhaust	8,500
	296-5-7W	S016	233-S Building Exhaust	8,500
	296-S-16	S264	218-S Tanks	200
	296-5-21	S289	222-S Lab	70,000
<u>T-P</u> 1	ant Stacks:			•
	291-T-1	T785	221-T Canyon, 200 Ft	40,000
	296-T-11	T783	224-T East	13,000
	296-T-12	T784	224-T West	13,000
	296-T-13	T78 6	221-T Roof	40,000
	296-W-1	L100	Laundry	25,000
U-P1	ant Stacks:			
	296-U-1	U771	221-U Canyon, 200 ft	12,000
	296-U-2	U133	Powder Handling Offgas	1,000
	296-U-4	U777	224-U Calcinators	2,500
	296-U-13	U878	224-U Load-out Room	4,500

a ku ya

(

Z-Plant Stacks:

Stack Number	EDP Code	Name	Typical High Flow Rate (cfm)
291-Z-1	Z810	234-5, 232-Z, 236-Z, 242-Z	240,000
296-Z-3	Z813	241-Z Sump & Vessel	1,300
296-Z-5	Z913	2736-ZB	10,000
296-Z-6	Z802	2736-ZA	12,000

West Tank Farm Stacks:

296-P-22	W191	SY Annuli	400
296-P-23	W190	SY Tanks	800
296-5-15	רהנש	SX Tanks	5,000
296-5-18	W096	242-S Building Exhaust	_ 20,000
296-5-22	W880	244-S Salt Well Receiver	180
296-T-17	W117	242-T Cells	2,000
296-T-18	W882	244-TX Salt Well Receiver	200

Portable Exhausters:

296-P-6

296-P-25

4,000

7 · ·