NOTICE

CERTAIN DATA

 CONTAINED IN THIS DOCUMENT MAY BE DIFFICULT TO READ IN MICROFICHE PRODUCTS.
ED (Emergency Doses)-Revision 3: A Calculator Code for Environmental Dose Computations

Paul D. Rittmann
Date Published
December 1990

> Prepared for the U.S. Department of Energy Office of Environmental Restoration and Waste Management
(2) Westinghouse $\begin{aligned} & \text { P.O. Box } 1970 \\ & \text { Hanford Company } \\ & \text { Richiand, Wash }\end{aligned}$

Hanford Operations and Engineering Contractor for tha
U.S. Department of Energy undar Contract DE-AC06-87RL10930

CONTENTS

1.0 INTRODUCTION 1-1
1.1 HISTORY 1-1
1.2 HARDWARE REQUIREMENT 1-2
1.3 DOCUMENTATION 1-2
2.0 SUMMARY 2-1
3.0 INSTRUCTIONS TO USERS OF ED - REVISION 3 3-1
3.1 LOADING THE PROGRAM 3-1
3.2 STARTING THE PROGRAM 3-2
3.3 ATMOSPHERIC DISPERSION 3-3
3.4 RELEASE RATE FOR A CHEMICAL RELEASE 3-9
3.5 RELEASE AMOUNT FOR A RADIONUCLIDE RELEASE 3-11
3.6 NUCLIDE CHOICES AND DOSE EQUIVALENT 3-14
3.7 GENERAL NOTES 3-18
4.0 TYPICAL EXHAUST FLOW RATES FROM WESTINGHOUSE HANFORD COMPANY FACILITIES 4-1
4.1 100 AREA EFFLUENT STACKS 4-1
4.2200 EAST AREA EFFLUENT STACKS 4-2
4.3200 WEST AREA EFFLUENT STACKS 4-3
4.4300 AREA EFFLUENT STACKS 4-5
4.5400 AREA EFFLUENT STACKS 4-6
5.0 SAMPLE PROBLEMS FOR ED - REVISION 3 5-1
5.1 STACK RELEASE OF HYDROGEN FLUORIDE 5-1
5.2 GROUND RELEASE WITH DOWNWIND FIELD DATA 5-2
6.0 VERIFICATION OF ED - REVISION 3 CALCULATIONS 6-1
6.1 X/Q CALCULATION 6-1
6.2 DOWNWIND CHEMICAL CONCENTRATIONS 6-5
6.3 ESTIMATION OF TOTAL CURIES RELEASED 6-5
6.4 DOSE CALCULATIONS 6-6
7.0 CONCEPTUAL MODELS USED IN ED - REVISION 3 7-1
7.1 ATMOSPHERIC DISPERSION MODEL 7-1
7.2 DOWNWIND CHEMICAL CONCENTRATIONS 7-1
7.3 ESTIMATION OF TOTAL CURIES RELEASED 7-1
7.4 DOWNWIND AIR CONCENTRATION AND DOSE EQUIVALENT 7-2
7.5 DOSE FACTORS FOR PLUTONIUM AND URANIUM MIXTURES 7-3
8.0 LINE-BY-LINE DESCRIPTION OF ED - REVISION 3 8-1
8.1 INTRODUCTION 8-1
8.2 ATMOSPHERIC DISPERSION 8-2
8.3 CHOICE OF CHEMICAL OR RADIOLOGICAL RELEASE 8-5
8 . 4 CHEMICAL CALCULATION 8-5
8.5 ESTIMATION OF TOTAL CURIES RELEASED 8-7
8.6 RADIONUCLIDE IDENTITY 8-8
8.7 DOSE CAL.CULATIONS 8-9

CONTENTS (continued)

9.0 PROGRAM LISTING 9-1
10.0 REFERENCES 10-1
APPENDIXES:
A A-1
C C-1 D D-1

LIST OF TABLES

1 Rule of Thumb Table for Estimating Stability Class 3-4
2 Alternate Method Stability Class by Month and Time of Day 3-4
3 Estimating Mixing Depth in Meters 3-5
4 Estimating Mixing Depth in Feet 3-5
5 Alternate Method Mixing Layer Depths in Meters 3-6
6 Alternate Method Mixing Layer Depths in Feet 3-6
7 Plutonium Composition Used in FD 3-15
8 Uranium Composition Used in ED 3-15
9 Summary of Data Register and Flag Use 3-19
10 100-N Stacks 4-1
11 100-K Stacks 4-1
12 PUREX Stacks 4-2
13 B Plant/WESF Stacks 4-2
14 East Tank Farm Stacks 4-3
15 S Plant Stacks 4-3
16 T Plant Stacks 4-4
17 U Plant Stacks 4-4
18 Z Plant Stacks 4-4
19 West Tank Farm Stacks 4-4
20300 Area Effluent Stacks 4-5
21 The 400 Area Effluent Stacks 4-5
22 Atmospheric Dispersion Parameters Calculated by ED 6-2
23 Ground Level X/Q Values Computed by GENII 6-2
24 Percent Differences Between ED and GENII Ground Level X/Q Results 6-3

LIST OF TABLES (continued)

25 Comparison of ED and GENII for Reflection from the Mixing Layer (using Pasquill B stability and mixing layer depth of $1,000 \mathrm{~m}$) 6-4
26. External Dose Factors for Inert Gases 6-7
27 Inhalation Dose Factors for Particulates 6-8
28 Parameters used by ED in the Calculation of Sigma Y and Sigma Z ($B y=0.9031$ and $C y=0.0$) 7-2
29 Plutonium Inhalation Dose Factors 7-4
30 Inhalation Dose Factors for a Mixture of Plutonium Isotopes 7-4
31 Uranium Inhalation Dose Factors (EDE) 7.-5
32 Uranium Inhalation Dose Factors (Maximum Organ) 7-5
33 Mixture of Uranium Isotopes -- N Reactor Fuel 7-5
34 Inhalation Dose Factors for the Mixture of Uranium Isotopes (Sv/Bq) 7-6
35 Summary of Data Register and Flag Use 8-1
36 Calculation of Dose Factor Address 8-9

ED (EMERGENCY DOSES) - REVISION 3: A CALCULATOR CODE FOR

 ENVIRONMENTAL DOSE COMPUTATIONS
1.0 INTRODUCTION

1.1 HISTORY

The calculator program ED (Emergency Doses) was developed from several HP-41CV calculator programs documented in the report Seven Health Physics Calculator Programs for the HP-41CV, RHO-HS-ST-5P (Rittman 1984). The original ED was documented by an internal memo to R. H. Sudmann, dated May 18, 1984 (Appendix A). The program was developed at his request to enable estimates of offsite impacts more rapidly and reliably than was possible with the software available for emergency response at that time. The ED used the Hanford Stable and Sutton's Neutral and Unstable methods for calculating plume spread with distance. Inhalation dose factors from DACRIN were used for seven materials. Many of the features found in the present version were present then, such as USER mode operation, stored parameters to minimize inputs, and a nuclide choice menu tree.

The first revision to ED came through an internal memo to D. E. Bihl dated July 20, 1984 (Appendix B). This revision increased the number of radioactive materials that could be released from 7 to 19.

The second revision to ED came through an internal memo dated February 19, 1985 (Appendix D). This revision was motivated by an incident in the 200 East Area in which the downwind air sample data was used to estimate total release amounts. The ED - Revision 2 used the Pasquill stability class designations; it added the ability to calculate air concentrations and doses off the plume center line and, most importantly; added the ability to calculate release amounts from downwind measurements of air concentrations or ground contamination.

The ED - Revision 3, documented in this report, revises the inhalation dose model to match that of ICRP 30, and adds the simple estimates for air concentration downwind from a chemical release. In addition, the method for calculating the Pasquill dispersion parameters was revised to match the GENII code within the limitations of a hand-held calculator (e.g., plume rise and building wake effects are not included).

The summary report generator for printed output, which had been present in the code from the original version, was eliminated in Revision 3 to make room for the dispersion model, the chemical release portion, and the method of looping back to an input menu until there is no further change. The number of nuclide choices was reduced from 19 to 17 by removing both forms of ${ }^{103} \mathrm{Ru}$.

1.2 HARDWARE REQUIREMENT

This program runs on the Hewlett-Packard programmable calculators known as the HP-4ICV and the HP-41CX. It will run on the original HP-41C only if the 'quad' memory module is in place. A card reader is needed only to load the program initially.

A printer is optional. If present, it will be ignored unless the printer is placed in 'Normal' mode. In this mode it will print the alphanumeric displays prompting the user for data entry, the values that are entered by the user, and the results displayed by the program.

1.3 DOCUMENTATION

The documentation for ED - Revision 3 includes a guide for users, sample problems, detailed verification tests and results, model descriptions, code description (with program listing), and independent peer review. The ED has evolved from earlier versions, and required no major code development effort. Thus, there exists no software development plan. The current version of ED meets all other Westinghouse Hanford Company software configuration management requirements.

This software is intended to be used by individuals with some training in the use of air transport models. There are some user inputs that require intelligent application of the model to the actual conditions of the accident. The results calculated using ED-Revision 3 are only correct to the extent allowed by the mathematical models.

2.0 SUMMARY

The calculator program ED (which stands for Emergency Doses) operates on the Hewlett-Packard HP-41C series of hand-held calculators. It is intended for rapid assessment of the downwind impacts of hazardous material releases into the air.

Version 3 of ED offers the following analysis capabilities and user conveniences:

- Dispersion calculation using the Pasquill-Gifford model, with reflection from the mixing layer included
- Receptor location may be off the plume center line
- Option on whether to use SI units or English units for display of lengths and wind speed
- Menu items show current values and repeat until the value shown is accepted without change
- All data entered by the user is stored, and will be reused unless the user enters new values
- Through USER mode, a single input data item, such as distance downwind, can be modified and the calculation repeated
- Air concentrations of a hazardous chemical calculated in units of parts per million (by volume) and milligrams per cubic meter from user input of total pounds released or stack data (concentration released and exhaust flow rate) together with the formula weight of the chemical released
- Downwind air concentrations of radionuclides in microcuries per cubic centimeter
- Total curies released may be entered directly, calculated from stack data, calculated from a downwind air concentration measurement, or calculated from a downwind surface contamination measurement
- Inhalation dose calculated for any one of 17 radioactive mate 1 s , or the user may enter the name and dose factor of materials not stored in the calculator.

3.0 INSTRUCTIONS TO USERS OF ED - REVISION 3

3.1 LOADING THE PROGRAM

A. Check to see if the program is already in the calculator.

1. Switch the calculator to USER mode (i.e., press the button labeled "USER", which makes the word "USER" appear in small letters on the left side of the display).
2. Press the button labeled "XEQ".
3. If the display shows the words "ED - Rev 3", then the program is already loaded. Skip over the directions following to step 3.2.B.
4. If the display shows the word "XEQ __", then the program needs to be loaded. Turn off the calculator and follow thie directions for loading the program, which begin in the next step.
B. Prepare the Calculator.
5. Clear the program memory.
a. Turn off the calculator.
b. While holding down the delete button (arrow left), turn on the calculator.
c. The display will show "MEMORY LOST".
6. Allocate 20 registers for data storage by pressing the following keys, in succession: "XEQ", "ALPHA", S, I, Z, E, "ALPHA", 0, 2, 0.
C. Switch to USER mode by pressing the button labeled "USER", which makes the word "USER" appear on the left side of the display.
D. Feed the 10 program cards into the card reader.
7. Make sure the rechargeable battery is fully charged. The cards may be read in any order.
8. If the message "MALFUNCTION" appears when reading any of the cards, the following should be executed:
a. Read another card, and come back to the 'problem' card later.
b. If this does not work (i.e., other cards also show the error) then either the card reader needs service, or the cards themselves have been damaged. Knowledgeable, qualified personnel are required for these problems.

3.2 STARTING THE PROGRAM

A. Switch to USER mode (i.e., press the button labeled "USER", which makes the word USER appear in small letters on the left side of the display).
B. Press the button labeled "XEQ" to start the program. The display should show the words "ED - Rev 3" if the program is properly loaded. Press the "R/S" button to continue. Step-by-step instructions begin in Section 3.3.
C. The following is general information about the program.

1. The program is divided in two major sections.
a. Atmospheric Dispersion--User prompts show the current value for a variable. When a new value is entered, the user must verify the number before the program continues.
b. Release Amount or Rate--Current values are not shown in the display. To see the current value of a requested quantity, press the delete button (arrow left). When a value is entered, the program goes on to the next menu item without asking the user to verify the input.
2. At any data entry prompt, the value entered on a previous run will be used unless a new value is entered. Thus the entire calculation can be repeated from the "ED - Rev 3" display to the dose display simply by pressing the "R/S" button again and again.
3. The program is designed to allow correction of a previous input value or menu choice. The directions to go back and change a value are as follows.
a. Switch the calculator to USER mode by pressing the "USER" switch. When the calculator is in USER mode, the word "USER" will appear in the display on the lower left.
b. In USER mode, some of the keys will not perform the usual function. The redefined keys are listed below in the order they appear on the face of the calculator. Press the button corresponding to the variable you need to change.

For example, to change the distance, press "A" and the program will begin at Section 3.3.F.
c. Before entering a new value, press the USER switch to take the calculator out of USER mode. If the calculator is left in USER mode, the program will take short cuts and only show computed results. The program skips all later inputs. Unless you intend to take advantage of this feature, be sure the word "USER" is not showing in the display.
d. Enter the new value, and press "R/S" to go on.
4. The execution of the program stops at each menu displayed. The calculator is then just a calculator. To allow the program to continue, the "R/S" button must be pressed. While the program execution is in progress, the letters "PRGM" will appear on the right side of the display.
5. If the "R/S" button is accidentally pressed during execution of the program, the calculator will stop and display the current value in the X register. To continue execution, simply press the "R/S" button again.

3.3 ATMOSPHERIC DISPERSION

A. Choosing Units

1. Choose either "METRIC" ur "U.S.A. UNITS" for distances. "METRIC" means meters or kilometers, while "U.S.A. UNITS" means feet or miles.
2. The current selection is displayed.
a. If you want to switch to the other unit system, press any number and then press "R/S". All previous entries will automatically be converted to the new units. They do not need to be re-entered.
b. To continue, press "R/S".
B. Atmospheric Stability Class Input
3. The display "MET = Z ?" means that the current selected value for atmospheric stability class is Z. Allowable values for Z are A, B, C, D, E, F, or G. These letters are printed in blue on the calculator buttons.
4. The best values for Pasquill-Gifford stability are obtained from the Hanford Meteorologica? Station (telephone 509-373-2716). If you have a source of actual weather data, be sure to get the following information: (1) stability class (A-G), (2) mixing layer depth, (3) wind speed, and (4) wind direction. Each will be needed.
5. If current conditions are not availab?e, estimate the stability class from either of the following tables (Tables 1 and 2).

Table 1. Rule of Thumb Table for Estimating Stability Class.

Wind speed (mph)	Daytime cloud cover little		Night cloud cover half overcast		haif

Slade (1968).

Table 2. Alternate Method Stability Class by Month and Time of Day.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
midn-1	F	F	F	F	F	F	F	F	F	F	F	F
$2-3$	F	F	F	F	F	F	F	F	F	F	F	F
$4-5$	F	F	F	F	E	E	E	E	F	F	F	F
$6-7$	E	E	E	E	E	D	D	D	E	E	F	F
8- 9	E	E	D	D	D	D	B	B	C	D	E	E
$10-11$	D	D	D	D	B	B	A	A	A	D	D	D
noon-1	D	D	B	B	B	A	A	A	A	B	D	D
$2-3$	D	D	D	B	A	A	A	A	B	C	D	D
$4-5$	E	D	D	D	B	B	B	C	D	D	E	E
$6-7$	E	E	D	D	D	D	D	D	E	E	E	

Table 2. Alternate Method Stability Clas; by Month and Time of Day. (cont)

	Jan	Feb	Mar	Apr	Maj	Jun	Jui	Aug	Sep	Oct	Nov
Dec											
B-9	E	E	E	E	D	D	D	D	E	F	F
10	F										

4. If the value shown in the display is correct, press "R/S". If not, type in a better value and then press "R/S".

C. Mixing Layer Depth Input

1. The mixing layer depth (D) is the vertical dispersion limit. If a current measurement is not available, estimate it from Table: 3. Mixing depth is important at great distances and more unstable conditions. The values shown on the following tables (Tables 3 through 6) are conservative estimates.
2. The display " $D=Z M^{\prime}$ or " $D=Z F T$ " means that the current value for mixing depth is Z in the units shown.
3. If the value shown is correct, press "R/S". If not, t'jpe in the correct value and then press "R/S".

Table 3. Estimating Mixing Depth in Meters.

Month	Sunrise	Midday	Sunset	Night
Jan-Feb	200	200	200	150
Mar-Apr	300	400	300	150
May-Jun	400	800	400	150
Jul-Aug	500	1,000	500	150
Sep-0ct	350	700	350	150
Nov-Dec	200	300	200	150

Table 4. Estimating Mixing Depth in Feet.

Month	Sunrise	Midday	Sunset	Night
Jan-Feb	656	656	656	492
Mar-Apr	984	1,312	984	492
May-Jun	1,312	2,625	1,312	492
Jul-Aug	1,640	3,281	1,640	492
Sep-Oct	1,148	2,297	1,148	492
Nov-Dec	656	984	656	492

Table 5. Alternate Method Mixing Layer Depths in Meters.

Stab	Winter	Spring	Summer	Autumn
A	500	850	1,000	900
B	500	600	750	600
C	300	500	650	500
D	200	400	500	400
E	200	250	250	250
F	150	150	150	150
G	100	100	100	100

Tahle 6. Alternate Method Mixing Layer Depths in Feet.

Stab	Winter	Spring	Summer	Autumn
A	1,640	2,789	3,281	2,953
B	1,640	1,969	2,461	1,969
C	984	1,640	2,133	1,640
D	656	1,312	1,640	1,312
E	656	820	820	820
F	492	492	492	492
G	328	328	328	328

Winter = Jan., Feb., Mar.
Spring = Apr., May., June
Summer = July, Aug., Sep.
Autumn $=$ Oct., Nov., Dec.

D. Wind Speed Input

1. The display " $V=2 \mathrm{M} / \mathrm{S}$?" or "V= Z FT/S ?" means that the current wind speed is Z in the units shown.
2. If actual weather data are not available, use 5 to $10 \mathrm{mi} / \mathrm{h}$ (2 to $5 \mathrm{~m} / \mathrm{s}$), which is a typical wind speed for the Hanford Site.
3. If the value shown is correct, press "R/S". If not, type in the correct value and then press "R/S".
E. Effective Release Height Input
4. The vertical height of the release above the receptor (H) includes any estimates of plume rise or downwash. If time is limited, just use the stack height. If the effective stack
height is less than 2.5 times the height of nearby buildings, the release must be treated as originating at ground level.
5. The display " $\mathrm{H}=\mathrm{Z} \mathrm{M"}^{\prime}$ or " $\mathrm{H}=\mathrm{Z} \mathrm{FT}$ " means that the current value for release height is Z in the units shown.
6. If the value shown is correct, press "R/S". If not, type in the correct value and then press "R/S".

F. Downwind Distance Input

1. Using the assumed wind direction and a map, determine the distance to the downwind receptor in the direction the wind is traveling. The wind transport direction is the X-axis in the coordinate system of the dispersion model being used.
2. The display " $X=Z$ KM ?" or "X= Z MI ?" means that the current value for distance is Z in the units shown. The minimum value for X is 0.1 km or 0.0622 mi . If a smaller value is entered, the program will insert the minimum distance.
3. If the value shown is correct, press "R/S". If not, type in the correct value and then press " R / S ".
G. Plume Offset Input
4. The distance perpendicular to the wind transport direction is called the plume offset, or ' γ '.
5. The display " $Y=Z M$ " or " $Y=Z \mathrm{FT}$ " means that the current value for plume offset is Z in the units shown.
6. If the value shown is correct, press "R/S". If not, type in the correct value and then press "R/S".

H. Normalized Exposure Results

1. The normalized exposure (X / Q) has units of seconds per cubic meter. It is calculated from the wind speed, release height, horizontal and vertical plume spread parameters (Σy and Σz). These parameters depend on the stability class, the distance downwind, and the mixing depth.
2. The first result displayed is " $\Sigma Y=Z M$?" or " $\Sigma Y=Z$ FT ?", which means that the current value for horizontal plume spread parameter is Z in the units shown. The question mark signifies that a new value may be entered if necessary; step H. 4 tells how to do this.
3. The second result displayed is " $\Sigma Z=Z \mathrm{Z}$?" or " $\Sigma Z=\mathrm{Z}$ FT ?" meaning that the current value for vertical plume spread parameter is Z with the units shown. The question mark
signifies that a new value may be entered, if necessary; step H. 4 tells how to do this.
4. For ground-level releases, the effect of plume meander or building wake may be included by changing the displayed values for horizontal and vertical plume spread. Type in the revised value and press "R/S". If you are unsure how to do this, leave the displayed values alone and just press "R/S".

For elevated releases, an X / Q value for fumigation may be calculated by entering a mixing depth, D, equal to the height of the stack. Then, when the vertical plume spread value is displayed, enter a value that is greater than 1.2 times D. This will force the program to calculate an X / Q in which there is a uniform concentration between ground level and the top of the stack.
5. The third result displayed is "X/Q=a.bcE-d?", which means that the computed value for normalized exposure is a.bcE-d seconds per cubic meter. Again, the question mark signifies that a new value may be entered, if necessary.
6. To change the value for X / Q used in subsequent calculations, enter the new value and press "R/S". If you do not wish to change X / Q, press $" R / S$ " to go on.

I. Release Duration Input

1. The release duration is used to estimate air concentrations downwind or total release, depending on later inputs for release amount.
2. The display "DUR= Z HR" means that the current value for release cluration is Z hours.
3. If the value shown is correct, press "R/S". If not, type in the correct value and then press "R/S".

J. Type of Material Released

1. The material released can be either radioactive or chemical.
a. If "RAD SOURCE?" is displayed, radioactivity released will be used to determine the inhalation dose downwind.
b. If "CHEM SOURCE?" is displayed, chemical release rate will be used to determine air concentrations downwind.
2. The current selection is displayed.
a. If you want to switch to the other type of release, press any number and then press "R/S".
b. To accept the displayed source type and continue, press "R/S". Calculations for the chemical source are described next. Radiological source calculations are described in Section 3.5.

3.4 RELEASE RATE FOR A CHEMICAL RELEASE

A. "ST, TUTAL= 1,2?"
"ST, TOTAL= 1,2?" offers two ways to establish release rate. Enter either "1" or "2" to select, and press "R/S" to continue. It is important to enter either a "1" or a "2". Any other entry will cause the program to continue at an incorrect location.

- "1" chooses "ST" and means tnat the release rate will be based on a stack concentration and flow rate.
- "2" chooses "TOTAL" and neans the total mass released will be input next. The release rate is then calculated from the re?ease duration.
B. "ST" - Stack Data

1. Use this item when the average air concentration at the point of release is known. It is important that this be the peak concentration during the release, not an average over a larger time period.
2. "STACK CONC?" is the next prompt. It requests input for the air concentration in either parts per million (by volume) or mass density (milligrams per cubic meter). Type in the number and press "R/S".
3. The next prompt displays the currently assumed units. The choice is either "PPM ?" or "MG/M3?".
a. To switch to the other units, press any number and then press "R/S".
b. To accept the displayed units and go on, press "R/S".
4. The final prompt is "STACK CFM ?". Enter a value for the total exhauster flow rate, in cubic feet per minute. The tables in Section 4.0 list typical values for most of the effluent stacks on site. After the stack flow rate has been entered, press "R/S" to continue with Section 3.4.D.
C. "TOTAL" - Total Mass Released
5. Use this option to enter the total mass released.
6. "TOT LB REL ?" is the next prompt. Enter a value for the total number of pounds estimated to have been released. Press "R/S" and the program will continue.
D. Air Concentration at Downwind Location (X, Y)
7. The program displays the air concentration at the downwind location (X, Y).
8. The air concentration message " $X, Y \mathrm{MG} / \mathrm{M} 3=\mathrm{a} \cdot \mathrm{bE}-\mathrm{c}$ " or "X,Y PPM=a.bE-c" may be too long to fit in the display. If it is, the calculacor scrolls the visible portion of it from left to right. All or part of the "X,Y" disappears in a few seconds.
a. To view the entire message again, press the "ALPHA" switch. This puts the calculator in ALPHA mode and displays the message register.
b. When you are ready to continue, press the "ALPHA" switch again to take the calculator out of alpha mode. Make sure the word "ALPHA" is gone from the lower right side of the display.
E. Conversion from milligrams per cubic meter to parts per million by volume, or parts per million to milligrams per cubic meter
9. When you press "R/S" to leave the air concentration display, the program displays "FORMULA WT?". The program is requesting a value for the formula weight of the chemical in order to convert from milligrams per cubic meter to ppm, or parts per million to milligrams per cuidic meter. For example, the value for ammonia is $17 \mathrm{~g} / \mathrm{mol}$, and for chlorine it is $71 \mathrm{~g} / \mathrm{mol}$.
10. Enter a value for formula weight and press "R/S" to continue. The program then displays the air concentration at (X, Y) in the other units (see Section 3.4.D.).
11. If you press "R/S" twice when the final air concentration is displayed, the program will begin again at "ED - Rev 3" (Section 3.2.B.).

3.5 RELEASE AMOUNT FOR A RADIONUCLIDE RELEASE

A. "ST,CI, AR,GD=1-4"
"ST, CI, AR, GD=1=4" offers four ways to establish the number of curies released. Enter a number from 1 to 4 , as discussed in the following subsections, to select, and press "R/S" to continue. It is important to enter a number from 1 to 4 because any other entry will cause the program to continue at an incorrect location.

- "1" chooses "ST" and means the total release will be based on a stack concentration and stack flow rate.
- "2" chooses "CI" and means the total curies released will be input next.
- "3" chooses "AR" and means the total release will be estimated from an air concentration measurement downwind.
- "4" chooses "GD" and means the total release will be estimated from a ground contamination measurement downwind.

B. "ST" - Stack Data

1. Choose this (enter "1") when the average air concentration at the point of release is known. It is important that this be the concentration during the release, not an average over a longer time period.
2. "CONC OR DPM?" is the next prompt. It is requesting input for either air concentration in micro-Curies per cubic centimeter, or the activity measured on an air sample filter in disintegrations per minute (dpm).
a. The program tells the difference by comparing the value to unity. It assumes that all air concentrations will be less than $1 \mu \mathrm{Ci} / \mathrm{cc}$ at the point of release.
b. To enter a concentration greater than $1 \mu \mathrm{Ci} / \mathrm{cc}$, divide it by a convenient factor (like 10 or 100) to get it below 1. Then ad,just the stack flow rate upward by the same factor.
c. If a value of less than $1 \mu \mathrm{Ci} / \mathrm{cc}$ is selected, the program skips step 3, proceeding to step 4 next.
3. If you entered a value greater than 1 (for dpm on an air sample), the next prompt will be "CU.FT SAMPLD?". This is a request for a figure for the volume of air pulled through the sample filter, in cubic feet. For example, if the sampler operated at 2 cfm for 5 min , the volume would be $10 \mathrm{ft}^{3}$.

After a value is entered, press "R/S" and the program will continue by displaying the calculated air concentration at the point of release, in micro-Curies per cubic centimeter. Press "R/S" to continue with the program.
4. The final prompt is "STACK CFM ?". Enter a value for the total exhauster flow rate, in cubic feet per minute. The tables in the next section list typical values for most of the effluent stacks on site. After the stack flow rate has been entered, press "R/S" and the program displays the total activity released. Press "R/S" to continue with Section 3.5.F below.
C. "CI" - Total Curies Released

1. Use this option to enter the total curies released.
2. "CURIES REL ?" is the next prompt. Enter the value and press "R/S". The program continues with Section 3.5.F.
D. "AR" - Air Conceritration at (X,Y)
3. Use this item to interpret downwind air concentration measurements. The X / Q computed earlier must be for a location (X, Y) at which the air sample was taken.
4. "CONC OR DPM?" is the next prompt. This is a request for a value for either air concentration in micro-Curies per cubic centimeter, or the activity on an air sample filter in dpm.
a. The program tells the difference by comparing the value to unity. It is assumed that all downwind air concentrations will be less than $1 \mu \mathrm{Ci} / \mathrm{cc}$, and all filter activities greater than 1 dpm . Enter a value and press "R/S".
b. If you enter a value less than $1 \mu \mathrm{Ci} / \mathrm{cc}$, the program skips step 3 and goes directly to step 4.
5. If you entered a value greater than 1 (for dpm on an air sample), the next prompt will be "CU.FT SAMPLD?". It is requesting a figure for the volume of air pulled through the sample filter, in cubic feet. For example, if the sampler operated at 2 cfm for 5 min , the volume would be $10 \mathrm{ft}^{3}$. After a value is entered, press "R/S" and the program continues by displaying the calculated air concentration at (X, Y), in micro-Curies per cubic centimeter. Press "R/S" to continue with the program.
6. The final prompt is "HRS SAMPLED?". This information is needed to correct for downwind air samples that were running longer than the release. For example, if the downwind sampler had been running for a total of 40 h , even though the release
lasted only 2 h , the average concentration crnputed would be lower, by a factor of 20, than the actual co centration during the passage of the plume. The program uses the longer of the release duration or sample period to calculate the total release.

Note that as long as the sample period includes the entire release, or else begins and ends during the release, the total release estimate will be correct. Otherwise, the total release computed by the program will be low according to the portion of the release that was not sampled.
5. After entering a value for hours sampled, press "R/S" and the program will display the total activity released. Press "R/S" to continue to Section F.
E. "GD" - Ground Contamination at (X, Y)

1. Use this item to interpret downwind ground contamination measurements. The X / Q computed earlier must be for a location (X, Y) where the ground contamination was measured.
2. "DPM/SQ.CM ?" is the next prompt. Enter the measured surface contamination downwind and press "R/S". If direct survey data are available, the detector face area must be taken into account. Use the following chart:

Probe type	Face type
GM: P-11	$15 \mathrm{~cm}^{2}$
PAM	$54 \mathrm{~cm}^{2}$

Note that direct survey readings should represent the average measured over about a square meter, rather than the maximum reading in that area.
3. "DEP. SP? CM/S" is the final prompt. Enter an appropriate value for the ground deposition speed. Typically this is about $0.1 \mathrm{~cm} / \mathrm{s}$, although it may be higher for certain chemical forms (halogens). The ground deposition speed also varies with humidity, surface moisture, and vegetation cover.
4. After entering a value for deposition speed, press "R/S" and the program will display the total activity released. Press " R / S " to continue.

F. Air Concentration at Downwind Location (X,Y)

1. The last result displayed before entering the nuclide choices portion of the program is the air concentration at the downwind location (X, Y).
2. The air concentration message " $X, Y \cup U C I / C C=a . b E-c$ " is too long to fit in the display, so the calculator scrolls the visible portion of it from left to right. The "X,Y" disappears in a few seconds.
a. To view the entire message again, press the "ALPHA" switch. This puts the calculator in ALPHA mode and displays the message register.
b. When you are ready to continue, press the "ALPHA" switch again to take the calculator out of alpha mode. Make sure the word "ALPHA" is gone from the lower right side of the display.

3.6 NUCLIDE CHOICES AND DOSE EQUIVALENT

A. "a,B1, B2,NEW=1-4" offers four nuclide menus

1. Enter a number from 1 to 4 to select; press "R/S" to continue. Each choice is described in detail in the following subsections.
2. The menu choices are arranged so that lower numbers will give higher doses. So, when in doubt between two choices, select the one with the lower menu number.
3. It is important to enter a number from 1 to 4 because any other entry will cause the program to continue at an incorrect location. (To recover from pressing the wrong number, switch to ALPHA mode, press the blue "「", and then switch out of ALPHA mode.)
B. "a" - Alpha-Emitting Nuclides
4. "PU,AM,NP, $\mathrm{U}=1-4$?" lists the alpha emitting choices.
a. Enter a number from 1 to 4 to select, and press "R/S" to continue.
b. In all cases, the dose to the bone surface will be limiting.
c. It is important to enter a number from 1 to 4 because any other entry will cause the program to continue at an incorrect location.
 typical composition.

Table 7. Plutonium Composition Used in ED.

Nuclide	Weight percent	Curies per 1 Ci alpha
238 Pu	0.093	0.163
239 Pu	84.00	0.534
240 Pu	13.00	0.303
241 Pu	2.88	30.4
242 Pu	0.027	$1.1 \mathrm{E}-05$

If this plutonium mixture is selected, the next prompt is "NO3, $02=1,2 "$. The choice here is between plutonium nitrate (inhalation Class W) and plutonium oxide (inhalation Class Y). Make your choice and press "R/S".
3. "AM" is pure ${ }^{241} \mathrm{Am}$ (inhalation Class $W, 3.43 \mathrm{Ci} / \mathrm{g}$).
4. "NP" is pure ${ }^{237} \mathrm{~Np}$ (inhalation Class $\mathrm{W}, 7.04 \times 10^{-4} \mathrm{Ci} / \mathrm{g}$).
5. "U" is one of three uranium compounds, commonily found in the 200 Areas. The typical isotopic composition is shown in Table 8.

Table 8. Uranium Composition Used in ED.

Nuclide	Weight percent	Curies per l Ci alpha
234 U	0.009	0.625
235 U	0.836	0.019
236 U	0.073	0.002
238 U	99.082	0.354

If this uranium mixture is selected, the next prompt is "UO, UO3, UNH=1-3".
a. "UO" is inhalation Class Y compounds such as $U O_{2}$ or $U_{3} O_{8}$.
b. "U03" is an inhalation Class W compound with a specific activity of $7.8 \times 10^{-7} \mathrm{Ci} / \mathrm{g}$, or $0.78 \mathrm{Ci} / \mathrm{Mt}$ or 3.5 x $10^{-4} \mathrm{Ci} / 1 \mathrm{~b}$ or $0.71 \mathrm{Ci} /$ ton.
c. "UNH" is Class D with a typical uranium concentration of $4 \mathrm{lb} / \mathrm{gal}$ as shipped from PUREX, or $10 \mathrm{lb} / \mathrm{gal}$ entering the UO_{3} facility calciner.
C. "B1" - First Beta Emitter List

1. "SR,RU,I,CS= 1-4" lists the beta emitter choices on this menu.
a. Enter a number from 1 to 4 to select, and press "R/S" to continue.
b. It is important to enter a number from 1 to 4 because any other entry will cause the program to coritinue at an incorrect location.
2. "SR" is ${ }^{90} \mathrm{Sr}$ along with its daughter ${ }^{90} \mathrm{Y}$. If 1 Ci is released, the program interprets this as $1 \mathrm{Ci}^{90} \mathrm{Sr}$ and 1 Ci 90 Y , which potentially could exaggerate the doses by a factor of 2 , depending on how the release amount was determined.
3. "RU" is ${ }^{106} \mathrm{Ru}$. The next menu is "INSOL, SOL $=1,2$ ", which allows the selection of either inhalation class Y (INSOL) or inhalation class D (SOL). The ${ }^{106} \mathrm{Ru}$ has a radioactive daughter, ${ }^{106} \mathrm{Rh}$: Entering a value of 1 Ci of ${ }^{106} \mathrm{Rh}$ is interpreted as 1 Ci of the parent and an equal amount (1 Ci) of the ${ }^{106}$ Rh daughter.
4. "I" is either ${ }^{129} \mathrm{I}$ or ${ }^{131} \mathrm{I}$. If "I" is selected, the next prompt is "I129, $1131=1,2 "$.
5. "CS" is ${ }^{137} \mathrm{Cs}$. Again, if $1 \mathrm{Ci}{ }^{137} \mathrm{Cs}$ is released, an equal amount of its daughter, ${ }^{137 \mathrm{mBa}, \text { is added to this. }}$
D. "B2" - Second Beta Emitter List
6. "CO, $\mathrm{KR}, \mathrm{H}=1-3 "$ lisus the beta emitter choices on this menu.
a. Enter a number from 1 to 3 to select, and press "R/S" to continue.
b. It is important to enter a number from 1 to 3 because any other entry will cause the program to continue at an incorrect location.
7. "CO" is ${ }^{60}$ Co. The next menu is "INSOL, SOL $=1,2$ ", which allows the selection of either inhalation class Y (INSOL) or inhalation class W (SOL).
8. "KR" is ${ }^{85} \mathrm{Kr}$. A semi-infinite plume model is used, which could seriously underestimate the dose rates near a stack release.
9. "H" is H-3, or tritium, as water vapor. Skin absorption is included in the inhalation dose calculation.
E. "NEW" - User Input Dose Factor
10. "ISO NAME ?" is the first prompt. The calculator is left in ALPHA mode to facilitate text entry.
a. You select the characters using the symbols printed in blue on the calculator keys. A list of all the letters available is located on the back of the calculator. The shift key (yellow button on the left) must be used to enter numbers.
b. The program will store and use up to 6 characters (the first 6 ertered), so choose them carefully.
11. "REM/UCI ?" is requesting input of the inhalation dose factor in units of rem per microCuries inhaled. Enter this value and press "R/S" to begin the dose calculation. The assumed breathing rate is $330 \mathrm{cc} / \mathrm{s}$. Several additional dose factors are provided in Tables 26 and 27 (Section 6).

F. Dose Equivalent Result

1. The program calculates both the effective dose equivalent (EDE) and the largest organ dose. In this way, the results can be compared with Protective Action Guides for EDE or organs. However, the program will display only the dose that is closer to exceeding an action level. The other dose can be seen by pressing the " $X<>Y$ " key, which interchanges the X and Y registers. Note that a small "O" will appear in the lower part of the display if the organ dose is limiting. The organ dose is always the greater of the two doses.
2. The dose equivalent is displayed in millirem. The nuclide identity is shown first. In most cases, the display will scroll, from left to right, because the line is too long to fit in the display.
a. To look at the entire message again, press the "ALPHA" switch. This puts the calculator in ALPHA mode and displays the message register.
b. When you are ready to continue, press the "ALPHA" switch again to take the calculator out of alpha mode. Make sure the word "ALPHA" is gone from the lower right side of the display.
c. The dose is also stored in the X register (the one normally displayed when the calculator is turned on). In addition, the message register ha identity of the nuclide or mixture that was selected for the dose calculation. Press the ALPHA switch to see the message; press the ALPHA switch again to see the X register.
3. Press "R/S" to see the type of dose that was displayed in the message register. The calculator will beep and display either "EDE LIMITS" or "ORGAN LIMITS".
4. Press the " $X<>Y$ " key to interchange the X and Y registers and see the other dose. This is the end of the program.

3.7 GENERAL NOTES

A. At any data entry prompt, the value entered on a previous run will be used unless a new value is entered. Thus the entire calculation can be repeated from the "ED - Rev 3" display to the dose display simply by repeatedly pressing "R/S".
B. The program is designed to make it easy to change just one input value or menu choice and rerun the case. The directions follow.

1. Switch the calculator to USER mode by pressing the "USER" switch. When the calculator is in USER mode, the word "USER" will appear in the display on the lower left.
2. In USER mode, some of the keys will not perform the usual function. The redefined keys are listed below in the order they appear on the face of the calculator.

3. For example, to change the distance, press the "A" and the program will begin at Section 3.3.D. in the directions previously given. Enter a new value for X, press "R/S" (as often as needed) and the program will show the E.T.A., the dispersion values, X / Q, the previously computed total curie amount released, the ground-leve: concentration at (X, Y), and the dose.
4. The total amount released is only recomputed if "G" is pressed to begin at Section 3.4.A. In this way, downwind data can be used to estimate the total release. Then doses and concentrations at other locations can be computed without changing this number.
C. When running cases in USER mode, if some of the intermediate values that are displayed just flash and are quickly replaced with menus, set flag 21 to make them stor. Execute the set flag function by pressing the yellow-colored shift button and then the number 7 , which has "SF" written abuve it. The display will prompt you for two numbers, so type in 21. Note that if a printer is connected and turned on, these displays are printed and the program does not stop. Also, when the calculator is turned off, flag 21 is automatically cleared, hence the need to manually set it when necessary.

Table 9. Summary of Data Register and Flag Use.

Registers		Flags	
00	miscellaneous values	00	clear if EDE limits
01	$x / Q, \mathrm{~s} / \mathrm{m}^{3}$	01	temporary for $X<1 \mathrm{~km}$
02	unit conversion factor	02	temporary use for ppm
03	unit string	05	set for USA units
04	Stability class, MET, A to G	06	set for Class G
05	wind speed, V, m/s	07	set for chem release
06	distance, X, meters	08	set for ppm units
07	distance, Y, meters		
08	release height, H, meters		
09	release duration, DUR, hours		
10	AMT menu choice, 1 to 4		
11	conc or dpm value; formula wt		
12	cu.ft sampled; chem release rate		
13	stack conc; air conc; grd cont		
14	stack cfm; hours sampled; Vd		
15	total curies released		
16	top-level menu choice, 1 to 4		
17	second choice or user name		
18	third choice or user dose factor		
19	mixing depth, meters		

4.0 TYPICAL EXHAUST FLOW RATES FROM WESTINGHOUSE HANFORD COMPANY FACILITIES

4.1 100 AREA EFFLUENT STACKS

Table 10. 100-N Stacks.*

Stack emission point	Typical flow rate, cfm
116-N Stack	210,000
109-N Zone I Vent	120,000
109-N Cell 6 Vent	14,000
Zone II, EF 7, 8	23,000
Zone III, EF 10	130,000
Zone IV, EF 14, 15	16,000
105-N Transfer Area	28,000
105-N Spacer Decontamination Facility	4,800
105-N 14-ft Decontamination Facility	6,400
107-N Exhaust	7,300
*100 Area Environmental Releases (WHC 1988).	1988

Table 11. 100-K Stacks.*

Stack emission point	Typical flow rate, cfm
$105-\mathrm{KE}$ Vents	27,000
$105-\mathrm{KW}$ Vents	27,000
$1706-\mathrm{KE}$	12,000
$1706-\mathrm{KER}$	2,500
*100 Areas Environmental Releases for 1988	
(WHC 1988).	

4.2200 EAST AREA EFFLUENT STACKS

Table 12. PUREX Stacks.*

Stack ID	Descriptor	Typical fiow rate, cfm
$291-A-1$	200 ft	120,000
$296-A-1$	Q-Cell and PR Room	5,000
$296-A-2$	West Sample Gallery	4,000
$296-A-3$	East Sample Gallery	3,000
$296-A-5 A$	Lab West	18,000
$296-A-5 B$	Lab East	20,000
$296-A-6$	E Sample Gallery and U-Cell	20,000
$296-A-7$	W Sample Gallery and R-Cell	20,000
$296-A-8$	White Room Exhauster	16,000
$296-A-10$	Equipment Disposal Tunnel	4,000
$296-A-14$	Outback (293-A) Exhaust	5,000
$296-A-24$	Ammonia Offgas	1,500
$296-A-31$	Storage Gallery	12,000
$296-A-32$	Vacuum Pump Exhaust	1,800
$296-A-33$	Wall Exhauster, EF-3-5	4,000
$296-A-34$	Wall Exhauster, EF-3-6	6,000
$296-A-35$	Wall Exhauster, EF-3-7	7,000
$296-A-36$	Wall Exhauster, EF-3-8	4,300
$296-A-37$	Wall Exhauster, EF-3-9	8,000
$296-A-38$	Wall Exhauster, EF-3-10	2,300
$296-A-39$	SWP Lot',y Exhaust	unknown

*Effluent Discharges and Solid Waste Management Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

Table 13. B Plant/WESF Stacks.*

Stack ID	Descriptor	Typical flow rate, cfm
$291-\mathrm{B}-1$	200 ft	40,000
$296-B-5$	$271-\mathrm{B}$	1,500
$296-\mathrm{B}-10$	WESF	20,000
$296-\mathrm{B}-13$	$221-\mathrm{BF}, \mathrm{BCF}$ Tanks	800
$296-B-14$	$221-\mathrm{B}$ Vessel Vent	250

*Effluent Discharges and Solid Waste Management Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

Table 14. East Tank Farm Stacks.*

Stack ID	Descriptor	Typical flow rate, cfm
291-A-12	244-AR Vessel Vent (150 ft)	1,000
296-A-13	244-AR Canyon	6,000
296-A-17	A, AX, AY, AZ Tanks	4,000
296-A-18	101-AY Annulus	1,200
296-A-19	102-AY Annulus	1,200
296-P-17	Tank 105-A	2,000
296-A-20	AZ Annuli	2,000
296-A-21	242-A Evaporator	20,000
296-A-22	242-A Vessel Vent	700
296-A-25	244-A Catch Tank	160
296-A-26	204-AR Tank Car Building	2,000
296-A-27	AW Tanks	1,100
296-A-28	AW Annuli	4,600
296-A-29	AN Tanks	900
296-A-30	AN Annuli	6,000
296-A-40	AP Tanks	1,000
296-A-41	AP Annuli	10,000
296-B-28	244-BX Saltwell Vessel	300
296-C-5	244-CR Vault	3,000
296-P-16	Tanks 105-C and 106-C	3,500

*Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

4.3 200 WEST AREA EFFLUENT STACKS

Table 15. S Plant Stacks.*

Stack ID	Descriptor	Typical flow rate, ffm
$291-\mathrm{S}-1$	200 ft	20,000
$296-\mathrm{S}-2$	$202-\mathrm{S}$ Sample Gallery	600
$296-\mathrm{S}-4$	$202-\mathrm{S}$ SWP Lobby	5,000
$296-\mathrm{S}-6$	$202-\mathrm{S}$ Silo	10,000
$296-\mathrm{S}-7 \mathrm{E}$	$233-\mathrm{S}$ Building Exhaust	9,000
$296-\mathrm{S}-7 \mathrm{~W}$	$233-\mathrm{S}$ Building Exhaust	9,000
$296-\mathrm{S}-16$	$218-S$ Tanks	150
$296-\mathrm{S}-21$	$222-S$ Laboratories	70,000

*Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

Table 16. T Plant Stacks.*

Stack ID	Descriptor	Typical flow rate, cfm
$291-\mathrm{T}-1$	200 ft	40,000
$296-\mathrm{T}-11$	$224-\mathrm{T}$ Storage East	13,000
$296-\mathrm{T}-12$	$224-T$ Storage West	13,000
$296-\mathrm{T}-13$	$221-\mathrm{T}$ Roof	40,000
$296-\mathrm{W}-1$	Laundry	20,000

*Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

Table 17. U Plant Stacks.*

Stack ID	Descriptor	Typical flow rate, cfm
$291-U-1$	200 ft	28,000
$296-U-2$	Powder Handling Offgas	1,400
$296-U-4$	$224-U$ Calciners	2,500
$296-U-13$	$224-U$ Load-out Room	5,000

*Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

Table 18. Z Plant Stacks.*

Stack ID	Descriptor	Typical flow rate, cfm
$291-Z-1$	200 ft (234-5,232,236,242)	240,000
$296-Z-3$	$241-Z$ Sump and Vessels	1,800
$296-Z-5$	$2736-Z B$	10,000
$296-Z-6$	$2736-Z A$	11,000

*Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

Table 19. West Tank Farm Stacks.*

Stack ID	Descriptor	Typical flow rate, cfm
296-P-22	SY Annuli	450
296-P-23	SY Tanks	1,000
296-S-15	SX Tanks	5,000
296-S-18	242-S Building Exhaust	20,000
296-S-22	244-S Saltwell Receiver	200
296-T-17	242-T Cells	2,000
296-T-18	244-TX Saltwell Receiver	300
296-W-03	213-W Waste Compactor	2,500

*Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas (WHC 1988).

4.4300 AREA EFFLUENT STACKS

Table 20. 300 Area rffluent Stacks.*

Stack ID	Descriptor	Typical flow rate, $\mathbf{c f m}$
$303-M$	Oxide Facility	3,000
$306-\mathrm{E}$	U0 Laboratory	3,200
308	Glovebox	3,400
308	Etch and Clean	4,300
308	TRIGA Reactor	2,400
309	Containment	7,000
313	Engineering Hot Laboratory	800
333	Building	3,200
340	Neutralization Tank and Vault	1,900
340	Decontamination Facility	1,000
$340-B$	Tank Car Loadout	8,500

*Effluent Report for 300, 400, and 1100 Area Operations for Calendar Year 1988 (WHC 1988).

WHC-EP-0368

4.5400 AREA EFFLUENT STACKS

Table 21. The 400 Area Effluent Stacks.*	
Stack emission point	Typical flow rate, cfm
Combined Exhaust	24,000
Lower Reactor Service Building	13,000
HTS-South	4,200
MASF Building Exhaust	16,000
*Effluent Report for 300,400 , and	
1100 Area Operations for Calendar Year 1988	
(WHC 1988).	

5.0 SAMPLE PROBLEMS FOR ED - REVISION 3

5.1 STACK RELEASE OF HYDROGEN FLUORIDE

A. Scenario - Severe damage to process equipment at the Plutonium Finishing Plant has resulted in a release of hydrogen fluoride (HF) to the exhaust system. The accident is assumed to occur on May 31, at 10:00 pm. Winds are blowing toward the west at 5 mph . Calculate the HF concentration at the Site boundary and at Highway 240. The HF comes to PFP in 150-1b cylinders.
B. Calculator Display

Hazard Evaluator Entry
(an arbitrary number)
USER mode switch; XEQ
ED - Rev 3
U.S.A. UNITS ?

MET = A ? (or any letter)
MET = E ?
$D=2,625.0 \mathrm{FT} ?$ (or any number)
$\mathrm{D}=820.0 \mathrm{FT}$?
$V=2.2 \mathrm{MPH}$? (or any number)
R/S
R/S
$V=5.0 \mathrm{MPH}$?
$H=6.3 \mathrm{FT}$? (or any number)
$\mathrm{H}=200.0 \mathrm{FT}$?
$X=15.00 \mathrm{MI}$? (or any number)
$X=7.60 \mathrm{MI}$?
$Y=0.0 \mathrm{FT}$? (assumed okay)
$\Sigma \mathrm{Y}=1,685.9 \mathrm{FT}$?
$\Sigma Z=278.1 \mathrm{FT}$?
E (Table 2); R/S
R/S
820 (Table 6); R/S
R/S
5; R/S
R/S
$X / Q=2.52 \mathrm{E}-6$?
200 (main stack); R/S
$D U R=4.0 \mathrm{HR}$? (or any number)
DUR $=0.5 H R$?
R/S

RAD SOURCE?
CHEM SOURCE?
7.6 (Site Bdy); R/S

R/S
R/S
R/S
R/S
R/S

ST, TOTAL = 1,2 ?
TOT LB REL ?
X, Y MG/M3 $=9.5 \mathrm{E}-2$
FORMULA WT?
0.5 (assumed); R/S

R/S
3 (or any number); R/S
R/S
2; R/S
150 (assumed); R/S
R/S
$X, Y P P_{11}=1.1 E-1$
19 (grams/mole); R/S

The above concentration is well below the U.S. Department of Energy protective action guide of $20 \mathrm{mg} / \mathrm{m}^{3}$.

Next, the Hazard Evaluator estimates the HF concentration at Highway 240.
1.1E-1
$X=7.60 \mathrm{MI}$?
$X=2.80 \mathrm{MI}$?
$\Sigma \mathrm{Y}=684.2 \mathrm{FT}$?
$\Sigma Z=175.8 \mathrm{FT}$?

USER mode switch; A
2.8 (Hwy 240); R/S

R/S
R/S
R/S

Calculator Display (continued)
Hazard Evaluator Entry

$X / Q=6.67 E-6 ?$	R / S
$X, Y M G / M 3=2.5 E-1$	R / S
FORMULA WT?	R / S (already entered)
X, Y PPM $=3.0 E-1$	

The above concentration is well below the protective action guide. Next the Hazard Evaluator estimates the concentration at the Yakima Barricade for a release of 270 1b.
3.0E-1

CHEM SOURCE?
ST, TOTAL = 1,2 ?
TOT LB REL ?
X, Y MG/M3 $=4.5 \mathrm{E}-1$
FORMULA WT?
X, Y PPM $=5.4 \mathrm{E}-1$

USER mode switch; G
USER mode switch; R/S
R/S (already entered)
270; R/S
R/S
R/S (already entered)

5.2 GROUND RELEASE WITH DOWNWIND FIELD DATA

A. Scenario - A radioactive plume of unknown origin in the 241-C Tank Farm has caused measurable surface contamination in the vicinity of PUREX. The wind is currently blowing toward the SSE at 5 mph , at a stability best described as Class D. An air sample 3,600 ft downwind and 250 ft off the plume centerline has been running for 81 h when it is counted with field instruments and reads about $2,000 \mathrm{cpm}$ above background. How much activity was released, and what dose would be estimated for the Site boundary? Use a mixing depth of 500 ft . Assume a detector efficiency of 10%, and an air sample flow rate of 2 cfm .
B. Calculator Display

Hazard Evaluator Entry
(an arbitrary number)
ED - Rev 3
U.S.A. UNITS ?

MET = E ? (leftover from previous)
MET = D ?
$D=820.0 \mathrm{FT}$?
$D=500.0 \mathrm{FT}$?
$\mathrm{V}=5.0 \mathrm{MPH}$?
$H=200.0 \mathrm{FT}$?
$\mathrm{H}=5.0 \mathrm{FT}$?
$X=2.80 \mathrm{MI}$?
3600.00
$X=0.68 \mathrm{MI}$?
$Y=0.0 \mathrm{FT}$. ?
$Y=250.0 \mathrm{FT}$?
$\Sigma \mathrm{Y}=268.7 \mathrm{FT}$?

USER mode switch; XEQ
R/S
R/S
D; R/S
R/S
500; R/S
R/S
R/S
5; R/S
R/S
3600; ENTERT;
5280; +; R/S
R/S
250; R/S
R/S
R/S

Calculator Display (continued)	Hazard Evaluator Entry
$\Sigma \mathrm{Z}=110.5 \mathrm{FT}$?	R/S
$X / Q=3.35 \mathrm{E}-5$?	R/S
DUR $=0.5$ HR ?	R/S
CHEM SOURCE?	3 (or any number); R/S
RAD SOURCE?	R/S
ST, CI, AR, GD $=1-4$	3; R/S
CONC OR DPM ?	20,000 (dpm) ; R/S
CU.FT SAMPLD?	81; ENTER \dagger; 2; x ;
162.0	R/S
2.0E-9 UCI/CC	R/S
HRS SAMPLED?	81; R/S
REL: 1.7El CI	R/S
X, Y UCI/CC=3.2E-7	R/S
$\mathrm{a}, \mathrm{Bl}, \mathrm{B} 2, \mathrm{NEW}=1-4$	2 (worst beta); R/S
SR, RU, I, $\mathrm{CS}=1-4$	1; R/S
SR-90: 5.1E2 MR	R/S
ORGAN LIMITS	
This would be the bone dose from inhalation of airborne Sr-90 if someone had been standing near the air sample station during the entire release. To calculate the dose at the Site boundary, 12 mi SSE, do the following:	
5.1E2	USER mode switch; A
$X=0.68 \mathrm{MI}$?	12; R/S
$X=12.00 \mathrm{MI}$?	R/S
$\Sigma \mathrm{Y}=3,581.4 \mathrm{FT}$?	B
$Y=200.0 \mathrm{FT}$?	0; R/S
$Y=0.0 \mathrm{FT}$?	R/S
$\Sigma \mathrm{Y}=3,581.4 \mathrm{FT}$?	R/S
$\Sigma Z=630.0 \mathrm{FT}$?	R/S
$X / Q=1.07 \mathrm{E}-6$?	R/S
REL $=1.7 \mathrm{El} \mathrm{CI}$	R/S
X, Y UCI /CC= $=1.0 \mathrm{E}-8$	R/S
SR-90: 1.6E1 MR	
The projected offsite org put this accident in the	bone) of 16 mrem would egory.

6.0 VERIFICA ION OF ED - REVISION 3 CALCULATIONS

Verification: Code verification is the comparison of code results with the results of hand calculations and the results of other codes. In this section, values computed by ED - Revision 3 are compared with the GENII code, Version 1.436, and with hand calculations.

6.1 X/Q CALCULATION

A. The atmospheric dispersion model is the same as that found in GENII, but without some of the advanced features such as building wake and plume rise. The calculator model does include plume reflection from both the ground and mixing layer.
B. The GENII program was induced to supply X / Q values at specific stability classes and release heights by using special joint frequency data files. In addition, to obtain a value of X / Q with three meaningful digits, the X / Q value stored in the buffer file ENV. IN was used in the comparisons. The file used for calculating the Class F, ground level X / Q values is shown in the following chart.

Joint Frequency File for Ground Level, Class F, X/Q Computations

10 M - Pasquill F								
Created 6-Aug-90								
1		11	10.0					
. 89	2.65	4.7	7.15	9.8	12.7	15.6	19.0	
0.00 .0	0.0	0.00 .0	0.00 .0	0.00	0.00 .0	0.00 .0	0.00 .0	0.00 .0
0.00 .0	0.0	0.00 .0	0.00 .0	0.0	0.00 .0	0.00 .0	0.00 .0	0.00 .0
0.00 .0	0.0	0.00 .0	0.00 .0	0.0	0.00 .0	0.00 .0	0.00 .0	0.00 .0
0.00 .0	0.0	0.00 .0	0.00 .0	0.0	0.00 .0	0.00 .0	0.00 .0	0.00 .0
0.00 .0	0.0	0.00 .0	0.00 .0	0.00	0.00 .0	0.00 .0	0.00 .0	0.00 .0
1.00 .0	0.0	0.00 .0	0.00 .0	0.0	0.00 .0	0.00 .0	0.00 .0	0.00 .0
0.00 .0	0.0	0.00 .0	0.00 .0	0.0	0.00 .0	0.00 .0	0.00 .0	0.00 .0

C. Verification of X / Q values began with a carefully selected series of test cases to exercise relevant portions of the code without unnecessary duplication. Ground level X / Q is verified first, then stack X / Q, then treatment of reflection from the mixing layer, wind speed effects, and finally, off-axis X / Q.

1. The mixing depths in all cases is $1,000 \mathrm{~m}$, (the value contained in the GENII code).
2. The wind speed is $0.89 \mathrm{~m} / \mathrm{s}$, except where noted.
3. The distance of $1,000 \mathrm{~m}$ is chosen because this is a transition distance where the model changes from one set of parameters to another. The $100-\mathrm{m}$ and $10-\mathrm{km}$ distances verify near and far behavior.
D. Ground level X / Q results from both $E D$ and the computer program GENII (Version l.436) are shown on the following tables. Note that GENII does not reveal the values of Sigma Y and Sigma Z that are used. Therefore, the Sigma values could not be compared.

Table 22. Atmospheric Dispersion Parameters Calculated by ED.

P-G	100 m		$1,000 \mathrm{~m}$		10 km	
Class	Sigma Y	Sigma Z	Sigma Y	Sigma Z	Sigma Y	Sigma Z
A	23.4	14.3	187.3	448.4	$1,498.5$	57,035
B	17.6	10.9	140.9	110.2	$1,126.9$	$1,358.3$
C	13.4	7.5	107.0	61.1	855.7	497.8
D	9.4	4.6	75.3	31.5	602.6	133.0
E	6.7	3.5	53.6	21.5	428.5	77.7
F	4.6	2.2	37.0	13.9	295.8	46.1
G	3.1	1.3	24.6	8.4	197.0	27.7

	Distance downwind (X)				
P-G	100 m	$1,000 \mathrm{~m}$	10 km		
Class	100	1.07	$\mathrm{E}-03$	4.26	$\mathrm{E}-06$

Table 23. Ground Level X/Q Values Computed by GENII.

$\begin{gathered} \text { P-G } \\ \text { Class } \end{gathered}$	Distance downwind (X)		
	100 m	1,000 m	10 km
A	$1.07 \mathrm{E}-03$	4.26 E-06	$2.99 \mathrm{E}-07$
B	$1.86 \mathrm{E}-03$	2.30 E-05	3.98 E-07
C	3.57 E-03	5.47 E-05	8.40 E-07
D	$8.32 \mathrm{E}-03$	1.51 E-04	4.46 E-06
E	$1.54 \mathrm{E}-02$	3.10 E-04	$1.07 \mathrm{E}-05$
F	$3.44 \mathrm{E}-02$	6.95 E-04	2.62 E-05
G	8.55 E-02	$1.72 \mathrm{E}-03$	6.57 E-05

Table 24. Percent Differences Between ED and GENII Ground Level X/Q Results.

P-G	Distance downwind (X)		
Class	100 m	$1,000 \mathrm{~m}$	10 km
A	0.0	0.0	0.0
B	0.5	0.0	0.0
C	0.0	0.0	0.0
D	0.2	0.0	0.0
E	-0.7	0.0	0.0
F	0.0	0.0	0.0
G	0.8	1.2	-0.2

Explanation of Differences: Most of the differences observed are due to the different representation of real numbers in the two different computers. The difference for the first two distances in the Class G row is due to a slight difference in calculating Simga Z. GENII calculates Sigma Z using the parameters shown in Table 28 (7.1 , Section C) with the exception that $\mathrm{Az}(2)$ is 0.052 , rather than 0.0516 shown on the table. The ED calculates Sigma Z for Class F and then multiplies by 0.6 to arrive at the Sigma Z for Class G. In effect, $E D$ uses the value 0.0516 shown on the table.
E. Using the joint frequency file for 61 meter stack releases in the following chart, the GENII program computed a X / Q value of 3.32 x $10^{-5} \mathrm{~s} / \mathrm{m}^{3}$ at Pasquill Cl ass C , and at a distance of $1,000 \mathrm{~m}$. The ED gives the same result.

Joint Frequency File for $61 \mathrm{~m}, \mathrm{Cl}$ ass $\mathrm{C}, \mathrm{X} / \mathrm{Q}$ Computations

61 M - Pasquill C Created 6-Aug-90 PDR						
1	3111	61.0				
. 89	2.654 .7	7.15	$9.8 \quad 12.7$	15.6	19.0	
0.00 .0	0.00 .00 .0	0.00 .0	0.00 .000	0.00 .0	0.000	0.00 .0
0.00 .0	0.00 .00 .0	0.00 .0	0.00 .00 .0	0.00 .0	0.00 .0	0.00 .0
1.00 .0	0.00 .00 .0	0.00 .0	0.00 .00 .0	0.00 .0	0.00 .0	0.00 .0
0.00 .0	0.00 .00 .0	0.00 .0	0.00 .00 .0	0.00 .0	0.00 .0	0.00 .0
0.00 .0	0.00 .00 .0	0.00 .0	0.00 .00 .0	0.00 .0	0.00 .0	0.00 .0
0.00 .0	0.00 .00 .0	0.00 .0	0.00 .00 .0	0.00 .0	0.00 .0	0.00 .0
0.00 .0	0.00 .00 .0	0.00 .0	0.00 .00 .0	0.00 .0	0.00 .0	0.00 .0

F. To test the treatment of reflection from the mixing layer, the X / Q values at a few distances near the transition point ($\Sigma z=1.2 * D$) were compared. Results are shown in Table 25. The unusual release height of 900 m was used to test the effect of a release height that was near the mixing depth.

Table 25. Comparison of ED and GENII for Reflection from the Mixing Layer (using Pasquill B stability and mixing layer depth of $1,000 \mathrm{~m}$).

Release height	Distance km	Sigma Z m	$\mathrm{X} / 0$ Value, $\mathrm{s} / \mathrm{m}^{3}$		Percent difference
			ED	GENII	
Ground level	5.0	635.6	$9.47 \mathrm{E}-07$	9.47 E-07	0.0
Ground evel	7.0	918.8	5.66 E-07	5.66 E-07	0.0
Ground level	8.8	1,180.7	$4.46 \mathrm{E}-07$	4.47 E-07	-0.2
Ground level	9.0	1,210.2	4.37 E-07	4.38 E-07	-0.2
900 m stack	5.0	635.6	$5.52 \mathrm{E}-07$	$5.52 \mathrm{E}-07$	0.0
900 m stack	7.0	918.8	$5.33 \mathrm{E}-07$	5.33 E-07	0.0
900 m stack	8.8	1,180.7	4.45 E-07	4.46 E-07	-0.2
900 m stack	9.0	1,210.2	4.37 E-07	4.37 E-07	0.0

G. One additional test of the mixing layer reflection is to enter a mixing depth equal to the release height. This should give an X / Q value twice as large as the no-reflection case (i.e., with a mixing depth much larger than the Sigma Z). For example, using Pasquill Class D stability, a release height of 61 m , and a distance of $1,000 \mathrm{~m}$, the unreflected X / Q is $2.31 \times 10^{-5} \mathrm{~s} / \mathrm{m}^{3}$, while the X / Q with a mixing depth of 61 m is $4.63 \times 10^{-5} \mathrm{~s} / \mathrm{m}^{3}$.
H. Two additional cases with wind speeds of $0.445 \mathrm{~m} / \mathrm{s}$ and $1.78 \mathrm{~m} / \mathrm{s}$ were used to verify the inverse sependence on wind speed.

1. At $0.445 \mathrm{~m} / \mathrm{s}$, all the X / Q values are twice what they are at $0.89 \mathrm{~m} / \mathrm{s}$.
2. Similarly, at $1.78 \mathrm{~m} / \mathrm{s}$, the X / Q values are halved. Only one row was tested, as the wind speed enters the calculation after the program calculates the Sigma Y and Sigma Z values.
I. Finally, the off-axis (Y) behavior is verified. Using a value for Y that is 1.1774 ($=$ SQRT(2*ln 2)) times greater than Sigma Y should reduce the X / Q by a factor of exactly 2 . Similarly, applying a factor of 1.6651 ($=\operatorname{SQRT}(2 * \ln 4)$) to Sigma Y reduces X / Q by a factor of exactly 4. Both changes were tested at three distances and two release heights. Only one stability class needs to be tested because the program calculates the off-axis factor after calculating Sigma Y and Sigma Z values.

6.2 DOWNWIND CHEMICAL CONCENTRATIONS

A. The example input and results summarized in the following two subsections thoroughly test all features of the chemical source characterization portion of ED. Note that the lines that begin with "==>" are results computed using a spreadsheet to independently check ED.
B. The following input data were used to verify the program using the ST option:

```
X/Q = 1.0 < 10-4 s/m
Exhauster flow rate = 106,000 cfm (50 m
Chemical formula weight = 17 g/mole (ammonia)
Stack concentration = 700 ppm
    => downwind concentration = 3.50 ppm =>> 2.66 mg/m
Stack concentration = 700 mg/m
    => downwind concentration = 3.50 mg/m
```

C. The following data were used to verify the program using the TOTAL option:

```
X/Q = 1.0 x 10-4 s/m
Release duration = 4 h
Chemical formula weight = 17 g/mole (ammonia)
Total release amount =600 lb
    =>> downwind concentration = 1.89 mg/m
```


6.3 ESTIMATION OF TOTAL CURIES RELEASED

A. The example input and results summarized in the following subsections thoroughly test all features of the radionuclide source characterization portion of ED. Note that the lines that begin with "==>" are results computed using a spreadsheet to independently check ED.
B. The following input data were used to verify the program using the ST option for stack releases:

```
X/Q = 1.0 < 10-4 s/m
Release duration = 4 h
Exhauster flow rate = 106,000 cfm (50 m
Stack concentration = 2.0 < 10-7 \muCi/cc
    =>> total activity released =0.144 Ci
    =>> downwind concentration = 1.00 x 10-9 \mu Ci/cc
```

Activity on air sample $=80,000 \mathrm{dpm}$
Volume of air sampled $=10 \mathrm{ft}^{3}$
\Rightarrow stack concentration $=1.27 \times 10^{-7} \mu \mathrm{Ci} / \mathrm{cc}$
\Rightarrow total activity released $=0.0917 \mathrm{Ci}$
\Rightarrow downwind concentration $=6.37 \times 10^{-1} \mu \mathrm{Ci} / \mathrm{CC}$
C. The following data were used to verify the program using the CI option for entering the total activity released:

```
X/Q = 1.0 < 10-4 s/m
Release duration = 4 h
Total activity released = 5 Ci
    => downwind concentration = 3.47 x 10-8 \muCi/cc
```

D. The following data were used to verify the program using the $A R$ option for an air concentration measurement downwind:
$X / Q=1.0 \times 10^{-4} \mathrm{~s} / \mathrm{m}^{3}$
Release duration $=4 \mathrm{~h}$
Air concentration $=5.0 \times 10^{-8} \mu \mathrm{Ci} / \mathrm{cc}$
Sampling period $=8 \mathrm{~h}$
\Rightarrow total activity released $=14.4 \mathrm{Ci}$
\Rightarrow downwind concentration $=1.00 \times 10^{-7} \mu \mathrm{Ci} / \mathrm{cc}$
Sampling period $=3 \mathrm{~h}$
$\Rightarrow \Rightarrow$ total activity released $=7.20 \mathrm{Ci}$
\Rightarrow downwind concentration $=5.00 \times 10^{-8} \mu \mathrm{Ci} / \mathrm{cc}$

```
Activity on air sample \(=40,000 \mathrm{dpm}\)
Volume of air sampled \(=20 \mathrm{ft}^{3}\)
    \(\Rightarrow\) air concentration \(=3.18 \times 10^{-8} \mu \mathrm{Ci} / \mathrm{cc}\)
Sampling period \(=4 h\)
    \(\Rightarrow \Rightarrow\) total activity released \(=4.58 \mathrm{Ci}\)
    \(\Rightarrow\) downwind concentration \(=3.18 \times 10^{-8} \mu \mathrm{Ci} / \mathrm{cc}\)
```

E. The following data were used to verify the program using the GD option for a surface contamination measurement downwind:
$X / Q=1.0 \times 10^{-4} \mathrm{~s} / \mathrm{m}^{3}$
Release duration $=4 h$

```
Surface contamination = 800 dpm/cm
Ground deposition speed = 0.15 cm/s
    => total activity released = 24.0 Ci
    => downwind concentration = 1.67 x 10-7 \muCi/cc
```


6.4 DOSE CALCULATIONS

A. All possible radionuclide choices were tested in actual dose calculations with ED. Doses were calculated for an X/Q of
$2 / 330 \mathrm{~s} / \mathrm{m}^{3}$ and a total release of 0.0005 Ci . These choices of dispersion factor and release amount produce doses that are numerically equal to the dose factor stored in the program.
B. Several inert gas dose factors are listed in Table 26 . The final column shows the values actually used by ED to simplify the dose calculation. The numbers in the last column are the submersion dose factors (rem/s per $\mathrm{C}: / \mathrm{m}^{3}$) divided by the breathing rate used in ED ($330 \mathrm{cc} / \mathrm{s}$). ED calculates the external dose by multiplying the dose factor by the breathing rate, the quantity released and the X / Q value.
C. The inhalation dose factors used by ED are listed in Table 27. Table 27 lists more dose factors than are used by the program. The final column shows whether the EDE or the organ dose should be considered limiting.

1. The EDE is limiting if the ratio of the organ to EDE is less than 3.
2. The organ is limiting if the organ-to-EDE dose ratio is greater than 5 .
3. For ratios between 3 and 5, the actual ratio is printed in the table.
4. The factors of 3 and 5 come from the emergency action level criteria.

Table 26. External Dose Factors for Inert Gases.

Inert gases	Sv/h per $\mathrm{Bq} / \mathrm{m}^{3}$	Rem/s per Ci / m	Effective rem/ $\mu \mathrm{Ci}$
${ }^{41 \mathrm{Ar}}$	$2.17 \mathrm{E}-10$	$2.23 \mathrm{E}-01$	$6.76 \mathrm{E}-04$
85 mKr	$2.98 \mathrm{E}-11$	$3.06 \mathrm{E}-02$	$9.28 \mathrm{E}-05$
85 Kr	$4.70 \mathrm{E}-13$	$4.83 \mathrm{E}-04$	$1.46 \mathrm{E}-06$
87 Kr	$1.42 \mathrm{E}-10$	$1.46 \mathrm{E}-01$	$4.42 \mathrm{E}-04$
88 Kr	$3.60 \mathrm{E}-10$	$3.70 \mathrm{E}-01$	$1.12 \mathrm{E}-03$
89 Kr	$5.00 \mathrm{E}+00$	$5.14 \mathrm{E}+09$	$1.56 \mathrm{E}+07$
131 mXe	$1.48 \mathrm{E}-12$	$1.52 \mathrm{E}-03$	$4.61 \mathrm{E}-06$
133 mXe	$5.38 \mathrm{E}-12$	$5.53 \mathrm{E}-03$	$1.68 \mathrm{E}-05$
133 Xe	$6.07 \mathrm{E}-12$	$6.24 \mathrm{E}-03$	$1.89 \mathrm{E}-05$
135 mXe	$7.53 \mathrm{E}-11$	$7.74 \mathrm{E}-02$	$2.35 \mathrm{E}-04$
135 Xe	$4.68 \mathrm{E}-11$	$4.81 \mathrm{E}-02$	$1.46 \mathrm{E}-04$
137 Xe	$5.00 \mathrm{E}+00$	$5.14 \mathrm{E}+09$	$1.56 \mathrm{E}+07$
138 Xe	$1.92 \mathrm{E}-10$	$1.97 \mathrm{E}-01$	$5.98 \mathrm{E}-04$

Table 27. Inhalation Dose Factors for Particulates.*

Isotope	ICRP CLASS	Sv/Bq		rem/ $\mu \mathrm{Ci}$		Limiting
		EDE	Max organ	EDE	Max organ	
${ }^{3} \mathrm{H}$	H2O	1.73 E-11	$1.73 \mathrm{E}-11$	9.60 E-05	9.60 E-05	EDE
$1^{4} \mathrm{C}$	ORG	5.64 E-1C	$5.64 \mathrm{E}-10$	2.09 E-03	$2.09 \mathrm{E}-03$	EDE
${ }^{14} \mathrm{C}$	CO2	$6.36 \mathrm{E}-12$	$6.36 \mathrm{E}-12$	$2.35 \mathrm{E}-05$	2.35 E-05	EDE
14 C	CO	7.83 E-13	7.83 E-13	2.90 E-06	2.90 E-06	EDE
54 Mn	W	1.81 E-09	6.66 E-09	6.70 E-03	2.46 E-02	3.7
54 Mn	D	$1.42 \mathrm{E}-09$	$2.56 \mathrm{E}-09$	$5.25 \mathrm{E}-03$	$9.47 \mathrm{E}-03$	EDE
$6^{\circ} \mathrm{Co}$	Y	5.91 E-08	$3.45 \mathrm{E}-07$	$2.19 \mathrm{E}-01$	1.28E+00	Organ
$6^{\circ} \mathrm{Co}$	W	8.94 E-09	$3.57 \mathrm{E}-08$	$3.31 \mathrm{E}-02$	1.32 E-01	4.0
90 Sr	Y	3.51 E-07	$2.86 \mathrm{E}-00$	$1.30 \mathrm{E}+00$	$1.06 \mathrm{E}+01$	Organ
90%	Y	2.28 E-09	9.31 E-09	$8.44 \mathrm{E}-03$	3.44 E-02	4.1
${ }^{90} \mathrm{Sr}$	D	$6.47 \mathrm{E}-08$	7.27 E-07	$2.39 \mathrm{E}-01$	2.69 E+00	Organ
90%	W	2.13 E-09	2.78 E-10	7.88 E-03	$1.03 \mathrm{E}-03$	EDE
103 Ru	Y	$2.42 \mathrm{E}-09$	$1.56 \mathrm{E}-08$	8.95 E-03	$5.77 \mathrm{E}-02$	Organ
103 Ru	W	1.75 E-09	$9.86 \mathrm{E}-09$	6.48 E-03	$3.65 \mathrm{E}-02$	Organ
103 Ru	D	8.25 E-10	$1.03 \mathrm{E}-09$	3.05 E-03	3.80 E-03	EDE
106 Ru	Y	$1.29 \mathrm{E}-07$	$1.04 \mathrm{E}-06$	4.77 E-01	3.85 E+00	Organ
106 Ru	W	3.18 E-08	2.11 E-07	1.18 E-01	7.81 E-01	Organ
106 Ru	D	$1.52 \mathrm{E}-08$	$1.80 \mathrm{E}-08$	$5.62 \mathrm{E}-02$. $-6 \mathrm{E}-02$	EDE
129 I	D	$4.69 \mathrm{E}-08$	1.56 E-06	$1.74 \mathrm{E}-01$	5.17E+00	Organ
131 I	D	$8.89 \mathrm{E}-09$	$2.92 \mathrm{E}-07$	$3.29 \mathrm{E}-02$	1.08E+00	Organ
132 I	D	$1.03 \mathrm{E}-10$	1.74 E-09	3.81 E-04	$6.44 \mathrm{E}-03$	Organ
1331	D	1.58 E-09	$4.86 \mathrm{E}-08$	$5.85 \mathrm{E}-03$	1.80 E-01	Organ
135 I	D	3.32 E-10	$8.46 \mathrm{E}-09$	$1.23 \mathrm{E}-03$	$3.13 \mathrm{E}-02$	Organ
137 Cs	D	8.63 E-09	$8.82 \mathrm{E}-09$	3.19 E-02	3.26 E-02	EDE
144 Ce	Y	$1.01 \mathrm{E}-07$	7.91 E-07	$3.74 \mathrm{E}-01$	2.93E+00	Organ
144 Ce	W	$5.84 \mathrm{E}-08$	$1.83 \mathrm{E}-07$	2.16 E-01	6.77 E-01	3.1
147 Pm	Y	$1.06 \mathrm{E}-08$	$7.74 \mathrm{E}-08$	$3.92 \mathrm{E}-02$	2.86 E-01	Organ
147 Pm	W	6.97 E-09	$1.02 \mathrm{E}-07$	2.58 E-02	$3.77 \mathrm{E}-01$	Organ
192 Ir	Y	7.61 E-09	5.24 E-08	2.82 E-02	1.94 E-01	Organ
192 Ir	W	4.88 E-09	$2.55 \mathrm{E}-08$	1.81 E-02	9.44 E-02	Organ
192 Ir	D	5.10 E-09	$1.15 \mathrm{E}-08$	$1.89 \mathrm{E}-02$	4.26 E-02	EDE
212 Pb	D	4.56 E-08	3.71 E-07	1.69 E-01	1.37E+00	Organ
226 Ra	W	$2.32 \mathrm{E}-06$	$1.61 \mathrm{E}-05$	8.58 E+00	5.96 E+01	Organ
232 Th	W	4.43 E-04	1.11 E-02	1.64 E+03	4.11 E+04	Organ
${ }^{232} \mathrm{Th}$	Y	3.11 E-04	$4.99 \mathrm{E}-03$	$1.15 \mathrm{E}+03$	1.85 E+04	Organ
233 U	Y	3.66 E-05	$3.04 \mathrm{E}-04$	1.35 E+02	$1.12 \mathrm{E}+03$	Organ
233 U	W	2.16 E.06	1.62 E-05	7.99 E+00	5.99 E+01	Organ
233 U	D	7.53 E-07	$1.12 \mathrm{E}-05$	$2.79 \mathrm{E}+00$	$4.14 \mathrm{E}+01$	Organ
U	U0	3.44 E-05	2.86 E-04	$1.27 \mathrm{E}+02$	1.06 E+03	Organ
U	V03	$2.05 \mathrm{E}-06$	$1.54 \mathrm{E}-05$	7.58 E+00	$5.68 \mathrm{E}+01$	Organ
U	UNH	$7.12 \mathrm{E}-07$	$1.05 \mathrm{E}-05$	$2.64 \mathrm{E}+00$	$3.88 \mathrm{E}+01$	Organ
${ }^{237} \mathrm{~Np}$	W	$1.46 \mathrm{E}-04$	$3.27 \mathrm{E}-03$	$5.40 \mathrm{E}+02$	1.21 E+04	Organ
Pu 12\%	W	$1.82 \mathrm{E}-04$	$3.35 \mathrm{E}-03$	6.74 E+02	$1.24 \mathrm{E}+04$	Organ
Pu 12\%	Y	$1.23 \mathrm{E}-04$	$1.35 \mathrm{E}-03$	4.56E+02	$4.99 \mathrm{E}+03$	Organ
2414 Am	W	$1.20 \mathrm{E}-04$	$2.17 \mathrm{E}-03$	4.44 E+02	$8.03 \mathrm{E}+03$	Organ
244 Cm	W	6.70 E-05	$1.17 \mathrm{E}-03$	$2.48 \mathrm{E}+02$	4.33 E+03	Organ

Table 27. Inhalation Dose Factors for Particulates (continued).*

Isotope	ICRP CLASS	Sv/Bq				$\mathrm{rem} / \mu \mathrm{Ci}$				Limiting
Isotope	ICRP CLASS	EDE			organ	EDE		Max	organ	
${ }^{252} \mathrm{Cf}$	Y	4.24	E-05	2.99	E-04	1.57	$E+02$	1.11	E+03	Organ
${ }^{252} \mathrm{Cf}$	W	3.70	E-05	6.86	E-04	1.37	$E+02$	2. 54	E+03	Organ

*Federal Guidance Report Number 11 (EPA-520/1-88-020, September 1988).

7.0 CONCEPTUAL MODELS USED IN ED - REVISION 3

7.1 ATMOSPHERIC DISPERSION MODEL

A. A gaussian plume model is used for X / Q. Assuming that the wind blows steadily along the X-axis at a speed V, and that the vertical spread of the plume is reflected at both the ground plane (elevation 0) and the mixing layer plane (elevation D), then the X / Q value is computed using the following formula:

$$
\begin{aligned}
X / Q & =\frac{\operatorname{EXP}\left[-0.5^{*}\left((H / \Sigma z)^{2}+(Y / \Sigma Y)^{2}\right)\right] *\left[1+\operatorname{EXP}\left[2 *(D / \Sigma z)^{2} *(1-H / D)\right]\right.}{\pi^{*} * \Sigma y^{*} \Sigma z} \\
& \left.+\operatorname{EXP}\left[2 *(D / \Sigma z)^{2} *(1+H / D)\right]+\operatorname{EXP}\left[-4 *(D / \Sigma z)^{2} *(1-H / D)\right]\right]
\end{aligned}
$$

Note that if $\Sigma z>1.2 * D$, then the plume is uniformly distributed between the ground and the mixing layer. In this case the formula for X / Q simplifies to the following:

$$
X / Q=\frac{\operatorname{EXP}\left[-0.5 *(Y / \Sigma y)^{2}\right]}{\operatorname{SQRT}(2 * \pi) * V * \Sigma y * D}
$$

B. The Pasquill-Gifford curves for Sigma Y and Sigma Z (i.e., Σy and Σz) were approximated using the same formula as is used in GENII. However, distances less than 100 m are excluded. The following formula illustrates this:

$$
\text { Sigma }=A * X^{B}+C
$$

C. The parameters A, B, and C are listed below. For Sigma $Y, C y=0$, $B y=0.9031$, and Ay values are shown in Table 28. For Sigma Z, there are two distance ranges for each.

The parameters shown for Class G are the equivalent parameters that ED uses, in effect, when calculating Sigma values. The ED actually calculates Class G Sigma Z values by calculating Class F Sigma Z values and multiplying by 0.6. The Class G values for $A z$ and Cz are just the Class F values multiplied by this factor.

7.2 DOWNWIND CHEMICAL CONCENTRATIONS

A. The downwind concentration is the release rate times the X / Q value, with appropriate conversion factors added to give the desired final concentration units.

Table 28. Parameters used by ED in the Calculation of Sigma Y and Sigma $Z(B y=0.9031$ and $C y=0.0)$.

Class	Ay	$\mathrm{Az}(2)$	$\mathrm{Az}(3)$	$\mathrm{Bz}(2)$	$\mathrm{Bz}(3)$	$\mathrm{Cz}(2)$	$\mathrm{Cz}(3)$
A	0.3658	0.00066	0.00024	1.941	2.094	9.27	-9.6
B	0.2751	0.0382	0.055	1.149	1.098	3.3	2
C	0.2089	0.113	0.113	0.911	0.911	0	0
D	0.1471	0.222	1.26	0.725	0.516	-1.7	-13
E	0.1046	0.211	6.73	0.678	0.305	-1.3	-34
F	0.0722	0.086	18.05	0.74	0.18	-0.35	-48.6
G	0.0481	0.0516	10.83	0.74	0.18	-0.21	-29.16

(2) means that the distance $X \leq 1,000 \mathrm{~m}$
(3) means that $X>1,000 \mathrm{~m}$.
B. The TOTAL option: If the total number of pounds estimated to have been released during the length of the release, then the downwind concertration, in $\mathrm{mg} / \mathrm{m}^{3}$ is given by the following formula:

Downwind conc $\left(\mathrm{mg} / \mathrm{m}^{3}\right)=\frac{\text { Pounds released } * X / Q}{\text { Release duration }} * \frac{453,592 \mathrm{mg} / 1 \mathrm{~b}}{3,600 \mathrm{~s} / \mathrm{h}}$
C. The ST option: If the exhaust stack flow rate (cfm) and the effluent concentration (in either ppm or $\mathrm{mg} / \mathrm{m}^{3}$) are known, then the downwind concentration can be estimated using the formula below. Note that the exhaust concentration and the downwind concentration have the same units.

Downwind conc $=$ Exhaust conc * Fiow rate * X / Q
D. The conversion from $\mathrm{mg} / \mathrm{m}^{3}$ to ppm (by volume) is done assuming ideal gas behavior. In other words, one formula weight of the chemical is assumed to occupy a volume of 22.4 L . The formula for this conversion is shown below.
ppm (by volume) $=10^{6} * \mathrm{mg} / \mathrm{m}^{3} * \frac{22.4 \mathrm{~L} * 0.001 \mathrm{~g} / \mathrm{mg}}{\text { Formula weight } 1,000 \mathrm{~L} / \mathrm{m}^{3}}$

7.3 ESTIMATION OF TOTAL CURIES RELEASED

A. The ST option: The exhaust flow rate (cfm), the activity concentration at the point of release ($\mu \mathrm{Ci} / \mathrm{cc}$), and the duration
of the release (hours) can be used to compute the total activity released. The conversion factors ED applies are $2,119 \mathrm{cfm}{ }^{*} / \mathrm{m}^{3}$ arid $3,600 \mathrm{~s} / \mathrm{h}$. The following formula is used by ED:

Total Ci released $=$ Exhaust conc * Flow rate * Exhaust time
B. The AR option: The average downwind air concentration ($\mu \mathrm{Ci} / \mathrm{cc}$) and the air sample time can be used to estimate total activity released. The formula used by $E D$ is ihe following:

$$
\text { Total Ci released }=\frac{\text { Conc at }(X, Y) * \text { Sample time }}{X / Q \text { at Air sampler }}
$$

Note that if the sample time is less than the release duration, then activity is scaled up by the ratio of release duration to sample time.
C. The GD option: Downwind surface contamination (distance per minute per square centimeter), the ground deposition speed (centimeters/ second), and the release duration can be used to estimate the total activity released. The ED uses the following formula:

Total Ci Released $=\frac{\text { Surface contamination }}{\text { Deposition speed } * \mathrm{X} / \mathrm{Q}} * \frac{10^{6} \mathrm{~cm}^{3} \text { per } \mathrm{m}^{3}}{2.22 \times 10^{12} \mathrm{dpm} / \mathrm{Ci}}$

7.4 DOWNWIND AIR CONCENTRATION AND DOSE EQUIVALENT

A. The air concentration downwind at (X, Y) is the release rate times the X / Q value. The ED uses the following formula:

$$
\text { Air conc at }(X, Y)=\frac{\text { Total Ci released }}{\text { Release duration } * X / Q} * \frac{1 \mathrm{~h}}{3,600 \mathrm{~s}}
$$

B. The inhalation dose is the product of the total activity released (Ci), the X / Q value, the assumed breathing rate ($330 \mathrm{cc} / \mathrm{s}$), and the inhalation dose factor ($\mathrm{rem} / \mu \mathrm{Ci}$ inhaled). Inhalation dose commitment factors are listed in Table 27.

Inhalation Dose at $(X, Y)=$ (Total Ci Released) * (X / Q) *
(Breathing Rate) * (Dose Factor)
C. The external dose from submersion in the plume is the product of the total activity released (Ci), the X / Q value, and the external dose rate factor (rem/s per $\mathrm{Ci} / \mathrm{m}^{3}$). To facilitate the calculation ED divides the external dose rate factor by the breathing rate ($330 \mathrm{cc} / \mathrm{s}$) to produce a dose factor that can be treated as the inhalation dose factor. These effective dose factors are listed in Table 26.

7.5 DOSE FACTORS FOR PLUTONIUM AND URANIUM MIXTURES

A. Because mixtures of plutonium isotopes or uranium isotopes are handled instead of a pure isotopic form, the inhalation dose factors for common mixtures are used in ED. Tables 29 and 30 summarize the assumed composition for plutonium. Table 29 gives the inhalation dose factors for the individual isotopes of plutonium. Table 30 gives the composition and resulting composite dose factor.

Table 29. Plutonium Inhalation Dose Factors.

Isotope								
${ }^{238} \mathrm{Pu}$	7.79 E-05	7.25 E-04	1.06 E-04	1.90 E-03	288	2680	392	7030
${ }^{239} \mathrm{Pu}$	8.33 E-05	8.21 E-04	$1.16 \mathrm{E}-04$	$2.11 \mathrm{E}-03$	308	3040	429	7810
$2^{40} \mathrm{Pu}$	8.33 E-05	8.21 E-04	1.16 E-04	2.11 E-03	308	3040	429	7810
241 Pu	1.34 E-06	1.78 E-05	2.23 E-06	4.20 E-05	4.96	65.9	8.25	155
242 Pu	7.92 E-05	7.81 E-04	1.11 E-04	2.01 E-03	293	2890	411	7440
2^{41} Am	$8.82 \mathrm{E}-05$	8.28 E-04	1.20 E-04	2.17 E-03	326	3060	444	8030

Table 30. Inhalation Dose Factors for a Mixture of Plutonium Isotopes.

Isotope	12% Weight Percent	Pu-240 Activity $\mathrm{Ci} / \mathrm{g} \mathrm{Pu}$	Inhalation Dose Factors in Sv/Bq Class Y Class W			
			EDE	Bone	EDE	Bone
${ }^{238} \mathrm{Pu}$	0.093	$1.59 \mathrm{E}-02$	1.27 E-05	1.18 E-04	1.73 E-05	3.10 E-04
${ }_{239} \mathrm{Pu}$	84.000	5.21 E-02	4.45 E-05	4.39 E-04	6.20 E-05	1.13 E-03
${ }^{240} \mathrm{Pu}$	13.000	2.95 E-02	2.52 E-05	2.48 E-04	3.51 E-05	6.38 E-04
241 Pu	2.880	2.97 E+00	$4.08 \mathrm{E}-05$	5.42 E-04	$6.79 \mathrm{E}-05$	1.28 E-03
${ }_{22}{ }^{2} \mathrm{Pu}$	0.027	1.06 E-06	8.62 E-10	8.50 E-09	1.21 E-09	2.19 't-08
${ }^{24}$ Arn	0.000	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.05 \mathrm{E}+00$
Totals	100.000	9.75 E-02	1.23 E-04	1.35 E-03	$1.82 \mathrm{E}-04$	$3.35 \mathrm{E}-03$

B. Tables 31 through 34 summarize the calculation of the composite dose factors for uranium. Table 31 gives the inhalation EDE factors for the individual isotopes of uranium. Table 32 gives the organ dose factors. Table 33 gives the composition commonly used for N Reactor fuel, and Table 34 liste the resulting composite dose factors for the EDE and organ of concern.

Table 31. Uranium Inhalation Dose Factors (EDE).

Isotope	Class Y	$\begin{gathered} \mathrm{Sv} / \mathrm{Bq} \\ \text { Class } \mathrm{W} \end{gathered}$	Class D	Class Y	$\underset{\text { Class }}{\operatorname{rem}} / \mu \mathrm{W}$	Class D
234 U	3.58 E-05	2.13 E-06	7.37 E-07	132	7.88	2.73
${ }^{235} \mathrm{~J}$	3.32 E-05	$1.97 \mathrm{E}-06$	6.85 E-07	123	7.29	2.53
${ }^{236} \mathrm{U}$	3.39 E-05	2.01 E-06	7.01 E-07	125	7.44	2.59
${ }^{238} \mathrm{U}$	3.20 E-05	1.90 E-06	6.62 E-07	118	7.03	2.45
234 Th	9.47 E-09	8.04 E-09	8.04 E-09	0.0350	0.0297	0.0297

Table 32. Uranium Inhalation Dose Factors (Maximum Organ).

Isotope	Class Y Lung	Sv / Bq Class W Lung	$\begin{gathered} \text { Class D } \\ \text { Bone } \end{gathered}$	Class Y Lung	$\begin{gathered} \text { rem } / \mu C i \\ \text { Class } W \\ \text { Lung } \end{gathered}$	$\begin{gathered} \text { Class D } \\ \text { Bone } \end{gathered}$
234 U	2.98 E-04	1.60 E-05	1.09 E-05	1103	59.2	40.3
235 U	2.76 E-04	1.48 E-05	1.01 E-05	1021	54.8	37.4
${ }^{236} \mathrm{U}$	$2.82 \mathrm{E}-04$	$1.51 \mathrm{E}-05$	$1.04 \mathrm{E}-05$	1043	55.9	38.5
238 U	2.66 E-04	$1.42 \mathrm{E}-05$	9.78 E-06	984	52.5	36.2
234 Th	$6.39 \mathrm{E}-08$	4.66 E-08	7.83 E-09	0.236	0.172	0.0290

Table 33. Mixture of Uranium Isotopes -- N Reactor Fuel.

Isotope	Weight percent	Ci / g	Alpha percent
234 U	0.0090	$5.87 \mathrm{E}-07$	62.47
235 U	0.8360	$1.81 \mathrm{E}-08$	1.92
236 U	0.0730	$1.58 \mathrm{E}-09$	0.17
238 U	99.0820	$3.33 \mathrm{E}-07$	35.44
234 Th	$1.44 \mathrm{E}-09$	$\underline{3.33 \mathrm{E}-07}$	
Totals	100.0000	$9.40 \mathrm{E}-07$	

Table 34. Inhalation Dose Factors for the Mixture of Uranium Isotopes ($\mathrm{Sv} / \mathrm{Bq}$).

Isotope	Effective dose equivalent Class Y Class W Class D			Maximum organ dose Class Y Class W Class D		
234 U	2.24 E-05	1.33 E-06	4.60 E-07	1.86 E-04	$9.99 \mathrm{E}-06$	6.81 E-06
235 U	$6.39 \mathrm{E}-07$	3.79 E-08	1.32 E-08	5.31 E-06	2.85 E-07	1.94 E-07
236 U	5.69 E-08	3.38 E-09	1.18 E-09	4.74 E-07	2.54 E-08	1.75 E-08
238 U	$1.13 \mathrm{E}-05$	6.73 E-07	$2.35 \mathrm{E}-07$	$9.43 \mathrm{E}-05$	$5.03 \mathrm{E}-06$	$3.47 \mathrm{E}-06$
234 Th	3.36 E-09	$2.85 \mathrm{E}-09$	2.85 E-09	2.26 E-08	1.65 E-08	$\underline{2.78 \text { E-09 }}$
Totals	3.44 E-05	2.05 E-06	$7.12 \mathrm{E}-07$	2.86 E-04	$1.54 \mathrm{E}-05$	$1.05 \mathrm{E}-05$

8.0 LINE-BY-LINE DESCRIPTION OF ED - REVISION 3

8.1 INTRODUCTION

A. ED - Revision 3 is divided into five distinct modules in a structured approach to the problem of organizing a lengthy program. The five modules are as follows:

- Atmospheric dispersion
- Choice of chemical or radiological release
- Chemical calculation
- Nuclide choice
- Dose calculation
B. A complete program listing is supplied at the end of this report. The descriptions in 8.1 Section D reference line numbers in the program listing.
C. It is assumed in these descr ptions of the code that the reader has become acquainted with the basic syntax of the HP-41C programming language. The syntax is described in the owner's manual, including numerous examples.

Table 35. Summary of Data Register and Flag Use.

Registers		Flags	
00	miscellaneous values	00	clear if EDE limits
01	$\mathrm{X} / \mathrm{Q}, \mathrm{s} / \mathrm{m}^{3}$	01	temporary for $X<1 \mathrm{~km}$
02	unit conversion factor	02	temporary use for ppm
03	unit string	05	set for USA units
04	Stability Class, MET, A to G	06	set for Class G
05	wind speed, V, m/s	07	set for chem release
06	distance, X, meters	08	set for ppm units
07	distance, Y, meters		
08	release height, H, meters		
09	release duration, DUR, hours		
10	AMT menu choice, 1 to 4		
11	conc or dpm value; formula wt		
12	cu.ft sampled; chem release rate		
13	stack conc; air conc; grd cont		
14	stack cfm; hours sampled; Vd		
15	total curies released		
16	top-?evel menu choice, 1 to 4		
17	second choice or user name		
18	third choice or user dose factor		
19	mixing depth, meters		

8.2 ATMOSPHERIC DISPERSION

A. Lines 1 through 6 are the starting location for the program.

1. These lines initialize two flags, display the program name and revision number, and stop execution.
2. The label "ED3" is assigned to the key labeled "XEQ" for ready access through the USER mode of the calculator.
B. Lines 7 through 31 display the current unit choice, and allow a switch to the alternate system.
3. The label "U" is assigned to the key labeled "F."
4. Flag 05 is set for English units, and cleared for metric units.
5. Once the choice has been made, execution continues at line 18 , where the commonly used unit of length is stored in registers 02 and 03 in the unit system selected.
6. The final two lines (30 and 31) skip further inout prompts when in USER mode, and the program immediately begins the calculation of atmospheric dispersion parameters beginning in line 127.
C. Lines 32 through 46 display the current atmospheric stability class
(A to G) and allow a new value to be entered.
7. The label "P" is assigned to the key labeled "M."
8. In USER mode, execution will jump to line 127 and begin the X / Q calculation.
D. Lines 47 through 55 display the current atmospheric mixing depth and allow a new value to be entered.
9. The label "MD" is assigned to the key labeled "D."
10. A subroutine at label 09 (lines 321 to 331) is used to convert the depth in the X register to the proper units and display the result. After pressing " $R / S^{\prime \prime}$ the program converts the value in the X register to meters and returns to the line following the line that called this subroutine.
11. In USER mode, execution will jump to line 127 and begin the X / Q calculation.
E. Lines 56 through 81 display the current wind speed and allow a new value to be entered.
12. The label "V" is assigned to the key labeled "C."
13. Lines 59 through 69 ensure that the proper units (mph or m / s) are displayed.
14. In USER mode, execution will jump to line 127 and begin the X / Q calculation.
F. Lines 82 through 90 display the current release height and allow a new value to be entered.
15. The label "HT" is assigned to the key labeled "H."
16. A subroutine at label 09 (1ines 321 through 331) is used to convert the release height in the X register to the proper units and display the result. After pressing " R / S " the program converts the value in the X register to meters and returns to the line following the line that called this subroutine.
17. In USER mode, execution will jump to line 127 and begin the X / Q calculation.
G. Lines 91 through 119 display the current downwind distance and allow a new value to be entered.
18. The label " X " is assigned to the key labeled "A."
19. Lines 94 through 111 ensure that the proper units (miles or kilometers) are displayed.
20. Lines 112 through 114 ensure that no distance less than 0.1 K can be entered.
21. In USER mode, execution will jump to line 127 and begin the X / Q calculation.
H. Lines 120 through 126 display the current. plume offset distance and allow a new value to be entered.
22. The labeil " y " is assigned to the key labeled "В."
23. A subroutine at label 09 (lines 321 through 331) is used to convert the plume offset in the X register to the proper units and display the result. After pressing "R/S" the program converts the value in the X register to meters and returns to the line following the line that called this subroutine.
I. Lines 127 through 383 calculate X / Q from the input data provided in steps A through H above.
24. Lines 128 through 137 prepare for the calculation by converting the distance to meters and comparing it to $1,000 \mathrm{~m}$. Flag 01 is set if the distance is less than or equal to $1,000 \mathrm{~m}$.
25. Lines 138 through 163 branch, according to stability class, to the location with the constants that are needed to compute Sigma Y and Sigma Z. Note that if a value for stability class other than A through F has been entered, then the program assumes the value will be class F.
26. Lines 164 through 176 insert the values for CZ, Az, and Bz to be used in calculating the Class A Sigma Z. Lines 178 through 180 actually compute Sigma 2 . Line 181 inserts the value for Ay, in preparation for the jump to line 278, where Sigma Y is computed.
27. Lines 183 through 277 repeat the previous step for stability classes B to F. Class G is treated somewhat differently in that the Sigma Z for class G is 0.6 times the Sigma Z for class F (lines 269 through 273).
28. Lines 2.78 through 293 compute and display the value for Sigma Y. Note that this value may be changed during the call to the subroutine at label 09 (lines 321 through 331).
29. Before displaying the value for Sigma Z, lines 294 through 307 compute a portion of the X / Q formula shown below, and store it in register 00.

$$
\frac{\operatorname{EXP}\left[-0.5 *(Y / \Sigma y)^{2}\right]}{\pi * V * \Sigma y}
$$

7. Lines 308 through 311 display the value of Sigma Z computed earlier.
8. Lines 312 through 320 compute the remaining portion of the X / Q formula for the case where there is uniform mixing between the ground and the mixing layer. Full use is made of the calculator stack to make efficient use of the computational resources.
9. Lines 332 through 383 compute the remaining portion of the X / Q formula for conditions where plume reflection from the mixing layer may be important. Note that no tests for large negative arguments to the exponential funcíion are necessary because the calculator's exponential function automatically sets the result equal to zero.
J. Lines 384 through 396 display the current value for X / Q and allow a new value to be entered.
10. The label " X / Q " is assigned to the key labeled "J."
11. In USER mode, execution will stop at this location to display the computed X / Q value. When " R / S " is pressed, execution will jump to line 426, where the program branches to either the chemical or radioactive calculation.
K. Lines 397 through 409 display the current release duration and allow a new value to be entered.
12. The label "T" is assigned to the key labeled "E."
13. In USER mode, execution will jump to line 426, where the program branches to either the chemical or radioactive calculation.

8.3 CHOICE OF CHEMICAL OR RADIOLOGICAL RELEASE

A. Lines 410 through 422 display the current selection for type of source, and allow a switch to the alternate.

1. The label "Q" is assigned to the key labeled "G."
2. Flag 07 is set for chemical releases, and is cleared for radioactive releases.
B. Once the choice has been made, execution continues at line 423 where execution branches according whether or not the calculator is in USER mode.
3. In USER mode, the data input steps are skipped. For chemical releases the program goes to line 476 . For radioactive releases the program continues at line 575, recalling the total curies released and then jumping to the display of this total activity in line 595.
4. If not in USER mode, execution proceeds to line 430. For chemical releases the program continues at line 434, while for radioactive releases the program continues at line 511.
C. Note that if this section is entered in USER mode, and no change is made, the calculator remains in USER mode. However, if the source type is changed, then the calculator is taken out of USER mode to force subsequent data entry.

8.4 CHEMICAL CALCULATION

A. Lines 434 through 437 request entry of a choice for either a stack release or total release calculation. The current choice is displayed in the X register.

1. Execution will branch in line 437 according to the number present in the X register when execution continues.
2. If a number other than 1 or 2 has been entered, the program will jump to an incorrect location and all subsequent calculations will be invalid.
B. If a stack calculation was selected, then execution continues at line 438.
3. Lines 439 through 442 request input of the stack concentration.
4. Lines 443 through 453 display the current units assumed for the stack concentration, and allow a switch to the alternate units.
5. Lines 454 through 458 request input of the stack flow rate, in cubic feet per minute.
6. Lines 459 through 463 compute the chemical release rate.
7. Line 464 jumps to line 476 for the calculation and display of downwind concentration.
C. If total pounds released was selected, then execution continues at line 465.
8. Lines 465 through 469 request input of the total pounds of chemical released.
9. Lines 470 through 475 calculate the chemical release rate.
D. Lines 476 through 484 compute the downwind air concentration.
10. Flag 02 is set to match flag 08. Flag 02 determines the units that are displayed in the subroutine at label 09.
11. The subroutine at label 09 (lines 499 through 509) is used to display the concentration in the X register in the proper units. After pressing " $R / S^{\prime \prime}$ the program returns to the line following the line which called this subroutine.
E. Lines 485 through 488 request input of the formula weight of the chemical. This is needed to convert to the alternate units.
F. Lines 489 through 509 convert to the alternate units and display the result. Here the subroutine at label 09 is used as before, with the exception that the RTN statement causes program execution to stop. Pressing "R/S" again will cause the program to start over at line 1.

8.5 ESTIMATION OF TOTAL CURIES RELEASED

A. Lines 511 through 515 allow selection of the type of source information to use.

1. Execution will branch in line 515 according to the number present in the X register when execution continues.
2. If a number other than $1,2,3$, or 4 has been entered, the program will jump to an incorrect location and all subsequent calculations will be invalid.
B. Selections numbered 1 and 3 are computed first, because both begin with the entry of an air concentration.
3. Lines 516 through 521 request input of the air concentration (in $\mu \mathrm{Ci} / \mathrm{cc}$) or the activity on the sample filter (in dpm).
4. Lines 522 through 525 test whether the number entered was less than 1 . If so, it is assumed that an air concentration was entered, and execution continues on line 541 or line 545 depending on the type of source calculation.
5. Lines 526 through 529 request input of the volume of air sampled (in cubic feet).
6. Lines 530 through 539 compute and display the air concentration.
7. Line 540 jumps to either line 541 or line 545 depending on the type of source calculation.
C. Selection number 1, for input of exhaust stack data, requests input of the stack flow rate (in cfm) in lines 541 through 544.
8. Note that execution does not stop until line 563.
9. Lines 568 through 574 calculate the total activity released, which is displayed in lines 595 through 602.
D. Selection number 3, for input of downwind concentration data, requests input of the sample duration period in lines 545 through 548.
10. Note that execution does not stop until line 563.
11. Lines 578 through 588 calculate the total activity released, which is displayed in lines 595 through 602.
E. Selection number 2, for input of total activity released, requests input of total curies in lines 549 through 553. Execution then jumps to the downwind air concentration calculation beginning at line 603.
F. Selection number 4, for input of surface contamination data, requests input of $\mathrm{dpm} / \mathrm{cm}^{5}$ in lines 555 through 559.
12. Lines 560 through 563 request input of the ground deposition speed (in centimeters per second).
13. Lines 589 through 594 calculate the total activity released, which is displayed in lines 595 through 602.
G. Before bea'nning the nuclide selection, two important quantities are displayed.
14. Lines 595 through 602 display the total activity released.
15. Lines 603 through 613 compute and display the downwind air concentration.
16. Lines 614 and 615 skip the nuclide selection menus by jumping to line 686 if the calculator is in USER mode.

8.6 RADIONUCLIDE IDENTITY

A. Lines 616 through 625 allow selection of the nuclide menu to use.

1. Execution will branch in line 625 according to the number present in the Y register.
2. If a number other than $1,2,3$, or 4 has been entered, the program will jump to an incorrect location and all subsequent calculations will be invalid.
B. Selection number 4, to input new inhalation dose factors, requests the name and dose factor in lines 626 through 638. Execution then jumps to line 691 for the calculation of inhalation dose.
C. Selection number 1 enters the submenus at line 639. Menu choice number 2 enters its submenus at line 655 . Finally, selection number 3 enters its submenus at line 670.
D. Execution of all menu choices eventually branch to line 686 to begin the dose calculation. Note that in certain cases the organ limiting flag 00 is set.

8.7 DOSE CALCULATIONS

A. Lines 686 through 695 test for new dose factors before proceeding.
B. Lines 696 through 707 compute a branching address based on the menu choices entered previously. The formula used is the following:

$$
8 *(\text { REG 016 })+2 *(\text { REG 017 })+(\text { REG 018 })-11
$$

where
REG 016 is the top-level menu choice (1, 2, or 3)
REG 017 is the second-level menu choice (1, 2, 3, or 4)
REG 018 is the thirci-level menu choice (1, 2, or 3)
Table 36 summarizes the calculation of the dose factor address. Line 707 jumps to the label with the dose factors requested. For example, if the analyst has selected B1 (REG $016=2$), RU (REG $017=2$), and SOL (REG $018=2$), execution will jump to label $8 * 2+2 * 2+2-11=11$, which is on line 755.

Table 36. Calculation of Dose Factor Address.

C. Lines 708 through 796 insert the name, and the dose factors for the EDE and worst organ into the stack for later computation.

1. In certain cases, flag 00 is set to indicate that the organ dose will be limiting. For most nuclides, the organ flag was set (if needed) at the nuclide selection menus.
2. For $\mathrm{Kr}-85$ and $\mathrm{H}-3$, the organ dose factor equals the EDE and leads to the shortcut shown in lines 794 through 796.
D. Inhalation dose is computed and displayed in lines 797 through 819. The limiting dose (EDE or organ) is displayed first.
3. The limiting dose is stored in the X Register. $F l a g ~ 00$ is set (and visible in the display) if the organ dose is limiting.
4. The dose to the non-limiting organ can only be seen by interchanging the X and Y registers' with the " $X<>Y$ " key.
E. Lines 820 and 821 restore the typical configuration in which the calculator is operated (scientific with two digits after the decimal point and not in USER mode).

9．0 PROGRAM LISTING
 （sheet 1 of 6 ）

LEL「ED．	4．3 9TO－0．	34.30
END 297？gYTES	45 FS？ 27	$41+C 3 L$
Und Eot．SMtos	46 CTO 93	92 RCL 86
914．BL＂ED3＂	47 CBL＊HD＂	$47 \times 4=$
D2 CF 01	48 RCL 19	94 Fi？ 15
93 CF $\mathrm{P}^{\text {2 }}$	49－3 $=$	95．5i1） 18
94－EJ－REV ${ }^{\text {－}}$	59 MEA M	961.579
85 PROMPT	31819	97%
96 CF 27	52 Fs 22	98＊LBL 18
	SJ iso－hD－	19 FIK 2－
98 WF 2	54 FS？： 7	
99－METRIC ？＊	55 CTO 43	101 FS？ 35
	560LBL－ 4 －	$102^{\circ} \mathrm{F} \mathrm{MI}$ ？
11 －J．S．A．INITS：－	57 RCL 15	18J FC？ 85
12 PROMPT	$58 \cdot y=$	$104{ }^{\circ} \mathrm{F}$ K月 ？${ }^{\text {？}}$
13 FC？ 22	59 F6？${ }^{\text {¢ }}$ 5	185 CF 22
14 GTO 98	50 CITO 90	196 PROMPT
15 FCTC 95	61.447	187 FC？ 35
16 9F 95	621	188 CTO 明
17 GTD－ $1 \mathrm{~J}=$	6julch 明	1091.689
189LBL 月 $^{\text {c }}$	64 FIX 1	11．＊
19 FC ？ 95	55 ARCL ${ }^{\text {a }}$	111468 78
28 15T0 88	56 FS？ 35	112.1
$20^{-F T}{ }^{\circ}$	$67{ }^{\circ} \mathrm{F}$ APH ？${ }^{\text {a }}$	$115 \mathrm{Kl}=4$ ？
22.3048	58 FC？晾	114 Kく＞Y
23 ［1T］${ }^{\text {a }}$	69 ＂f M／S ？	115 STO 36
24＊LEL 89	70 CF 22	116 FS ？ 22
$25 \cdot \ldots$－	71 PROMPT	117 GTO＊－
261	72 FC？ 95	118 Fs？ 27
2748L OL	7367088	119 CTO 13
28 ASTO 9．3	74.447	129＋LBL－ 4 －
2935092	75＊	121 RCL 97
38 FS ？ 27	760LBL 98	$122-Y \mathrm{E}$－
32 GTO 93	79 950 15	123 KEQ 99
32ヶBL－ 0 －	73 59？ 22	124 STO 日7
33 CF 23	72 150－ 4 －	125 F5？ 22
$34 \cdot \mathrm{MET}=$－	38 Fs ？ 27	$1261500 \cdot 4$
35 RRCL 94	31 1510 3^{3}	$127 \mathrm{LC3L} \mathrm{BJ}$
36 －1 ？－	32＊LEL＂HT＂	123 \％ 86
37 AON	35 RCL 48	129 D M
38 PROMPT	$84-4=$	1．3t RCL 96
39 ADFF	35 KEQ A9	131！EJ
$48 \mathrm{FC}: 23$	36 ST0 M9	182
41.15078	37 FS？ 22	133 Sib ji
42 MSTO 24		134645%

9．0 PROGRAM LISTING
 （sheet 2 of 6 ）

135 30\％	181．3659	227 －
136． $\mathrm{k}=0$ ¢	182888	228 CHS
$137 \mathrm{3F} 8 \mathrm{t}$	1834．BL 12	229.1471
138 RCL 84	184 FS？C M1	238 GTO 88
139 ＂R－	185 GTO 80	231 c．8L 45
148 ASTD Y	1862	232 Fs？${ }^{\text {a }} 1$
	187.955	233 GT0 M ${ }^{\text {a }}$
142 iTO Al	188 RCL 11	23434
143 －8－	1391.898	2356.73
144 ASTO ${ }^{\text {P }}$	199 CTO \％ 1	236 RCL ${ }^{\text {d }}$
145 枵Y？	1910L8L 日 $^{\text {a }}$	357.385
146 GTO 72	1923.3	238 GT0 M1
$147^{\circ} \mathrm{C} \cdot$	193.1382	2394．BL 90
148 ASTD Y	194 RCL 91	2481.3
149% \％ 4 ？	1951.149	241.211
158 gTo as	196＋ 6 CL 81	242 RCL ） 1
151 －${ }^{\text {－}}$	197 ¢¢\％	243.673
152 ASTO Y	198 ＊	2440．BL 31
$153 \mathrm{~K}=4$ ？	$199+$	2459 Y\％
154 gTO 34	299.2751	246＊
$155-9$	29167088	$24 i^{\circ}$
156 ASTD Y	2924．BL Q3 $^{\text {a }}$	248 chs
$15 \% \quad x=4$ ？	293 cifat	249.1946
158 GT0 85	294.113	258 GTO 88
$1599^{\circ} \mathrm{G}$－	295 RCL it	2510 CBL 96
160 ASTO Y	$286.91:$	252 FS？ 31
$161 \quad X=Y$ ？	298 Y4K	253 GT0 99
162 3F96	$298 *$	25448.6
163 GT0 36	299.2889	25518.95
$164+18 L$	218970	256 RCL ${ }^{\text {O1 }}$
165 FSTC 91	$211+$ LBL 84	297.13
166 GT0 90	212 FS？C： $\mathrm{Al}^{\text {a }}$	258 GTO 81
$167-9.6$	213 GT0 90	2594LBL 80
$15824 \mathrm{E}-5$	21413	268.35.
169 RCL 91	2151.26	261.886
1792.1994	216 RCL 91	262 RCL 31
171 GTO 91	217.516	663.74
1720LBL 98	218 GT0 H1	2640．8L M1
1739.27	31904BL 9 明	265 Y4Y
$17466 \mathrm{E}-5$	2201.7	266 ＊
175 RCL M！	221．292	267 －
1751.341	222 RCL 81	268 CHS
177＊LBL 91	223.725	269 FC？96
178 Y4\％	2240LBL Al	279 GTO 90
179＊	225 1＋4	27！． 6
188.	226 ＊	272 ＊

9．0 PROGRAM LISTING （sheet 3 of 6）

273 18L 10
274 FCN： 16
275.8722

276 F5？ 16
277.8481

273＋LBL 88
279 RCL 11
288 ． 3931
381 14X
282 ＊
283 STO 88
284 KlこY
285 STO 11
286 RTL 80
287 －$\sum_{6} Y=$－
28810
$289 X \backslash Y$ ？
299 FIX 1
291 RDN
292 KEP 49
293 STD 48
294 RCL 17
295 KくンY
296 ；
297 442
298－2
299 ／
300 EtK
301 RCL
382 RCL 85
393 P！
304 ：
385 ＊
386 ／
307 STO 90
308 RCL 11
$389 \cdot 6=$
310 品明 19
311 STO 31
3121.2

313 RCL 19
$314 *$
315 K 34 ？
316 GTO 18
3171.253

318 LASTK

319 ／
32 ClO 94
$321+\angle B L$ 日 9
322 RCL 92
323 ．
324 FIX ！
325 ARCL ： 1
326 ARCL． 43
327 CF 22
328 PROMPT
323 RCL 22
339 ：
331 RTN
$332+1$ BL 88
333 LASTX
334 RCL 11
335
336.192

337 －？
373 ＊
379 ！
348 RCL 98
341 RCL 13
342
343
344 LASTY
345 RDN
$345=$
347 EtK
348 ！
$.349+$
35 LASTX
351 R
352
353 LASTK
354 K＜「
355 ＊
356 LASTX
357 RDN
358 ETY
359 ＋
368 K KY
361 CHS
362 ？
363 ＋
36484

365 ＊
366 ？
367 ＊
368 EtY
$369+$
379 RCL 188
37！RCL 11
372 ；
$373: 42$
374－2 ．．
375 ／
376 ETY
377 RCL 91
J78：
379
3890L．BL B4
381 RCL 89
382 ＊
383 STO 11

385 CF 22
386 SCI 2
387 RCL Al
388 ＊ $\mathrm{X} / Q=$＝
389 ARCL ：
390 ・ト？
391 PROMPT
392 STO 11
393 FS？22
394 CITB＂ 418 ＂
395 FS？ 27
3\％GTO 91
397 ＋LBL - T．
398 RCL 99
399 FIX 1
489 －DUR $=$－
491 ARCL X
492 ＂F HR ？＂
493 CF 22
404 PROMPT
49535089
466 FS？ 22
407 CTD－${ }^{4}$－
488 FS？ $2 ?$
499 ITO 11
418ヶLBL ${ }^{\circ} \mathrm{Q}$－

9．0 PROGRAM LISTING
 （sheet 4 of 6 ）

411 CF 22	457 PROMPT	583 FS？${ }^{\text {¢ }}$
412 －RAD＊	458 ST0 14	584 •－PPM $=$－
413 FS？97	459 RCL 13	585 FC ？ 82
414 ＂CHEM＂	468＊	506 － $\mathrm{HCL} / \mathrm{M} 3=*$
$415{ }^{\circ} \mathrm{F}$ SOURCE？＊	4612119	587 ARCL ：
416 PROMPT	4621	588 Prompt
417 FCO 22	46357012	599 RTN
418 GTO 88	464 GT0 38	
419 FC？C 97	465＋L．BL 92	51t＋L．8L 97
	466 RCL 15	512 ＇ST，CL，AR，GD＝1－4＊
421 CF 27	467 －TOT LB REL？＊	$5[3$ PROHFT
422 GTO－${ }^{4}$	468 Proupt	514 STO 18
4230LBL 98	469 ST0 15	SI5 GTO IND 10
424 FC？ 27	479 RCL 19	$516+\mathrm{LBL}$ M1
425 G70 90	$471 /$	$5174.8 L$ 日 3
$426 \times$ LBL 91	472126	519 RCL 11
427 F5？ 97	473：	519 －CONC OR DPPT？
428 GTD 98	474 CF 98	529 Pronipt
429 GTO 18	475 STO 12	521．STO 11
4389 LBL 明	4760LBL 98	522 ST0 13
431 RCL 19	477 CF 92	5231
432 FC ？ 97	478 FS？ 18	524 \％ 3 Y？
\＄33 6TO 97	$479 \mathrm{SF} \mathrm{M2}$	525 GTO IND 19
$434{ }^{\text {－ST，}}$ TOTAL $=1,20^{*}$	48 RCL 12	526 RCL 12
435 PROMPT	481 RCL M1	527 ＊ev．FT SAMPLiv＊＊
436 STO 10	482 ＊	528 PROLIPT
437 GTO IND 19	4835709	52985012
$438+$ LBL 91	484 YEQ 19	530 RCL 11
439 RCL 13	485 RCL 11	531 3（ $>^{4}$
448 STACX CONC？＊	486 FFORMULA HT？＊	532！
441 Prompt	487 Proint	533628787
442 STD 13	488 STO 11	5341
$443+$ LBL 6	48922.4	53595013
	4991／	53688 R
445 FS？ 88	491 RCL 90	537 ARCL 13
$446{ }^{\text {－PPM ？}}$	492 K＜3Y	$538{ }^{\circ}+\mathrm{ICI} / \mathrm{CC}^{\circ}$
447 cr 22	493 FS？ 88	539 Pronipt
448 PROMPT	494＊	549 GTO THD 19
449 FC？ 22	495 FC？ 88	5410LBL A！
459 GTO 90	4961	542 RCL 14
451 FC？C 98	497 FC？C 92	543 －${ }^{\text {STACK CFM }}$ ：－
452 SF 98	498 3F 82	544 GTO 时
453 GTO c	4994．BL M9	5454．BL M3
4540LBL 90	509 CLA	546 RCL 14
455 RCL 14	501 SCI ！	547 －HRS SAMPLED？＊
456 ＇STACK CFA？＊	582 －$x, Y^{\text {－}}$	548 GTO ${ }^{\text {a }}$

9．0 PROGRAM LISTING （sheet 5 of 6）

549＊LBL 92
558 RCL 15
551 ＂CNRIES REL？＊
552 PROMPT
553 STO 15
554 GTO 166
5554BL 14
556 RCL 13
557 •OPH／SQ．CM．？＊
558 PROMPT
559 STO 13
560 RCL 14
561 ＂DEP，SP？CM／S＂
562世 BL B8
563 PROMPT
564 STO 14
565 RCL 13
566 KKン品
567 GTO IND 10

569 ＊
579 RCL 99
571＊
5721.7

573 ：
574 CTO 85
575 \＆BL 10
576 PCL 15
577 15TO 15
5780 LBL 13
579 RCL 89
588 XDY ？
581 K＜＞Y
582 RDN
583 ＊
584 RCL 81
585．
5863680
587 ＊
588 CTO is
589% BL 14
599
591．RCL 91
592 ／
593222 E4
594
$595 \not 2$ BL 15
596 STO 15
597 SCI 1
598 SF 21
599 －REL：－
608 ARCL 15
601 ＊CI＂
682 PROMPT
$683+$ BL 166
684 RCL 11
685 ＊
696 RCL 99
b87．
6883688
609 ！
610 SCI 1
611 ＊ 欠，Y UCL／CC＝•
512 ARCL $\$$
613 PROMPT
614 FS？ 27
615 GTO 11
$616+\mathrm{LBL} \cdot{ }^{-1} 30^{\circ}$
617 RCL 16
$613{ }^{\circ} \mathrm{B}, 81,82$ ， $\mathrm{NE}=1-4$－
619 PROMPT
629 STO 16
6214
$522+$
623 RCL 17
024 CF 18
625 GTO IND Y
$626+1$ BL 18
627 －ISO NANE ？＂
628 CF 23
629 AOH
630 PROMPT
631 RAFF
632 FS？ 23
633 ASTO 17
634 RCL 18
635 •REMJICI ？＊
6.36 PROMPT

637 STO 18
638 GTO 88
6390LBL 15

641 PROMPT
6425 SO 17
643 RCL 18
644 SF 10
645 GTO IND Y
$646+$ LBL 11
647 － $\mathrm{HO} 3,02=1,2 \times$
648 GTO 48
649＋BL 12
650＋LBL 85
651 aTO 日！
652 \＆ BL 146．
653 － 50.1103 ，UNH $=1-3^{*}$
654 GTO 80
655ャLBL 6
656 ＇SR，RU，I，CS＝1－4＂
657 PROMPT
658 STO 17
659 RCL 18
660 CTO IND Y

662 SF 99
663 － $1129,1131=1,2=$
664 GTO 98
655＋BL B1
666 LBL 144
667 ITO 13
668～LBL P2
669 CTO 11
6794．BL 17
671 － $\mathrm{CO}, \mathrm{KR}, \mathrm{H}=1-3$ ？$=$
672 PROMPT
673 STO 17
674 RCL 18
675 GTO IND Y
676 \＆BL 81
677 －！ $\mathrm{HSOL}, \mathrm{SOL}=1,2^{*}$
678는 88
679 PROMPT
689 GTO 98
681 ©LBL． 82
682 －LBL ${ }^{3} 3$
6832
684＊LBL 99
685 STO 18
6864 BL 11

9．0 PROGRAM LISTING
 （sheet 6 of 6）

6874	$734.1503 *$	$781+$ ELL 17
688 RCL． 16	7357.58	732 SF 98
689 号 $\times 4$ ？	73656.3	783 －C0－60 SOL＊
698 ¢TO ¢0	737 GTO 94	784.933 L i
6910 BL 48	7384LBL 88	795.132
592 CLA	739 －JJNH＂	786 GTO 94
693 ARCL 17	7482.64	787 ＋LBL 19
694 RCL 18	74138.3	783 －KR－35－
695150184	742 GTO A4	$799146 \mathrm{E-7}$
6964．8L 80	$743+L$ BL M9	799150 \％
6973	744 －9R－49＂	791＋LBL 21
698 ＊	745 SF 明	792 －4－3＊＊
699 RCL 17	746.247	793 36 E－5
789 RCL 17	7472.63	7940181． 38
$791+$	748 GTO OL	795 EMTERT
$792+$	7494LBL 18	726 K＜${ }^{\text {\％}}$
793 RCL 13	750 SF 99	7974 LBL ${ }^{\text {d }}$
$794+$	751 －RU196 INS＊	798 SCI 1
79511	752.477	$79933 \mathrm{E4}$
796 －	7533.35	898 RCL IS
797 GTO IND ：	754 GTO 34	891＊
788＊LBL 38	755＋LBL 11	392 RCL 81
789 － 4030	756 －RU166 SOL＊	883
719674	757.8562	$384 *$
71112489	758.8666	385 \％ 2×4
712 gTO 94	759 GTO 14	896 LASTX
713 LBL 81	$760+$ LSL 12	887
714 －911 12＊	$751-5-129 \cdot$	898 FS？狚
715456	762.174	889 SKSY
7164998	7635.77	819＋${ }^{\text {－}}$
717 GTO 84	764 gin 14	814 ARCL 4
7180LBL M3	$765+18 \mathrm{BL} 13$	812 － HR^{-}
719 － 8 H－241＊	766 － $1-131^{\circ}$	815 PROMPT
728444	767.8329	814 BEEP
7218838	7681.88	815 －EDE．
722 GTO 94	769 GTO 94	316 FS？ 98
723 L．BL 95	779＋LBL 15	817 －DRGAN－
$724 \cdot n P-237 *$	771 － $65-137 *$	813 ＂－LIMITS＂
725548	772.8319	819 AYIEX
72612198	773.8326	929 3C1 2
727 GTD 34	774 GT0 94	321 if 27
7280LBL 16	$775+$ BL 16	322 END
729 －110＊	776 F\％ 88	
73127	777 －CO－68 INS＊	
7311968	773.219	
732 gTO 94	7791.28	
7330 ［3L 97	789 GTO 44	

10.0 REFERENCES

Eckerman, K. F., A. B. Wolbarst, and A. C. B. Richardson, September 1988, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Faccors for Inhalation, Submersion, and Ingestion, Federal Guidance Report No. 11, EPA-520/1-88-020, Environmental Protection Agency.

Houston, J. R., D. L. Strenge, and E. C. Watson, 1974, DACRIN: A Computer Program for Calculating Organ Dose from Acute or Chronic Radionuclide Inhalation, BNWL-B-389, Pacific Northwest Laboratory, Richland, Washington.

Napier, B. A., R. A. Peloquin, D. L. Strenge, and J. V. Ramsdell, December 1988, GENII - The Hanford Environmental Radiation Dosimetry Software System, PNL-6584, Pacific Northwest Laboratory, Richland, Washington.

Rittmann, P. D., August 1984, Seven Health Physics Calculator Programs for the HP-41CV, RHO-HS-ST-5P, Rockwell Hanford Operation, Richland, Washington.

Slade, D. H. (Ed.), 1968, Meteorology and Atomic Energy, USAEC Report TID-24190, NTIS.

Strenge, D. L., 1975, DACRIN - Modification of Gastrointestinal Tract Dose, BNWL-B-389 SUPP, Pacific Northwest Laboratory, Richland, Washington.

WHC, 1988, 100 Areas Environmental Releases for 1988, WHC-EP-0165-1, Westinghouse Hanford Company, Richland, Washington.

WHC, 1988, Effluent Discharges and Solid Waste Mangement Report for Calendar Year 1988: 200/600 Areas, WHC-EP-0141-1, Westinghouse Hanford Company, Richland, Washington.

WHC, 1988, Effluent Report for 300, 400, and 1100 Area Operations for Calendar Year 1988, WHC-EP-0267, Westinghouse Hanford Company, Richland, Washington.

APPENDIX A

Internal Letter

Date. May 18, 1984
" 7: mNeme organization. Internal Adorers)

- R. H. Sudmann
-

Rockwell International
72322-84-WU-243
FROM: iNane. Orgentration, imernol Address. Phone i)

- P. D. Rittmann
- 3-3542

Subject: HP-41CV Program for Rapid Assessment of Environmental Doses
An HP-41-CV program to enable users to quickly compute inhalation doses following a release of radioactive material to the air has been thoroughly tested and validated in the attached analysis. The program currently prompts for input data such as release height, wind speed, and stack flow rate in common English units (ft, mph, fm) as a convenience to users who normally use these units.

User instructions and appropriate data tables for stack parameters and distances will be distributed under a separate cover letter.

Parl Rittmarn

P. D. Rittmann

Radiological Engineering and Effluent Controls
West Area Unit
PDR/tjk
CC: D. E. Biol
H J. Goldberg
G. F. Booth
L. N. Sutton
D. D. Brake
J. A. Bates
W. A. Decker
D. A. Marsh
D. Paine
T. Chiao
D. B. Howe
${ }_{\text {Loft }}^{\text {Location } \frac{\text { RH Sud mann }}{222 U}}$
\qquad

I. Problem

Compare the HP-4ICV programs "ED" dose calculations with DACRIN results, and hand calculations where necessary.
II. Assumptions / Input
A. in composition:

Lung model: (ICRP 30) $\mathrm{Pu}\left(\mathrm{NO}_{3}\right)_{x}$ is class W
PuO_{2} is class Y

Isotope	\%obywt	Ci/foPu	Ci fin		
Pu-238	.093	15.9	.163		
$P_{u}-239$	84.0	52.1	.535		
$P_{u}-240$	13.0	29.5	.302		
$P_{u}-241$	2.88	2980	30.6		
P_{u-242}	.027	.00104	1.07×10^{-5}		
Total $\alpha:$					97.4 cílyg

B. U composition

170 enriched, meaning that the $4-235$ percentage is 100% by weight

$$
\begin{aligned}
& \frac{\text { isotope }}{U-238} \frac{\mathrm{ci}_{\mathrm{g}} U(1 \%)}{3.363 \times 10^{-7}} \frac{1 \mathrm{ci} \mathrm{\alpha} \text { trial : }}{.408 \mathrm{ci}} \\
& B \text { emitter } \rightarrow \text { Th-234 } \quad 3.363 \times 10^{-7} \quad .708 \mathrm{Ci} \\
& \begin{array}{lll}
\text { Th }-234 & 3.363 \times 10^{-7} & .708 \mathrm{Ci} \\
u-234 & 4.671 \times 10^{-7} & .566 \mathrm{Ci}
\end{array}<\frac{u .234}{U-234}=\frac{1.0}{.72}-\begin{array}{l}
\text { u.255 in } u \\
\text { satucd }
\end{array} \\
& \begin{array}{lll}
U-235 & 2.163 \times 10^{-8} & .0262 \mathrm{Ci} \\
\text { Total } \alpha: & 8.25 \times 10^{-7} \mathrm{C} / g \mathrm{u} & 1.000 \mathrm{Ci}
\end{array} \\
& \text { (} u-234 \text { is enriched by } \\
& \text { He same relative amount } \\
& \text { as (}-235 \text {) }
\end{aligned}
$$

Lung model (ICRP 30)
UNH is class $D \quad \mathrm{UO}_{3}$ is class $W \quad\left(U_{3} \mathrm{O}_{8}+\mathrm{UO}_{2}\right.$ are class $\left.Y\right)$
(NOTE: Unnatural has .489 Ci U.238, U.234 +T h-234, and .0226 a. U-235.)
\qquad
\qquad
subject \qquad
PAGE \qquad JOB No. $\frac{6-056-P D R-84}{1984}$ date \qquad
CHECKED BY

C. $5 \mathrm{~S} 90 / \mathrm{Y}-90$

Since stack concentrations would be given as gross beta $\mu C_{i} / c c$, and both $s r$ and Y emit a beta, one curie of $\frac{\text { dross beta as }}{5 r-90}$ is taken to be 0.5 Ci sr -90 and 0.5 Ci Y-90.
D. Other dose factors compositions

1. I Ci $\mathrm{C}_{s}-137$ is $1.0 \mathrm{Ci} \mathrm{Cs}_{s}-137$ and $0.946 \mathrm{Ci} \mathrm{Ba}-137 \mathrm{~m}$
2. $\left|G_{i} I-13\right|$
3. 4% Plutonium and 20% enriched Plutonium

The following compositions were assumed to indicate treads.

4. 180 day MFP

$\operatorname{Sr} 89$.0482
sr 40	.00934
$Y 90$.00934
$Y 91$.0781
Zr 95	.111
N645	.211
Ru 103	.0232
Rh 103m	.0232
Rul06	.0312
Ah 10́b	.0312

$\mathrm{Ag} 110 \mathrm{~m} \quad .000265$
$\operatorname{sn} 123 \quad .000492$
56125.0009

Te 125 m .000164
Te 127 m .00103
Te 127.00100
Te 129 m .000646
Te 129..000446
$C_{s} 134 \quad .00153$
Cs 137.0104
A-3

Ba 137w . 00986
(e141 .017)
Ce 144.173
Pr 144.173
$P_{m}, 47.0329$
$P_{m} 148 \mathrm{~m} .000653$
$\operatorname{Pm} 148 \quad .000038$
Eu 154.000110
Eu 155.000078
$\operatorname{sm} 151.000076$
\qquad LOCATION \qquad
\qquad
III. Results

Using DACRIN, and assuming I Mm AMAD particles and inputting the deposition fractions used in ICRP 30, Dose factors (rem/mciimhaled) were computed, and are listed on the following page. The dose factors selected for use in the HP-HICV piogram are given below:
Plutonium: $12 \% \mathrm{Pu}_{\mathrm{u}} 240$ was assumed
PuNO_{3} class $W: 53 \frac{\mathrm{rem}}{\mathrm{MG}}$ to lung list $y \mathrm{r}$ $2650 \mathrm{rem} / \mathrm{uli}$ to bone 50 yr
PuO_{2} is classy: $21.9 \mathrm{rem} / \mathrm{uli}$ to lung 1 st yn $970 \mathrm{rem} / \mathrm{mli}$ to bone 50 yr

Uranium: 190 enriched uranium was assumed
UNH is class D: $22.1 \mathrm{pom} / \mathrm{ml}$ l to hone istyr $38.6 \mathrm{rem} / \mathrm{ule}$ to bone 50 yr

$$
\begin{aligned}
& \mathrm{UO}_{3} \text { is class: } 45.5 \mathrm{rem} / \mathrm{uli} \text { to lung istyr } \\
& 45.8 \mathrm{vem} / \mathrm{uli} \text { to lung } 50 \mathrm{yr}^{2}
\end{aligned}
$$

strontian 1.15 rem ma to line is year
$13.3 \mathrm{rem} / \mathrm{ua}$ to bone 50 year
I-13) $1.19 \mathrm{rem} / \mathrm{cl}$ to thyroid both list $\mathrm{yr}^{2}+50 \mathrm{yr}$

MAP $.155 \mathrm{rem} / \mathrm{mli}$ to lung last year
.388 rem/uki to bane $5 .(\theta$ year
Dose Factors from DACRIN using I micron particles
rem/rici inhated

FOR \qquad
location \qquad
subject \qquad

Joe No. G-056-8DK<compat>-84 DATE May 5,1984 ar Paul Rittuann checkeday folly

The following tests were conducted, and are detailed below:

1. Check for correct ψ / Q calculation, including interpolation for $\sigma_{\theta} U$ or C_{y}, C_{z}, and sector averaging (durations of 8 to 24 kr)
2. For curie releases, that average ground concentration is correctly computed, and dose results agree with a separate $\triangle A C R I N$ calculation.
3. For stack releases, that ground concentrations are correct, and that dose results are also correct
Test Results:

\qquad location \qquad
subject \qquad

Interpolation is accomplished using values given on the next page. Values are not extrapolated beyond the bounds of the table, thus 10 min durations give the same $\sigma_{\theta} u$ as 1 minute releases, or $20 \mathrm{~m} / \mathrm{sec}$ winds have the same $\sigma_{0} u$ as $10 \mathrm{~m} / \mathrm{sec}$ winds.
test cases:
$1 \mathrm{~min}, 5 \mathrm{~m} / \mathrm{sec}$
$1 \mathrm{~min}, 2 \mathrm{~m} / \mathrm{sec}$
90 min ; $15 \mathrm{~m} / \mathrm{sec}$
$240 \mathrm{~mm}, \quad 7.0 \mathrm{~m} / \mathrm{sec}$
$300 \mathrm{~min} ; .5 \mathrm{~m} / \mathrm{\Sigma ec}$
$10 \mathrm{~mm}, .5 \mathrm{~m} / \mathrm{sec}$
$30 \mathrm{~min}, 4 \mathrm{~m} / \mathrm{sec}$
ground level $(<10 \mathrm{~m})$

$$
\begin{array}{ll}
\mathrm{N}, & .5 \mathrm{~m} / \mathrm{sec} \\
4 N, & 2.5 \mathrm{~m} / \mathrm{sec} \\
N, & 15 \mathrm{~m} / \mathrm{sec}
\end{array}
$$

elevated $(h>10 i n)$

un,	$.5 \mathrm{~m} / \mathrm{sec}$
N,	$2.5 \mathrm{~m} / \mathrm{sec}$
$u N$,	$15 \mathrm{~m} / \mathrm{sec}$

\rightarrow All results using "ED" agree with the above test cases.

Values for Wind Meander $\left(\sigma_{\theta} u\right)$

release duration	$1 \mathrm{~m} / \mathrm{sec}$	$\begin{aligned} & \text { d speeds } \\ & 2.5 \mathrm{~m} / \mathrm{sec} \end{aligned}$	$5 \mathrm{~m} / \mathrm{sec}$	$10 \mathrm{~m} / \mathrm{sec}$
10 min	. 024	. 10	. 20	. 30
60 min	. 04	. 15	. 25	. 35
120 min	. 06	. 25	. 35	. 45
240 min	. 10	. 40	. 50	. 45
480 min	. 18	. 60	. 70	.60 .90

Values for Sutton's Parameters, C_{y} and C_{z}

Release Level	Wind Speed	C_{y}, C_{z}	$\begin{gathered} n=.20 \\ \text { UNSTABLE } \end{gathered}$	$\begin{aligned} & n=.25 \\ & \text { NEUTRAL } \end{aligned}$
GROUND	$1 \mathrm{~m} / \mathrm{sec}$	Cy	. 35	. 21
		C_{2}	. 35	. 17
	$5 \mathrm{~m} / \mathrm{sec}$	cy	. 30	. 15
		C_{z}	. 30	. 14
	$10 \mathrm{~m} / \mathrm{sec}$	Cy	. 28	. 14
		c_{z}	. 28	. 13
ELevated	$1 \mathrm{~m} / \mathrm{sec}$	c_{y}, c_{z}	. 30	. 15
	$5 \mathrm{~m} / \mathrm{sec}$	C_{y}, C_{z}	. 26	. 12
	$10 \mathrm{~m} / \mathrm{sec}$	C_{y}, c_{z}	. 24	. 11

FOR \qquad LOCATION \qquad subject \qquad
sector Averaged Ψ / Q values are used if the release duration exceeds 8 hours. These are computed using the formula

$$
\Psi / Q=\frac{8 \sqrt{\frac{2}{\pi}}}{\pi u \sigma_{z} x} \cdot e^{-\left(\frac{h^{2}}{2 \sigma_{z}^{2}}\right)} \quad \text { (sector averaged, } z 2.5^{\circ} \text { sector) }
$$

in place of the usual formula for centerline φ / Q :

$$
\psi / Q=\left(\pi u \sigma_{z} \sigma_{y}\right)^{-1} e^{-\left(\frac{h^{2}}{2 \sigma_{z}^{2}}\right)} \quad \text { (centerline, } y=0 \text {) }
$$

a simple method to check "ED" sector averaging is to use the " ΣY " it displays in the course of listing the input.

$$
(\psi / Q)_{S A}=(\psi / Q)_{\text {center }}\left(\frac{\sigma_{y}}{x} 8 \sqrt{\frac{\pi}{\pi}}\right)
$$

one sample is sufficient and is printed below:

ET..$=5$. 6.6 MIH H $\Psi / 0=9.7 E-5$
MET $=\mathrm{H}$

$$
\begin{aligned}
11 & =1.1 \mathrm{MPH} \\
& =109 \mathrm{MI}
\end{aligned}
$$

$$
x=1.00 \mathrm{ml}
$$

$$
D U P .=1 . Q H F
$$

$$
H=10.0 \mathrm{FT}
$$

$$
D Y=0.210
$$

$$
C z=0.170
$$

$$
Z Y=311 . F T
$$

$$
22=25 . F T
$$

H $4,0=3.3 E-5$
MET $=N$
$!=1.1 \mathrm{MFH}$
$\mathrm{X}=1.09 \mathrm{MI}$
IUlUS $=12.0 \mathrm{HR}$
$H=19.0 \mathrm{FT}$
$C Z=9.17 日$
$Z Y=827 . F T$
$Z 2=252 . F T$
notice that $\frac{3.3 \times 10^{-5} \mathrm{sec} / \mathrm{m}^{3}}{8.7 \times 10^{-5} \mathrm{sec} / \mathrm{m}^{3}}=.379$
while $\left(\frac{311 \mathrm{ft}}{5280 \mathrm{ft}}\right) 8 \sqrt{\frac{2}{\pi}}=.376$
which is close enough
location
SUB.JECT
\qquad

12．Dose result comparison：（DACRIN results are written in）

E．T．A．$=5.8 \mathrm{HIN}$
YS $X / Q=5.7 E-3$
5．75－9j＊＊＊
GRD UCI／CC：9．6E－6
PUNOE
LUNG $1 Y=1.1 E 5 \quad M R \rightarrow 106 \mathrm{rem}$
BONE $58 Y=5$ ． $3 E 6$ MR $\sim 5330 \mathrm{rem}$

$$
\begin{array}{ll}
1.87+85 & * * * \\
5.33+96 & * * *
\end{array}
$$

MET $=V S$
$U=2.2 \mathrm{MPH}$
$X=0.22 \mathrm{MI}$
DUR．$=0.17$ HR
$H=3.3 \mathrm{FT}$
SIGU $=0.824$
$\Sigma Y=27.5 \mathrm{FT}$
$\Sigma Z=21.4 \mathrm{FT}$
CI REL：1．8EO
TYPE：PUHOS

E．T．A．$=2.5 \mathrm{MIH}$
YS $X / Q=2.8 E-4$
2．85－84＊＊＊
GRD UCI／CC：7．9E－8
UNH
BONE $1 Y=2.2 E 3$ MR $\rightarrow 2.20 \mathrm{rem}$
BONE $58 Y=3.8 E 3$ MR $\rightarrow 3,85 \mathrm{rem}$

$2.29+93$	＊＊＊
$3.85+83$	

$M E T=V S$
$U=11.2 \mathrm{HPH}$
$X=0.47 \mathrm{MI}$
DUR．$=1.6 \mathrm{HR}$
$H=3.3 \mathrm{FT}$
SICU $=0.250$
$\Sigma Y=118 . \mathrm{FT}$
$\Sigma Z=20.2 \mathrm{FT}$
CI REL：1，AEO TYPE：IJHH
$E_{1} T . A_{1}=2.5 \mathrm{MIN}$
$N X / Q=8.0 E-6$

> 8.84-86

GRD UCI／CC：2．2E－9
SFF9日
BONE $\mid Y=3.2 E \theta$ ．$M R \rightarrow 3,23 \mathrm{mrem}$
BONE $58 Y=3.7 E 1$ MR $\rightarrow 37.5 \mathrm{mrem}$ ：
$3.23+89$
$3.74+01$$\quad$＊＊＊

MET $=N$
$U=11.2 \mathrm{MPH}$
$X=0.47 \mathrm{MI}$
DUR．$=1.0 \mathrm{HR}$
$H=197 . \mathrm{FT}$
$C Y=8.128$
$C Z=0.120$
$\Sigma Y=91.2 \mathrm{FT}$
$E Z=91.2 \mathrm{FT}$
CI REL：1．0E日
TYPE：SF9G

Assumed breathing rate is $350 \mathrm{cc} / \mathrm{sec}$ ．

E．T．$A_{0}=12.5 \mathrm{MIH}$
YS $X / A=1.5 E-3$

$$
1.47-83 \quad * * *
$$

GRD UCI／CC：4．1E－7
PUOE
LUNG $1 Y=1.1 E 5$ HR $\rightarrow 113 \mathrm{rem}$
BOHE $58 Y=5.0 E 5 \mathrm{MR} \rightarrow 500 \mathrm{rem}$

$1.13+85$	＊＊＊
$5.88+85$	＊＊＊

MET＝VS
$\mathrm{U}=2.2 \mathrm{MPH}$
$y_{1}=0.47 \mathrm{Ml}$
DUR．$=1.9 H R$
$H=3.3 \mathrm{FT}$
SIGIL $=9.948$
$\Sigma Y=97 . \mathrm{FT}$
$\Sigma Z=23.8 \mathrm{FT}$
CI REL：1，8EO
TYPE：PUDZ

E．T．A．$=13.3 \mathrm{MIM}$
HS $X / Q=6.9 E-8$
GRD UCI／CC：2．4E－12
UOS
LUNG $\mid Y=1.1 E Q M R \rightarrow 1.09 \mathrm{mlcm}$
LUNG $58 Y=1$ ． 1 EQ $M R \rightarrow 1.10 \mathrm{mrem}$

$$
\begin{array}{ll}
1.10+9 B & \text { ** } \\
1.11+9 B & \text { *** }
\end{array}
$$

MET $=$ MS
$U=11.2 \mathrm{MPH}$
$X=2.5 \mathrm{Ml}$
DUR．$=8.0 \mathrm{HR}$
$H=197 . \mathrm{FT}$
SIGU $=0.700$
$\Sigma Y=1,884 . \mathrm{FT}$
$\Sigma Z=62.3 \mathrm{FT}$
CI REL：1．8EB
TYPE：UOZ

E．T．A．$=5.8$ MIN
UH $X / Q=6.5 E-5$
6．56－95＊＊＊
GRD UCI／CC：1．8E－8
I131
THYROID $\mid Y=2.7 E 1$ MP $\rightarrow 27.0_{\text {mREM }}$
THYROID 5 BY $=2.7 E .1 \quad$ MR $\rightarrow 27.0 \mathrm{mrem}$ $2.71+81$
＊袆
MET＝UN
$U=2.2 \mathrm{MPH}$
$X=9.22 \mathrm{MI}$
$D U R .=1 . A H R$
$H=197 . \mathrm{FT}$
$C Y=0.380$
$\mathrm{CZ}=0.380$
$\Sigma Y=136 . \mathrm{FT}$
$\Sigma Z=136 . \mathrm{FT}$
CI REI：1．OEO
TYPE：I131．
\qquad LOCATION \qquad SUBJECT \qquad
Entering release type 0 for manual dose factor entry，and using the dose factors for $c_{s}-137$ given on page 4 ，（whole body is

$$
E_{1} T_{1} A_{1}=5,8 \mathrm{MIN}
$$ critical organ）

$M E T=M$
$U=2.2 \mathrm{MPH}$
$\mathrm{X}=0.22 \mathrm{MI}$
DUR．$=1.8$ HR
$\mathrm{H}=3.3 \mathrm{FT}$
$C Y=0.210$
$C Z=9.170$
$\Sigma Y=82.0 \mathrm{FT}$
$\Sigma Z=66.4 \mathrm{FT}$
CI REL：1．0EG
TYPE：CS137
BF $1 Y=4, B E-2$
DP $50 Y=4.5 E-2$
Finally，for the $m \in P$ choice（180d 12%－reactor fuel）
E．T．A．$=80.8 \mathrm{MIH}$
MS $X / Q=5.9 E-7$

5．91－97
GRO UCI／CC：2．1E－11
MF P
LING $1 \quad Y=3.2 E-2$ MR

$$
3.21-62
$$

$$
8.93-82
$$

MET $=M S$
$U=11.2 \mathrm{MPH}$
$x=14.9 \mathrm{MI}$
DUR．$=8.8 \mathrm{HR}$
$H=197 . \mathrm{FT}$
SITU＝ 9.7 日㫜
$\Sigma Y=2,953 . \mathrm{FT}$
$E Z=134 . \mathrm{FT}$
CI REL：1．8EO
TYPE：MFR

$$
\begin{aligned}
& \text { *MF* } \\
& 1 Y=3.2 E-2 \quad 4 R \\
& 5 \text { SY=8. } \mathrm{BE}-2 \text { MR } \\
& \text { 3.21-n2 } \\
& \text { 8. } 83 \text { - } 02 \\
& \text { MET = MS } \\
& U=11.2 \mathrm{MPH} \\
& X=14.9 \mathrm{MI} \\
& \text { DUR. }=8.8 \text { HR } \\
& H=197 . \mathrm{FT} \\
& \text { SIG }=0.709 \\
& \Sigma Y=2,953 . \mathrm{FT} \\
& \Sigma Z=134 . \mathrm{FT} \\
& \text { CI REL:1.AE日 } \\
& \text { TYPE: *FP* } \\
& \text { Db } 1 Y=1.6 \mathrm{E}-1 \\
& \text { aF } 50 Y=3.9 E-1
\end{aligned}
$$

A－11
\qquad LOCATION
SUBJECT \qquad

3. To check the dose calculations for stack releases and to verify ground concentrations for both types, the following. formulas are used:
$\binom{$ Cunt }{ reese } ord conc $=\left(\frac{x}{Q}\right)\left(\frac{Q}{D u r_{1}}\right)=\left(\frac{\text { sect }}{m^{\prime}}\right)\left(\frac{\text { Cireleated }}{\text { no. hours }}\right)$
Intel. Dose $=(X / Q)(\beta R)(D . F).(Q)=\left(\frac{\sec }{\mathrm{m}^{3}}\right)\left(\frac{\mathrm{cm}^{3}}{\mathrm{sec}}\right)\left(\frac{\text { rem }}{\mu C}\right)\left(C_{i}\right.$ reseed $)$
stack reaves

$$
\begin{aligned}
& \text { ard Cone }=(X / Q)(s T K C F M)(s T K \text { conc) })=\left(\frac{s t}{\frac{s m^{3}}{m^{3}}}\right)\left(\frac{f t^{3}}{\min }\right)\left(\frac{\mu C i}{c C}\right) \\
& \text { Inhaul. Dose }=(X / Q)(B, R)\left(D, F_{1}\right)(\text { SK GFWM })(\text { STK Conk })(\text { Dow. })= \\
& =\left(\frac{\mathrm{sc}}{\mathrm{~min}}\right)\left(\frac{c \mathrm{c}}{\frac{c}{2 x}}\right)\left(\frac{\mathrm{rem}}{\mu C_{i}}\right)\left(\frac{f t^{3}}{\mathrm{~min}}\right)\left(\frac{\mu C_{i}}{\mathrm{cc}}\right)(\mathrm{hww})
\end{aligned}
$$

To verify the lump release grocind conc., consider the first case on page 9, with $X / Q=5.75 \times 10^{-3} \mathrm{set} / \mathrm{mi}^{3}$ ald Dur $=10 \mathrm{~min}$ and 1.0 a released,

The inhalation doses were verified using $D A C R I N$.

Fin \qquad location. \qquad
subject \qquad
To verify the stack velecse results, the following test case was chosen since it releases one curie of $\sin 90$: 1 hour release of $10^{-5} \mathrm{ci} / \mathrm{cc}$ at a stack flow rate of $58,858 \mathrm{cmm}$.

$$
1\left(1 \quad\left(10^{-5} \frac{\mu c^{c}}{c c}\right)\left(58,758 \frac{f t^{3}}{\mathrm{~min}^{2}}\right)\left(\frac{60 \mathrm{~min}}{h^{2}}\right)\left(\frac{28,316 \mathrm{cc}}{f t^{3}}\right)\left(\frac{10^{-6} c^{\prime}}{u c^{i}}\right)=1.000 c_{i}\right.
$$

$$
\text { E.T. } A_{0}=2.5 \mathrm{MIN}
$$

$$
\begin{array}{ll}
\\
X A=8,0 E-6
\end{array}
$$

GED UCI/CC:2.2E-9
BONE 1 Y $=3.2 E R$ MR
BONE 5AY=3.7E1 MR
3 these results are the same use the doses computed on page 9 for the sr 90 case

IV Conclusion
The program computes doses from airborne releases in excellent agreement with $D A C R I N$, an: appropriate hand calculations validate the other numeric results.

$$
\begin{aligned}
& \text { MET }=N \\
& \mathrm{U}=11.2 \mathrm{MPH} \\
& x=0.47 \mathrm{MI} \\
& \text { DUR. }=1.8 \mathrm{HR} \\
& H=197 . \mathrm{FT} \\
& \mathrm{CY}=\mathrm{B} .128 \\
& \mathrm{CZ}=8.128 \\
& E Y=91.2 \mathrm{FT} \\
& \text { EZ }=91.2 \mathrm{FT} \\
& \text { STr CFR=5.89E4 } \\
& \text { STK UCI/CC: :1. } 8 \text { E-5 } \\
& \text { TYPE: SR9G }
\end{aligned}
$$

161570187	216 ARCL X	271 GT0 日 0
162 ASTO 11	217 AYIEY	$272+\mathrm{LBL} \mathrm{Qa}^{2}$
163 RCL 93	$\frac{218 * L B L ~ G ~}{\text { c }}$	273 -UNH, U03 $=1,2$ -
164 RCL 96	219 CF 27	274 PROHPT
165/	220 RCL 15	275×42
166×12	$221{ }^{\text {PUU, IJ, PETA }}=1,2,3^{*}$	276 ST0 16
167 CHS comput	222 PROMPT	277 GTO IND 16
$168 \mathrm{E} \mathrm{\uparrow X}$ (167 comput	223 ST0 15	2784LEL 91
169 SRRT $\} \psi / Q$	2224×7 ?	27922.1
178 RCL 96	225 GTO 08	289 SF 08 U class D
171/	226 CF 23	281 -IINH"
172 RCL 18	227 - NAME ?*	28238.6
173 /	228 AON	263 GT0 89
174 PI	229 PRDMPT	$284+$ LBL 94
175 \%	238 AOFF	28545.5 U class W
176 RCL 98	231 FS? 23	286 - 003 " u class W
177)	232 ASTO 17	28745.8
178 STO 12	233 -1"	288 GT0 98
179 SCl 1	234 RCL 16	
180 + $\times 10=*$	235 XEP 01	$298 \cdot \mathrm{SR}, \mathrm{I}, \mathrm{MFP}=1, \mathrm{c},{ }^{\circ}$
181 APCL X	236 STO 16	291 +3"
182 AYIEN	237 -58"	292 PROMPT
183 CF 99	238 RCL 18	293×12
184 XED ${ }^{\text {a }}$?	239 XEP 91	294 STO 16
185+LBL F	248 STO 18	295 GTO INT 16
186 CF 27	241 RCL 16	$29.9+$ LBL 81
187 Rill 13	242 X ¢ >4	$2971.15-5 v-90+5-90$
188 -STACK CFF ? ${ }^{\text {c }}$	243 SF ${ }^{\text {P2 }}$	$298 \mathrm{SF} 988 \mathrm{~Sv}-90+\mathrm{F}$
189 PROMPT	244 GT0 16	299 -SR99* class D
199 STO 13	$\frac{245+L B L B 1}{246+18}$	
$191 x=0$?	$246{ }^{\text {+ }}$ YR R/UCI? ${ }^{\text {a }}$	39165080
192 GTO 98	247 PRPCMPT	$3{ }^{392+L B L ~ 94}$
193 RCL 14	243 RTN	39.31 .19
194 -STK COHC ?-	$\frac{2494 \mathrm{LBL} \text { B6 }}{250 \mathrm{CF}}$	304 ENTERA I-131
195 Pronpt	250 CF 85	3895 SF 05 -
196 ST0 14	251 CF 98	396 K (>Y
197 RCL 13	252 RCL 16	$397-1131{ }^{-1}$
	253 SRRT	3899 GTO A9
$\left.1992119=\frac{283 / \mathrm{ccc}}{\mathrm{ft}^{2}} \cdot \frac{1 \mathrm{crus}}{608 \mathrm{c}} \cdot \frac{18}{10^{\circ} \mathrm{cc}}\right]$	254 GTO IMD 15	
$298 \mathrm{GTO} \mathrm{AI}{ }^{+}$		310.155
2 CBLPRLAB		
202 RCLL 14	257 PPRMPT	312 -MFP" solurle
203 -CI REL ?*	$258 \times 1+2$	313.388
294 PPRHPT	259 STO 16	3144LEL MII
285 STO 14	268 SF 91	315 ASTO 17
296 RCL 94	261 GTO IHD 16	316 FC ? 55
297 360日	$\frac{262+L B L Q 1}{2635}$	317 CF 21
$288 *$	26353 lyr 12\% Pu	$\frac{318+L B L 16}{316}$
2999+BL ${ }^{\text {P1 }}$		319 SF 12
2191	2652650 50yr rem/uci inheled	320 CLA
211 SF 21	26667080	321 ARCL 17
212 RCL 12	267+LBL 14	322 AYIEH
213 *	$268219{ }^{2} 12 \% \mathrm{Pu}$	323 CF 12
214 ScI 1	269 -P1002* Class Y	324 SCI 1
		305 nctic

492 RCL 15	
$493 \times \pm 0 ?$	
494 GTO 98	
$495 \cdot$ DF $1 . Y={ }^{\prime}$	
496 ARCL 16	
497 AYIEN	
498 -DF 5鸟="	
499 ARCL 18	
589 AVIEH	
5 51+LBL 89	
502 ADY	
503 ADV	
594 FC? 27	
595 RTN	
5064LBL H	
597 ¢TO H	
508*LBL I	
50% GTO I	
5194 LBL - 03	
5113.28	
512 *	
515 FIX	
51495	
515 Y, ¢Y?	
516 FIX 1	
517 RDN	
5182	
$519 \mathrm{X} \backslash Y$?	
520 Fli 2	
521 RDN	
522 ARCL	
52.3 of FT*	
524 AUIEH	
525 RTN	
5264LBL 13	computes
5275	$\sigma_{\theta} u$
528 STO 10	
529 CF 92	
5391	
531 RCL 90	
532 X < $=Y$?	
533 ¢T0 90	
5.34 DSE 18	assighs number
5352.5	corresponding
536 X $1>Y$	corresponding
$537 \mathrm{X<}=1$?	to the wind
538 GT0 91	speed
533 DSE 10	speed
5405	
$541 \times 1 \times 3$	
$542 \mathrm{XL}=Y$?	
543 GTO 81	
544 DSE 10	
54518	
546	

APPENDIX B

Internal Letter

Date. $7 / 20 / 84$
TO: iName. Oroonicotion, Internal Adoressi)

Rockwell International
No . 72322-84-WU-320

FROM: iname. Oigenization, iniernal Adaress: Phonal

- P. D. Rittmann
. P. D. Rittman

Sublect: . Validation of "ED" Re"vision 1
The HP-4ICV calculator program for rapid assessment of environmental doses from inhalation of airborne releases has been revised and upgraded in the following areas:

1. Isotopic choices have been added, increasing the number of. possibilities from 7 to 19.
2. Estimated time arrival (ETA) is given in units of minutes if ETA is less than 99 minutes. Otherwise it is given in units of hours.

The attached comparison of current results with previous results simply validates the calculator results by their agreement with DACRIN and SUBDOSA (for $\mathrm{Kr}-85$).

If you have any questions, coritact me on 3-3542.


```
P. D. Rittmann Radiological Engineering and Effluent Controls
```

PDR/tjk

```
cc: J. A. Bates
    G. F. Boothe
    D. D. Brekke
    T. Chiao
    W. A. Decker
    H. J. Goldberg
    D. B. Howe
    D. A. Marsh
    D. Paine
    R. H. Sudmann
    L. N. Sutton
```

I Problem
Ensure the "ED"-Rev1, emergency dose calculation program for the $H P-Y / C Y$ performs correctly.
II. Method

Rev 1 contains additional dose factors, which are summarized on the next page. Arrows denote those dose factors used by "ED".
Dose results from Rev I were compared with dose results computed by DACRIN, and in the case of Kr -85, SUBDOSA. These results are summarized in Internal Letter. 72322-84-wU-243, May 18, 1984, PD Rittmann to RH Sudmann, "HP=41CV Program for Rapid Assessment of Environmental Doses" in which the original version of "ED" was validated.

Kr-85 dose factors were obtained from a SUBDOSA run by dividing the $7 \mathrm{mg} / \mathrm{cm}^{2}$ beta dose and the 5 cm depth gamma dose by the ψ / Q used.
beta: $.0463 \frac{\mathrm{rem} \mathrm{m}^{3}}{\mathrm{c}_{i}-\sec } \quad$ gamma: $50 \times 10^{-4} \frac{\mathrm{rem} \mathrm{m}^{3}}{\mathrm{c}_{i}-\mathrm{sec}^{\prime}}$,
The distance chosen for the gamma dose factor was great enough that it would appioximinit a serininfinite cloud: $\bar{B}-2$
Isotopes / mixture

\qquad
SUBJECT \qquad

Even though kr-85 is an external hazard; to simplify program ex ecution; an effective inhalation dose factor was created by dividing the above dose factors by $350 \mathrm{cc} / \mathrm{sec}$. skin dose is the sum of the beta and gamma dose factors. (The ohm depth gamma. dose is less than >70 higher than the 5 cm gamma dose; thus this approximation is valid).

SKin: $1.34 \times 10^{-4} \frac{\mathrm{rem}}{\mu C_{i}}$ other organs: $1.43 E-6 \frac{\mathrm{rem}}{\mu \mathrm{C}_{i}}$

The doses computed by "ED" are the following:
Is year: critical organ dose, where weighting factors are used to determine critical organ.. total body: bone: otherorgan $=5: 30: 15$

50 year: maximum organ dose. since 50 year committmentis are normally used to evaluate risk to the public.

Comparisons are outlined on the next three pages.

The dose results highlighted by the right bracket

E．T．A．$=5.8 \mathrm{MIN}$
YS $\quad W / Q=5.7 E-3$ GRD UCI／CC：9．6E－6 12シルロ3 $\left.\begin{array}{l}\text { LUNG } 1 Y=1.1 E 5 \text { MR } \\ \text { BONE } 50 Y=5.3 E 6 \text { MR }\end{array}\right\}$
$U=2.2 \cdot \mathrm{MPH}$
$X=0.22 \mathrm{MI}$
DUR $=0.17$ ．HR
$H=3.3 \mathrm{FT}$
SISU $=0.824$
$\Sigma Y=27.5 \mathrm{FT}$
$\Sigma 2=21.4 \mathrm{FT}$
CI REL：1．QaED
TY＇PE： 12% \％1O3

E HOZ
LIIMG $\mid Y=1$. DE5 MR
BONE $5 B^{\prime}=3.7 E G M F$

AM241
LIING $\mid Y=1.1 E 5$ MF
BONE 5AY＝3．3EG MR
$E_{1} T . A_{1}=2.5 \mathrm{MIN}$
YS $\mathrm{K} / \mathrm{K}_{\mathrm{O}}=2.8 \mathrm{E}-4$
GRD IICI／CC：7．9E－8
IINH
$\left.\begin{array}{l}\text { BDNE } 1 \quad Y=2.2 E S \text { MR } \\ \text { BONE } 5 g Y=3.8 E J\end{array}\right\}$
MET $=\psi S$
$U=11.2 \mathrm{MPH}$
$X=0.47 \mathrm{MI}$
DUR．$=1.9 \mathrm{HR}$
$H=3.3 \mathrm{FT}$
SIGIL＝ 0.258
$\Sigma Y=118 \mathrm{FT}$
$\Sigma 2=29.2 \mathrm{FT}$
Cl REL：1． ABEO
TYPE：IJHH

E．T．$A_{1}=2.5 \mathrm{MIN}$
$N X / Q=8,8 E-6$
GRD UCI／CC：2．2E－3
SR－YG0
$\left.\begin{array}{l}\text { BONE } 1 \quad Y=3.2 E 9 \text { MR } \\ \text { BONE } 5 A Y=3.7 E 1\end{array}\right]$

$$
\begin{aligned}
& \text { MET }=\mathrm{H} \\
& U=11.2 \mathrm{MPH} \\
& X=0.47 \mathrm{MI} \\
& \text { DUR. }=1.8 \mathrm{HR} \\
& H=197 \mathrm{FT} \\
& C Y=0.128 \\
& C Z=0.120 \\
& \Sigma Y=91.2 \mathrm{FT} \\
& \Sigma Z=31.2 \mathrm{FT} \\
& \text { CI REL: 1. ABE日 } \\
& \text { TYPE: SRど } 9 \text { O }
\end{aligned}
$$

E．T．$A_{0}=12.5 \mathrm{MIN}$
YS $3 / 8=1.5 E-3$
GKD UCI／CC：4．1E－7
12\％02
$\left.\begin{array}{lll}\text { LING } 1 & Y=1.1 E 5 & M R \\ B D N E ~ & S Y & =5.9 E 5\end{array}\right\}$
MET $=V^{\prime} S$
$U=2.2 \mathrm{MFH}$
$X=0.47 \mathrm{MI}$
DIJR $=1.8 \mathrm{HR}$
$H=3.3 \mathrm{FT}$
$S I C I J=0.049$
$\Sigma T=97 \mathrm{FT}$
$Z 2=2 ? .8 \mathrm{FT}$
CI REL：1．AREG
TYPE： 12% ロ2
1.$)$

6ッ ロご
LING $\mid Y=1$ ，IES MR
BONE 58Y $=3.6 E 5$ MR
$E_{1} T . A_{1}=13.3 \mathrm{MIN}$
MS $X / Q=6.9 E-8$
GRD UCI／CC：2．4E－12
1103

MET $=M E$
$U=11.2 \mathrm{MPH}$
$x=2.5 \mathrm{MI}$
DUR．$=8.4 \mathrm{HR}$
$H=197 \mathrm{FT}$
SIGII $=0.790$
$E Y=1084 \mathrm{FT}$
$Z Z=62.3 \mathrm{FT}$
CI PEL：1．g日E日
TYPE：リDコ

1308
LIJNS $1 \quad Y=4$ ． $4 E O$ MR
LIJNG $5 g^{\prime}=1.1 E 1$ AR

E．T．A．$=5.8 \mathrm{MIN}$
UN $X / G=6.5 E-5$
GRD UCI／CC：1．8E－8
I 131
$\left.\begin{array}{lll}\text { THYRKOD } & Y=2.7 E 1 & M R \\ \text { THYROD } & 5 B Y=2.7 E 1 & M R\end{array}\right\}$
MET $=\mathrm{LIH}$

$$
I=2.2 \mathrm{MPH}
$$

$$
\check{n}=0.22 \mathrm{MI}
$$

DUR．$=1.8 H R$

$$
H=197 \mathrm{FT}
$$

$$
C Y=0.3 B A
$$

$C Z=0.380$
$E Y=136 \mathrm{FT}$
$\Sigma 2=136 \mathrm{FT}$
CI REL：1．BRER
TYPE：I131

I129 THYRDD $1 \quad Y=9.5 E 1$ MR THYROD 5RY＝1．日E 2 MR

These results agree with the results on page 10 of the referenced analysis.

ET. A. $=5.8 \mathrm{MIN}$
$N X / Q=6.3 E-4$
ORD UCI/CC:1.7E-7
CS 137
BODY ! $Y=8.8 E \cap$ MR
LIVER $59 Y=1.4 E 1$ MR
$M E T=N$
$U=2.2 \mathrm{MPH}$
$X=0.22 \mathrm{MI}$
DUR. $=1.9 \mathrm{HR}$
$H=3.3 \mathrm{FT}$
$C Y=0.210$
$C Z=0.170$
$\Sigma Y=82.0 \mathrm{FT}$
$\Sigma Z=66.4 \mathrm{FT}$
CI REL: 1. Q日E0
TYFE: CS 137

The difference in dose factors
for MFP-soluble follows from a some what different choice of inhalation (lung clearance) categories for the isotopes.

In this analysis, IC RP 30 choices for soluble $\&$ insoluble are assigned to each isotope independent of the others.

ERT. A. $=80.9 \mathrm{MIH}$ MS $X / Q=5,9 E-7$
GRO UCI/CC:2.1E-11
FR-SDL
LING $1 Y=2.9 E-2$ MR 3
BONE $50 Y=8.3 E-2$ MR

$$
\begin{aligned}
& \text { MET }=\mathrm{MS} \\
& U=11.2 \mathrm{MPH} \\
& X=14.9 \mathrm{MI} \\
& D U R .=8.0 \mathrm{HR} \\
& H=197 \mathrm{FT} \\
& \text { SIG }=8.709 \\
& \Sigma Y=2953 \mathrm{FT} \\
& Z Z=134 \mathrm{FT} \\
& C I \text { REL: } 1 . \text { BEG } \\
& \text { TYPE } \quad \text { FP -SOL }
\end{aligned}
$$

FP-IHE
LUNG $1 \quad Y=1$. DE $^{-1}$ MR
LUNG $50 Y=1.3 E-1$ MR
COINS
LUNG $1 Y=3$. IE-1 MR
LUNG $50 Y=6.6 E-1$ MR
EO-SOL
LING $1 Y=3$. $1 E-\hat{2}$ M?
LUNG $50 Y=8.2 E-2$ MR
C-14
BODY $1 Y=7.4 E-5$ MR BONE 5 FY = $3.7 E-4$ MR

K゙R-85
SKIN $1 \quad Y=2.8 E-5$ Mr
SKIN 5 PY=2. $8 E-5$ MR
HT
BODY $1 Y=1, G E-5 M R$
BODY $50 Y=1.6 E-5$ MR

These results agree with the results on page 12 of the referenced analysis.
E.T.A. $=2.5$ MIN

H $X / Q=8.8 E-6$
GED UCI/CC:2.2E-9
SR -Y 90
BONE $1 Y=3.2 E O$ MR
BONE 5AY=3.7EI MR
based on stored dose factors

$$
\begin{aligned}
& \text { MET }=\mathrm{N} \\
& U=11.2 \mathrm{MPH} \\
& x=0.47 \mathrm{mI} \\
& \text { OUR. }=1.8 \mathrm{HR} \\
& H=197 . \mathrm{FT} \\
& C Y=9.128 \\
& C Z=9.128 \\
& \Sigma \mathrm{ET}=31.2 \mathrm{FT} \\
& \mathrm{EZ}=91.2 \mathrm{FT} \\
& \text { SK CFM=5.8954 } \\
& \text { STr UCI/CC:1.BAE-5 } \\
& \text { TYPE: SR-YGg }
\end{aligned}
$$

S Reg
BONES $1 Y=3.2 E Q$ MR BONES $50 Y=3.7 E 1$ MF SK CFM=5.89E4 STR UCI/CC:1. $\mathrm{BEE}-5$ TYPE: *S RY* bF $1 Y=1.15 E 0$
BF $5 Q Y=1.33 \mathrm{E}$
III. Conclusion

The revised "ED" program correctly calculates acute inhalation doses using the dose factors on page 2 of the current analysis.

APPENDIX C

Internal Letter

Date August 9, 1984
TO

Name Drganizalinn, Internal Address)

- Those Listed

Subject . User Instructions For The Emergency Response HF-4ICV Program

Attached are the detailed user instructions for the program "ED" developed for the HP-4ICV to facilitate estimates of inhalation doses following accidental airborne releases. Detailed documentation of meteorology models, dose models and a program listing will be sent under a separate cover letter.

If you have any questions on program use, or suggestions to improve the program, please contact me on 3-3542.
P. D. Rittmann Radiological Engineering and Effluent Controls

PDR/tjk
CC: J. A. Bates
D. E. Bibl
G. F. Boothe
D. D. Brake
T. Chiao
G. Christensen
W. A. Decker
H. J. Goldberg
D. B. Howe
D. A. Marsh
D. . Paine
R. H. Sudmann
L. N. Sutton
A. Getting Started

1. Switch the calculator to USER mode, i.e., make the small word "USER" appear on the left side of the display.
2. Press the button labeled "XEQ" which is located to the right of the tan colored button. The words "ED-REV 1" should appear in the display. If the display shows "XEQ _ " then the program is not in the calculator, or is improperly loaded. The program can be reloaded as follows:
a. Clear the calculator memory, i.e. turn off the calculator, press and hold the " \& " button. The "MEMORY LOST" displaj appears to indicate the calculator is ready.
b. Allocate 21 registers for data storage by pressing the keys "XEQ" "ALPHA" "S" "I" "Z" "E" "ALPHA" "0" "2" "1".
c. Switch to USER mode and begin feeding cards into the card reader until all 19 tracks of "ED" are entered.
d. After "ED" is loaded, it can be started up using the steps in Part A.1. and A.2. above.
B. ATMOSPHERIC DISPERSION. Once the "ED-REV 1 " prompt appears, press R/S to begin the data entry prompts for calculating atmospheric dispersion.
3. "VS, MS, $N, U N=0-3$ ". This prompt requires entry of a number $(0,1$, 2, or 3) to indicate which atmospheric stability class applies to this release:
VS = Very Stable (0), MS = Moderately Stable (1), N = Neutral (2), UN = Unstable (3). The stability class can be determined one of two ways:
a. Phone the Hanford Meteorological Station, (HMS), 373-2716 and ask for the current stability class, wind speed and direction. All three will be needed.
b. Or, estimate the stability class from the following tables

Day Time

Wind Speed	Clear	Cloudy	Overcast
$<10 \mathrm{mph}$	UN	UN	UN
$>10 \mathrm{mph}$	UN	N	N

Nighttime

Wind Speed $<y m p h$ $<50 \%$ Clouds	$>50 \%$ Clouds	
	MS	MS
$5-10 \mathrm{mph}$	N	MS
$>10 \mathrm{mph}$	N	N

Enter your selection (0, 1, 2 or 3) and press "R/S"
2. "WIND SP? MPH" This prompt is asking for the wind speed at the point of release in units of miles per hour. If the HMS could not be reached, then wind speed estimates can be used. Enter the wind speed and press "R/S".

NOTE: Convert wind speed in meters-per-second to miles-per-hour by dividing by .447 ($1 \mathrm{mph}=0.477 \mathrm{~m} / \mathrm{sec}$).
3. "DISTANCE? MI" This prompt requires entry of the number of miles downwind to the individual of interest. A crucial question at this point is "Which way is the wind blowing?" HMS gives the wind direction, or if HMS cannot be reached, the direction can be estimated. Be careful not to mis-interpret HMS wind direction reports. "Wind direction" normally is the direction the wind is coming from. To track a release plume you must have the direction the wind is blowing toward, i.e., the direction the released activity will travel. If you phone HMS, ask the meteorologist to clarify which way the wind is blowing in terms of the geographical area it blows toward.

After the direction of travel of the plume is established, pull out a map of Hanford and lay a ruler along this direction at the point of release. Select an appropriate location within $\pm 10^{\circ}$ of the wind direction to determine inhalation dose (e.g. Highway 240, site boundary, FFTF, N-Reactor, 2750 E , etc.). Use the calculator if necessary to convert the ruler measurement to miles. Enter the distance and press "R/S".

NOTE: Convert meters to miles by dividing by 1609. (1 mile $=1609$ meters).
4. "E.T.A. = ". This is the time of flight result (estimated time of arrival). In other words, how long it will take the puff to travel the distance at the wind speed you entered. Press "R/S" to continue program execution.
5. "REL DUR? HR". This prompt is asking for the release duration in hours. Any number greater than zero up to and including 24 hours is acceptable. Durations greater than 8 hours result in sector averaged X / Q values. Enter the release duration and press "R/S".
6. "REL HT? FT". This prompt is asking for the release height in feet. If significant plume rise is observed, a release height greater than the stack height can be used. Normally, just the stack height is entered at this point.

If a stack's height is less than 2.5 times the height of nearby buildings, building wake turbulence brings the stack's effluent down to ground level. Thus, in the 200 areas there are only 200 foot stacks and ground level stacks, with the exception of the 150 foot vessel vent stack on top of 244 AR. Enter the release height, and press R/S.
7. The X / Q value is displayed next. The display shows the stability class and the computed X / Q value in seconds per cubic meter. Press "R/S" to go on.
8. "INPUT LIST?". This prompt gives you the option of reviewing the meteorology inputs and related results. If you do not wish to review your input, press "R/S" and the calculator will go to paragraph C.1., below. If you want to review input, enter any number and press "R/S". Press "R/S" to view successive inputs.
a. "MET = " shows the stability class
b. $\mathrm{UU}=$ MPH" shows wind speed
c. "X = MI" shows downwind distance
d. "DUR ミ—HR" shows release duration
e. "H = FT" shows release height
f. "SIGU = or "CY = ", "CZ = "show the parameter used in the X / Q computation. If the release düration exceeds 8 hours, only the Cz parameter will be displayed.
g. " $\Sigma Y=$ FT" shows the computed σy value used. It is a measure of the spread of the plume horizontally from the centerline at the distance chosen.
h. $" \Sigma Z=$ \qquad FT" shows the computed σz value used. It is a measure of the spread of the plume vertically.

C. Release Amount and Type

1. "STACK CFM?". This prompt actually offers a choice on whether the release quantity will be determined from stack flow rate and concentration, or total curies released. These two data entry paths are described as follows:
a. If there was a stack release, and a stack air concentration is known, find the flow rate for the stack on the Tables at the end of these instructions. Enter this flow rate and press "R/S". The next prompt is "STK CONC?" and requires entry of the measured stack air concentration in units of microcuries per cubic centimeter. Enter the concentration and press "R/S" and the program continues with paragraph C.2. below.
b. If the release is not from a stack, or has been estimated as a lump sum total number of curies released, then data entry should be done as follows. When the "STACK CFM?" prompt appears enter zero cfm and press "R/S". The next prompt will be "CI REL?". Enter the total number of curies released and press "R $/ S^{\prime}$ ".
2. "GRD UCI/CC: ". This shows the computed average ground level concentration at the previously entered downwind distance. The units are microcuries per cubic centimeter. Because this message is too large for one display, the calculator scrolls the message to the left. Thus the "GRD" disappears in a few seconds. To see the entire message again, press the "ALPHA" button and watch it scroll left. Be sure to press the "ALPHA" button a second time before continuing. This will make sure the calculator is not in "ALPHA" mode, i.e., that the small word "ALPHA" does not appear on the right side of the display.
3. "a, FP, AP, NEW $=1-4$ ". This prompt gives the categories of isotopes available to the user. Alpha emitters, fission products, activation products or new dose factors are chosen by entering 1, 2, 3, or 4 and pressing "R/S". The results of each choice are explained below.
a. "a" (enter 1): This chooses the alpha emitter menu, " 12%, 6%, $A M, U=1-4 "$.
The choices are summarized in the table below.

Category	Number Entry			
	12%	2		Explanation
:---				
6%				

If a "l" or "2" is entered, the program prompts with "N03, $02=1,2$ ". Selecting nitrate (1) means class W plutonium dose factors are used; choosing oxide (2) means class Y plutonium dose factors are used.

If " 3 " is entered the dose results come next.
If "4" is entered, the program prompts with "UO, UO3, UNH = 1-3". "U0" is class Y uranium compounds such as U02 or U308. "U03" is class W, and "UNH" is class D.
b. "FP" (enter 2): This choses the fission product menu, "SR, I, MFP, CS = 1-4".
The choices are summarized in the table below.

| Category | Number
 Entry | 1 |
| :---: | :---: | :---: |\quad| $\frac{\text { Explanation }}{\text { Sr-90 plus } Y-90 \text { in }}$a $50-50$ mix
 I |
| :--- |
| MFP |

If a "1" or "4" is entered the dose results come next. If a "2" is entered, the next prompt is "I129, $1131=1,2$ " which allows one to choose either isotope.

If a " 3 " is entered, the next prompt is "INSOL, SOL = 1, 2" which allows one to chose the approximate chemical form of the MFP.
c. "AP" (enter 3): This chooses the activation product menu, "CO, C, KR, H = 1-4".
These choices are summarized in the table below:

Category	Number Input	Explanation
CO	1	$\mathrm{CO}-60$
C	2	$\mathrm{C}-14$
KR	3	$\mathrm{H}-35$

If a "1" is entered, the program prompts with "INSOL, SOL = 1,2". Insoluble chemical forms of cobalt are oxides, hydroxides, halides and nitrates. Other cobalt compounds are considered soluble (class w).

If "2", "3", or "4" is entered, the program computes dose results next.
d. "NEW" - (enter 4): This allows you to input your own dose factors. After pressing "R/S", the "NAME?" prompt appears together with the small word "ALPHA" which indicates the calculator is in alpha mode. Press the appropriate blue lettered keys to spell out the name of this isotope or mixture. Numbers are entered in alpha mode by first pressing t'le shift key (tan colored), then pressing the number. Up to 24 characters may be entered, but the program will only retain six, so abbreviate accordingly. The next prompt, "I YR R/UCI?", is asking for numeric input of the new dose factor for first year dose in units of rem per microcurie inhaled. Press "R/S" and the "CRIT ORGAN?" prompt appears. The calculator is again in "ALPHA" mode, so use the blue lettered keys to spell out the organ for which the previously entered first year dose factor applies. Again, only six characters will be retained so abbreviate as necessary. Press "R/S" and the 50 year committed dose factor and organ prompts appear. Enter the appropriate data and press "R/S". The program then computes first year and 50 year organ doses using the dose factors just entered.
4. Dose results are displayed as follows:
a. The name of the isotope or mixture is displayed momentarily. Do not press "R/S" to continue, The small word "PRGM" on the right side of the display means the program is running.
b. After the name display comes the first year dose result, which has the general format

$$
\text { " (organ name) } \quad 1 Y=\quad M R " \text {. }
$$

The dose result has units of mrem. The organ is on the left, and since the display scrolls left, in a few seconds the organ cannot be seen.
c. The 50 year dose committments have the same format as the first year committments. Press "ALPHA" to take another look, or "RiS" to continue.
5. "INPUT LIST?" As before, this prompt gives the option of reviewing input data. If you do not wish to review input, then press "R/S" and the program returns to the beginning prompt "ED - REV l". If you would like to review your input, enter any number and press "R/S". Press "R/S" to view successive inputs.
a. If a stack flow rate was entered, the first and second displays are "STK CFM = " and "STK UCI/CC: " showing the stack flow rate and sEack air concentration. If zero was entered as the flow rate, then the first and only display is "CI REL: showing the number of curies released.
b. "TYPE: ". Shows the isotope or mixture selected for dose computation. If the "NEW" option was selected in step C. 3 above, then the name you entered is shown. Also, on the next displays will be the first year and 50 year dose factors which were entered. If the "NEW" option wäs not selected then the program returns to the beginning prompt "ED-REV 1 " after displaying the material type.
D. Running Additional Cases

1. Check whether the small word "USER" disappears on the left side of the display. If it doesn't, press the USER key to place the calculator in "USER" mode.
2. The top two rows of keys (blue labels A through I) are assigned so that changes can easily be made at any point in the sequence of data entry described in parts B and C above. For example, to chainge the distance down wind, press the key with the blue label "C" and the prompt "DISTANCE? MI" will appear. You can enter a new distance and press "R/S" or just press "R/S" and the previous distance will be used. (To see what the previous entry was, just press the " \leftarrow " key to clear the display.) The program will now execute skipping all further data entry prompts. The E.T.A. and X/Q results will be shown, and then will come the dose results. Key reassignments for "USER" mode are listed below:

| Internal
 Label | Blue
 Label | K |
| :--- | :--- | :--- |\quad| Program Display When Pressed
 In "USER" Mode |
| :--- |
| ED |
| MET |

3. General Notes:
a. On any data entry prompt, the value input on the previous run will be used unless a new value is entered. Thus the entire calculation can be duplicated from the "ED-REV 1 " prompt to the dose result simply by pressing "R/S" again and again.
b. Menu prompts are arranged so that the more severe consequence results from a lower number entry as a general rule, So, when in doubt, take the lower number choice.
c. The choice between soluble or insoluble can be made on the basis of the general physical form of the material. Liquids are soluble; solids are insoluble; fires always produce insoluble material.
d. Plutonium and uranium quantities are commonly given in units of mass, such as grams or pounds. Relationships to convert from mass to activity are listed below. In use they are simply multiplied by the given mass. Note that here "Ci" refers to curies of alpha emitters only.

$12 \% \mathrm{Pu}:$	$.097 \mathrm{Ci} / \mathrm{g}$	or	$44 \mathrm{Ci} / 1 \mathrm{~b}$	
$6 \% \mathrm{Pu}:$	$.075 \mathrm{Ci} / \mathrm{g}$	or	$34 \mathrm{Ci} / 1 \mathrm{~b}$	
$\mathrm{U}:$	$8.2 \mathrm{E}-7 \mathrm{Ci} / \mathrm{g}$	or	$3.7 \mathrm{E}-4 \mathrm{Ci} / 1 \mathrm{~b}$	or
	$.82 \mathrm{Ci} / \mathrm{Mt}$	or	$.74 \mathrm{Ci} /$ ton	

UNH Solution: $4 \mathrm{lb} \mathrm{U} / \mathrm{gal}$ as received from PUREX. $10 \mathrm{lb} \mathrm{U} / \mathrm{gal}$ entering calciner
e. In the event of a criticality, the inhalation and external doses from the short lived inert gases and iodine should be estimated from the table on the next page. This table provides upper bounds on possible doses at each distance for an event with $1.0 \mathrm{E}+19$ fissions spread over eight hours. Current values for atmospheric stability and wind speed are not needed.
External And Inhalation Doses From 10^{19} Fissions, Adverse Meteorology, 8 Hour Release

PUREX STACKS:

Stack Number	EDP Code	Name $\begin{array}{c}\text { Typic } \\ \text { Flow }\end{array}$	cal High Rate (cfm)
291-A-1	A552	PUREX 200'	130,000
296-A-1	A540	Q-Cell	4,000
296-A-2	A542	W. Sample Gallery	3,600
296-A-3	A543	E. Sample Gallery	3.500
296-A-5A	A545	LAB West	8,000
296-A-5B	A546	LAB East	18,000
296-A-5	A547	E Sample Gallery \& U Cell	13,000
296-A-7	A548	W Sample Gallery \& R Cell	15,000
296-A-8	A549	White Room Exhauster	16,000
296-A-10	A550	Equip. Disposal Tunnel	5,000
296-A-14	A544	Outback (293-A) Exhaust	5,000
296-A-24	A539	Ammonia Scrubber Waste Conc.	1,700
296-A-31	A562	Storage Gallery	12,000
296-A-32	A563	Vacuum Pump Exhaust	1,800
296-A-33	A578	Wall Exhauster, EF-3-5	4,000
296-A-34	A579	Wall Exhauster EF-3-6	6,000
296-A-35	A580	Wall Exhauster EF-3-7	7,000
296.A-36	A582	Wall Exhauster EF-3-8	4,300
296-A-37	A583	Wall Exhauster EF-3-9	7,000
296-A-38	A584	Wall Exhauster EF-3-10	2,300
296-A-39	A516	SWP Lobby Exhaust	Unknown

B-Plant/WCSF

Stack Number	EDP Code	Name	rypical High Flow Rate
291-B-1	B691	B-Plant Canyon 200 ft	40,000
296-B-5	B6\%	271-B	1,600
296-B-10	B748	WESF	18,000
296-B-13	B690	221-BF, BCP Tanks	900
296-8-14	B678	221-8 Vessel Vent	200

East Tank Farm Stacks:

296-A-12	E058	244-AR Vessel Vent 150 ft .	450
296-A-13	E052	244-AR Canyon	4,000
296-A-17	E059	A, AX, AY, AZ Tanks	4,000
296-P-1	E120	Tank 105-A	1,500
296-A-20	E197	AZ Annuli	2,000
296-A-21	E645	242-A Evaporator	16,000
296-A-22	E643	242-A Vessel Vent	600
296-A-25	E080	244-A Catch Tank	150
296-A-26	E297	204-AR Unloading Facility	1,800
296-A-27	E270	AW Tanks	1,100
296-A-28	E272	AW Annuli	4,600
296-A-29	E901	AN Tanks	800
296-A-30	E903	AN Annuli	5,000
296-8-28	E886	244-BX Saltwell Vessel	200
291-C-1	E073	201-C, 200 ft .	9,000
296-C-5	E069	244-CR Vault	2,900
296-P-16	E-068	Tanks 105, 106-C	3,500

S-Plant Stacks:

Stack Number	EDP Code	Name	Typical High Flow Rate (cfm)
291-S-1	S006	202-S Canyon, 200 Ft	20,000
296-S-2	S032	202-S Sample Galiery	1,500
296-S-4	S008	202-S SWP Lobby	900
296-S-6	S004	202-S Silo	10,000
296-S-7E	S015	233-S Building Exhaust	8,500
296-S-7W	5016	233-S Building Exhaust	8,500
296-S-16	S264	218-S Tanks	200
296-S-21	S289	222-S Lab	70,000
T-Plant Stacks:			
291-T-1	T785	221-T Canyon, 200 Ft	40,000
296-T-11	T783	224-T East	13,000
296-T-12	T784	224-T West	13,000
\%96-T-13	T786	221-T Roof	40,000
296-W-1	L100	Laundry	25,000
U-Plant Stacks:			
296-U-1	U771	221-U Canyon, 200 ft	12,000
296-U-2	4133	Powder Handling Offgas	700
296-U-4	U77?	224-U Calcinators	2,500
296-U-13	U878	224-U Load-out Room	4,500

Z-Plant Stacks:

Stack Number	EDP Code	Name	Typical High Flow Rate (cfm)
291-2-1	2810	234-5, 232-Z, 236-Z, 242-Z	240,000
296-2-3	2813	241-2 Sump \& Vessel	1,300
296-2-5	2913	2736-2B	10,000
296-2-6	2802	2736-ZA	12,000
West Tank Farm Stacks:			
296-P-22	W191	SY Annuli	400
296-P-23	W190	SY Tanks	800
296-5-15	W111	SX Tanks	5,000
296-S-18	Wnge	242-S Building Exhaust	20,000
296-5-22	W880	244-S Salt Well Receiver	180
296-T-17	W117	242-T Cells	2,000
296-T-18	W882	244-TX Salt Well Receiver	200

APPENDIX D

Internal Letter
Dale February 19, 1985
TO rome oran nim interne noorens/
Those Listed

72310-85-WG-049
FROM Name Digoniat in enema adores income:
P. D. Rittmann

3-3542
Subject Revision 2 of the HP-4ICV Emergency Dose Program
Ref: Internal Letter 72320-84-WU-340, August 9, 1984, P. D. Pittman to those Listed, "User Instructions for the Emergency Response HP41CV Program ${ }^{\text { }}$

The $H P-41 C V$ handheld calculator program for computing inhalation doses following an environmental release, has been revised as a result of the recent C-Farm incident to include the following features:

1. The Hanford atmospheric dispersion model has been replaced by the Pasquill-Gifford dispersion model. This change makes the program compatible with current reporting methods used by the Hanford Meteorology Station.
2. Calculation of integrated exposures (x / Q) not directly on the plume centerline is available. This facilitates the interpretation of environmental air sample results in cases where the release plume does not blow directly towards the sampler.
3. Values for $\mathrm{X} / 0$ generated by other dispersion models (for example, PNL-3777, or the Hanford model) may be directly entered and used by the program in place of the Pasquill choices.
4. Total curies released may be computed based on stack or environmental air concentration data, or even ground contamination data.

Attached are the revised instructions and supplementary tables. Program documentation and method verification will be sent in a separate letter. If you have any questions, suggestions, or would like a copy of the program, please contact me at the above number.
Paul littmaxn
P. D. Rittmann

Radiological Engineering and Effluent Controls

PDR/tjj

DISIRIBUTION

R. C. Aldrich	W. D. Killand
D. D. Beers	R. P. Knight
D. E. Bihl	R. A. Kulick
G. F. Boothe	T. P. Lynch
M. C. Bratley	D. A. Marsh
D. D. Brekke	G. G. Meade
R. E. Broz	P. D. Nelson
K. J. Cameron	D. Paine
T. Chiao	B. D. Pickett
G. Christensen	J. J. Pietrusiewicz
G. M. Cooley	B. J. Saueressig
D. A. Conners	R. C. Stupka
W. A. Decker	R. H. Sudmann
D. R. Ellingson	L. N. Sutton
H. J. Goldberg	R. E. Wheeler
C. J. Hall	R. L. Kathren (PNL)
M. E. Hevland	W. D. McCormack (PNL)
D. B. Howe	B. J. McMurray (PNL)
G. S. Kephart	J. V. St angeland (PNL)

R. C. Aldrich
R. P. Knight
R. A. Kulick
T. P. Lynch
D. A. Marsh
G. G. Meade
P. D. Nelson
D. Paine
B. D. Pickett
J. J. Pietrusienicz
B. J. Saueressig
R. C. Stupka
R. H. Sudmann
L. N. Sutton
R. E. Wheeler
R. L. Kathren (PNL)
W. D. McCormack (PNL)
B. J. McMurray (PNL)
J. V. St angeland (PNL)

INSTRUCTIONS FOR "ED-REV 2"
 EMERGENCY DOSE CALCULATION PROGRAM FOR THE HP-4ICV

A. Getting Started

1. Switch the calculator to USER mode, 1.e., make the small word "USER" appear on the left side of the display.
2. Press the button labeled "XEQ" which is located to the right of the tan colored button. The words "ED-REV 2^{n} should appear in the display. If the display shows "XEQ_n then the program is not in the calculator, or is improperly loaded. The program can be reloaded as follows:
a. Clear the calculator memory, i.e. turn off the calculator, turn it back on while holding the ". " button. The "MEMORY LOST" display appears to indicate the calculator is ready.
b. Allocate 20 registers for data storage by pressing the keys "XEQ" "ALPHA" "S" "I" "Z" "En "ALPHA" "On " 2 " " 0 ".
c. Switch to USER mode and begin feeding cards into the card reader until all 17 tracks of "ED" are efitered.
d. After "ED" is loaded, it can be started up using the steps in Part A.1. and A.2. above.
B. ATMOSPHERIC DISPERSION. Once the "ED-REV 2^{n} prompt appears, press R/S to begin the data entry prompts for calculating atmospheric dispersion.
3. MMET? $A-G=1-7 "$. This prompt requires entry of a number from 1 to 7 corresponding to the atmospheric stability class present at the time of the release.

The stability class can be determined one of two way:
a. Phone the Hanford Meteorological Station (HMS), 373-2716, and ask for the stability class, wind speed, and direction. All three w111 be needed.
b. Or, estimate the stability class from the following table:

Wind Speed	Daytime Cloud Cover			$\begin{gathered} \text { Nightime } \\ \geq \text { Half } \end{gathered}$	Cloud Cover \leq Half
	Little	Half	Oyercast		
<5	A	A	B	E	F
5	A-B	8	C	E	F
10	B	B-C	c	D	E
15	c	C-D	D	D	D
>15	C	D	D	D	D

2. "WIND SP? MPH" This prompt is asking for the wind speed at the point of release in units of miles per hour. If the HMS could not be reached, then wind speed estimates can be used. Enter the wind speed and press "R/S".

NOTE: Convert wind speed in meters-per-second to miles-per-hour by dividing by .447 ($1 \mathrm{mph}=0.477 \mathrm{~m} / \mathrm{sec}$).
3. "DISTANCE? MI" This prompt requires entry of the number of miles downind to the location of interest. A crucial question at this point is "Which way is the wind blowing?" HMS gives the wind direction, in degrees measured clockwise from north. If HMS cannot be reached, the direction can be estimated. Be careful not to misinterpret hris wind direction reports. "Wind direction" normally is the direction the wind is coming from. To track a release plume you must have the direction the wind is blowing toward, i.e., the direction the released activity will travel. If you phone HMS, ask the meteorologist to clarify which way the wind is blowing in terms of the geographical area it blows toward.

After the direction of travel of the plume is established, pull out a map of Hanford and lay a ruler along this direction at the point of release. Select an appropriate location e.g. Highway 240, site boundary, onsite building, or alr sampler. Use the calculator if necessary to convert the ruler measurement to miles. Enter the distance and press "R/S".

NOTE: Convert meters to miles by dividing by 1609. (1 mile $=1609$ meters).
4. "E.T.A. $=$ \qquad n. This is the time of filght result (estimated time of arrival). In other words, how long it will take the puff to travel the distance at the wind speed you entered. Press ${ }^{\prime} R / S^{\prime \prime}$ to continue program execution.
5. MOFFSET? FTn. This prompt is requesting the distance measured from the plume centerline to the location of interest. If the location of interest is very close to the plume centeriine, just enter a zero.
6. nREL HT? FT". This prompt is asking for the release height in feet. If significant plume rise is observed, a release height greater than the stack height cain be used. Normally, just the stack height is entered at this point.

If a stack's height is less than 2.5 times the height of nearby bulldings, bullding wake turbulence brings the stack's effluent down to ground level. Thus, in the 200 areas there are only 200 foot stacks and ground level stacks, with the exception of the 150 foot vessel vent stack on top of $244-A R$. Enter the release height, and press R/S.
7. "REL DUR? HR". Th1s prompt is asking for the release duration in hours. Any number greater than zero up to and including 24 hours is acceptable. Durations greater than 8 hours result in sector averaged X / Q values. Enter the release duration and press "R/S".
8. The X / Q value is displayed next. The display shows the stability Class and the computed X / Q value in seconds per cubic meter. Press "R/S" to go on.
9. "INPUT LIST?". This prompt gives you the option of reviewing the meieorology inputs and related results. If you do not wish to review your input, press "R/S" and the calculator will go to paragraph C.1., below. If you want to review input, enter any number and press "R/S". Press "R/S" to view successive inputs.
a. \quad MMET $=P G$ _n n shows the Pasquill-Gifford stability class
b. ${ }^{M U}=\ldots \quad$ MPH" shows wind speed
c. "X = _MI" shows downwind distance
d. "Y = ___FT" shows the plume offset distance
e. "H = _FT" shows release height
f. MDUR = HR" shows release duration
g. " $\Sigma Y=\ldots$ FT" shows the computed oy value used. It is a measure of the spread of the plume horizontaliy from the centerline at the distance chosen.
h. ${ }^{n} \Sigma Z=$ \qquad FT" shows the computed σ_{z} value used. It is a measure of the spread of the plume vertically.

10. If you would 1 the to enter your own $X 70$ from PNL-3777, Revision 1, or another atmospheric dispersion model, switch to USER mode and press the key with the blue "J". At the "ENTER X/Q" prompt, switch the calculator out of USER mode, enter the X / Q, and press "R/S".

C. Release Amount and Type

1. "ST, CI, AR, $G D=1-4$ ". This prompt offers four ways to estabitish the number of curies released:

1 = ST = stack release using a measured stack concentration
$2=C I=$ direct entry of curies released
$3=A R=$ using a measured ground level air concentration downwind $4=G D=$ using a surface contamination measurement downind
a. "ST" (enter 1) This is the option to use with a stack release, where the average stack concentration (gross beta or gross alpha) during the release is known.
(1) "STK UCI/CC?" Enter the average stack concentration in units of micro-curies per cubic centimeter of alr.
(1i) "STACK CFM?" Look up the approprlate value on the tables at the end of this guide.
b. "CI" (enter 2) This allows direct entry of the number of curies released. The next prompt will be "CI REL?".
c. "AR" (enter 3) This enables one to interpret downwind air concentration measurements. The X/Q computed earlier must be at the location the air sample was taken.
(1) "AIR UCI/CC?" Enter the average air concel tration measured at the alr sampler. Use gross beta or gross alpha.
(11) "HRS SAMPLEL?" Enter the number of hours over which the sample was taken.

NOTE: As long as the sample period includes the entire.release, or else begins and ends during the release, the program will work fine. Otherwise, the curie estimate will be too small, according to the portion of the release that was not sampled.
d. "GD" (enter 4) In the absence of downwind alr sample data, the measured surface contamination can be used to estimnte air concentrations and even the total curles released.
(1) "DPM/SQ.CM?" Enter t!ie measured surface contamination downwind. If direct survey data is avallable, the detector face area must be taken into account. Use the following table:

Probe	Face Area
P-11	15
PAM	$-54 \quad \mathrm{Cm}^{2}$

(11) ${ }^{\text {NDEP.SP? CM/S" Enter an appropriate value for the ground }}$ deposition speed. Typically this is around $0.1 \mathrm{~cm} / \mathrm{sec}$, although it may be higher for certain chemical forms (lodine) and varies with humidity, surface molsture, vegetation.

NOTE: An excellent way to measure deposition speed is by having air sample and ground contamination recults for the same location. The deposition speed is computed by dividing the ground contamination by the alr concentration, and then dividing this result by the sample time, where the sample time is long eriough to include the entire release.
2. After ontering the necessary information, the program now computes and displays the estimated curies releases, as well as the average air concentration during the release at the downind location.
a. "REL:___CI" This is the number of curies released. Press "R/S" to continue.
b. "GRD UCI/CC = \quad " This is the computed average ground level concentration during the release at the downind location. Press " R / S " to continue.

NOTE: Because this message is too large to fit in the display, the calculator scrolls the message to the left. The word "GRD" dissappears in a few seconds. To see the entire message again, press the "ALPHA" button and watch it scroll left. Be sure to press the "ALPHA" button again to take the calculator out of "ALPHAn mode, $i . e .$, make sure the small word "ALPHA" does not appear on the right side of the display.
3. "a, FP, AP, NEW = 1-4". This prompt gives the categories of isotopes avallable to the user. Alpha emitters, fission products, activation products or new dose factors are chosen by entering 1, 2, 3, or 4 and pressing "R/S". The results of each choice are explained below.
a. "a" (enter 1): This chooses the alpha emitter menu,
"12\%, 6\%, $A M, U=1-4 "$.
The choices are summarized in the table below.

Category
12\%
6\%
AM
U

Number Entry

1
2
3
4

Explanation

$$
\begin{aligned}
& \text { 180d, 12\% Pu-240 } \\
& \text { 180d, 6\% Pu-240 } \\
& \text { Am-241, class W } \\
& \text { Uranium }
\end{aligned}
$$

If a ${ }^{n 7 n}$ or ${ }^{n} 2^{n}$ is entered, the program prompts with "N03, $02=1,2^{n}$. Selecting nitrate (1) means class W plutonium dose factors are used; choosing oxide (2) means class Y plutonium dose factors are used.

If "3" is entered the dose results come next.
If "4" is entered, the program prompts with nUo, UO3, UNH $=1-3$ ". "UO" is class Y uranium compounds such as U02 or U308. "UO3" is class W, and "UNH" is class D.
b. "FPN (enter 2): This chose the fission product menu, "SR, I, MFR, $C S=1-4 "$.
The choices are summarized in the table below.
Number

If a "ן" or "4" is entered the dose results come next. If a " $\mathbf{2 n}^{n}$ is entered, the next prompt is "I'129, I131 = 1, 2" which allows one to choose either isotope.

If a "3" is entered, the next prompt is "INSOL, SOL $=1$, 2^{n} which allows one to chose the approximate chemical form of the MFP.
c. "AP" (enter 3): This chooses the activation product menu, ${ }^{n} \mathrm{CO}, \mathrm{C}, \mathrm{KR}, \mathrm{H}=1-4{ }^{n}$.
These choices are summarized in the table below:
Number
Category Input

20	1	$\mathrm{CO}-60$
C	2	$\mathrm{C}-14$
KR	3	$\mathrm{Kr}-85$
H	4	$\mathrm{H}-3$

If a "1" is entered, the program prompts with "INSOL, $S O L=1,2^{n}$. Insoluble chemical forms of cobalt are oxides, hydroxides, halides and nitrates. Other cobalt compounds are considered soluble (class W).

If "2", "3", or "4" is entered, the program computes dose results next.
d. "NEW" - (enter 4): This allows you to input your own dose factors. After pressing "R/S", the "NAME?" prompt appears together with the small word "ALPHA" which indicates the calculator is in alpha mode. Press the appropriate blue lettered keys to spell out the name of this isotope or mixture. Numbers are entered in alpha mode by first pressing the shift key (tan colored), then pressing the number. Up to 24 characters may be entered, but the program will only retali, six, so abbreviate accordingly. The next prompt, "1 YR R/UCI?", is asking for numeric input of the new dose factor for first year dose in units of rem per microcurie inhaled. Press "R/S" and the "CRIT ORGAN?" prompt appears. The calculator is again in "ALPHA" mode, so use the blue lettered keys to spell out the organ for which the previously entered first year dose factor applies. Again, orlly six characters will be retained so abbreviate as necessary. Press "R/S" and the 50 year committed dose factor and organ prompts appear. Enter the appropriate data and press "R!'S". The program then computes first year and 50 year organ doses using the dose factors just entered.
4. Dose resuits are displayed as follows:
a. The name of the isotope or mixture is displayed momentarily. Do not press $" R / S^{n}$ to continue, since the small word "PRGM" on the right side of the display means the program is running.
b. After the name display comes the first year dose result, which has the general format

$$
\text { "___(organ name) } \quad I Y=\ldots \quad M R^{n} \text {. }
$$

The dose result has units of mrem. The organ is on the left, and since the display scrolls left, in a few seconds the organ cannot be seen.
c. The 50 year dose committments have the same format as the first year committments. Press "ALPHA" to take another look, or "R/S" to continue.
5. "INPUT LIST?" As before, this prompt gives the option of reviewing input data. If you do not wish to review input, then press "R/S" and the program returns to the beginning prompt "ED - REV $2^{\prime \prime}$. If you would like to review your input, enter any number and press "R/S". Press $\mathrm{mR} / \mathrm{S}^{\prime \prime}$ to view successive inputs.
D. Running Additional Cases

1. Check whether the small word "USER" disappears on the left side of the display. If it doesn't, press the USER key to place the calculator in "USER" mode.

2. General Notes:
a. On any data entry prompt, the value input on the previous run will be used unless a new value is entered. Thus the entire calculation can be duplicated from the "ED-REV $2^{\prime \prime}$ prompt to the dose result simply by pressing ${ }^{\text {NR/S" }}$ again and again.
b. Menu prompts are arranged so that the more sev consequence results from a lower number entry as a general rule, wi, then in doubt, take the lower number choice.
c. The choice between soluble or insoluble can be made on the basis of the general physical form of the material. Liquids are soluble; solids are insoluble; fires always produce insoluble material.
d. Plutonium and uranium quantities are commonly given in units of mass. such as grams or pounds. Relationships to convert from mass to activity are listed below. In use they are simply multiplied by the given mass. Note that here "Ci" refers to curies of alpha emitters only.

$$
\begin{array}{ccl}
128 \mathrm{Pu}: & .097 \mathrm{Ci} / \mathrm{g} & \text { or } \\
6 \% \mathrm{Pu}: & .075 \mathrm{Ci} / \mathrm{g} & \text { or } / 7 \mathrm{~b} \\
\mathrm{U}: & 34 \mathrm{Ci} / 1 \mathrm{~b} \\
& .2 \mathrm{E-7} \mathrm{Ci} / \mathrm{g} & \text { or } \\
& 3.7 \mathrm{E}-4 \mathrm{Ci} / \mathrm{Ci} / \mathrm{Mt} & \text { or or } \\
& .74 \mathrm{Ci} / \text { ton }
\end{array}
$$

UNH Solution: 4 lb U/gal as received from PUREX 10 lb U/gal entering calciner
e. In the event of a criticality, the inhalation and external doses from the short l ived inert gases and iodine should be estimated from the table on the next page. This table provites upper tounds on possible doses at each distance for an event with 1.0 E+ig fissions spread over eight hours. Current values for atmospheric stability and wind speed are not needed.

WHC-EP-0368

Stack Number	EDP Code	Typical HighNameEjoy Rate (cfm)	
291-A-1	A552	PUREX 200'	130,000
296-A-1	A540	Q-Cell	4,000
296-A-2	A542	W. Sample Gallery	3,600
296-A-3	A543	E. Sample Ciallery	3,500
296-A-5A	A545	LAB West	8,000
296-A-5B	A546	LAB East	18,000
296-A-6	A547	E Sample Gallery \& U Cell	13,000
296-A-7	A548	W Sample Gallery \& R Cell	20,000
296-A-8	A549	White Room Exhauster	16,000
296-A-10	A550	Equilp, Disposal Tunnel	5,000
296-A-14	A544	Outback (293-A) Exhaust	5,000
296-A-24	A539	Ammonia Scrubber Waste Conc.	1,700
296-A-31	A562	Storage Gallery	12,000
296-A-32	A563	Vacuum Fump Exhaust	1,800
296-A-33	A579	Wall Exhauster, EF-3-5	4,000
296-A-34	A579	Wall Exhauster EF-3-6	6,000
296-A-35	A580	Wall Exhauster EF-3-7	7,000
296-A-36	A582	Wall Exhauster EF-3-8	4,300
296-A-37	A5 83	Wall Exhauster EF-3-9	8,000
296-A-38	A584	Wall Exhauster EF-3-10	2,300
296-A-39	A515	SWP Lobby Exhaust	Unknown

B-Plant/MESE

Stack_Number	EDP Code	Name	Typical High Elon_Rate
$291-B-1$	B691	B-Plant Canyon 200 Ft:	40,000
$296-B-5$	B686	$271-B$	1,600
$296-B-10$	$B 748$	WESF	18,000
$296-B-13$	$B 690$	$221-B F, B C P$ Tanks	900
$296-B-14$	$B 678$	$221-B$ Vessel Vent	200

East Tank Farm Stacks:

$296-A-12$	E058
$296-A-13$	E052
$296-A-17$	E059
$296-A-18$	E060
$296-A-19$	E061
$296-P-1$	E120
$296-A-20$	E197
$296-A-21$	E645
$296-A-22$	E643
$296-A-25$	E080
$296-A-26$	E270
$296-A-27$	E272
$296-A-28$	E901
$296-A-29$	E903
$296-A-30$	E885
$296-B-28$	E063
$291-C-1$	None
$296-$ C-5	
$296-P-16$	$296-P-27$

S-Plant Stacks:

Stack Number	EDP Code
291-S-1	S006
$296-S-2$	$S 032$
$296-S-4$	$S 008$
$296-S-6$	$S 004$
$296-S-7 E$	$S 015$
$296-S-7 W$	$S 016$
$295-S-16$	$S 264$
$296-S-21$	$S 289$

I-PJant Stacks:
 Ielant stack

$291-T-1$	$T 785$
$296-T-11$	$T / 83$

296-T-12 T784
296-T-13 T786
296-W-1 Ll00
U-Plant Stacks:

$296-U-1$	$U 771$
$296-U-2$	$U 133$
$296-U-4$	$U 777$
$296-U-13$	$U 878$

$221-T$ Canyon, 200 Ft	40,000
$224-\mathrm{T}$ East	13,000
$224-T$ West	13,000
$221-\mathrm{T}$ Roof	40,000
Laundry	25,000

221-U Canyon, 200 ft 12,000
Powder Handling Offgas 1,000
224-U Calctnators 2,500
296-U-13 4878

Name

202-S Canyon, 200 Ft
20,000
202-S Sample Gallery $\quad 1,500$
202-S SWP Lobby

$$
5,000
$$

202-S S110
10,000
233-S Bullding Exhaust
8.500

233-S Bullding Exhaust
8.500

218-S Tanks 200
222-S Lab

$$
70,000
$$

291-T-1
$T 785$
T/83

Z-Plant Stacks:

Stack Number	EDP Code	Name	Typical High Flow Rate (cfm)
291-2-1	2810	234-5, 232-Z, 236-Z, 242-Z	240,000
296-2-3	2813	241-Z Sump \& Vessel	1,300
: $296-2-5$	2913	2736-ZB	10,000
296-2-6	Z802	2736-ZA	12,000
West Tank Farm Stacks:			
296-P-22	W191	SY Annuld	400
296-P-23	W190	SY Tanks	800
296-S-15	W111	SX Tanks	5,000
296-S-18	W096	242-S Building Exhaust	20,000
296-S-22	W880	244-S Salt Well Receiver	180
296-T-17	W117	242-T Cells	2,000
296-T-18	W882	244-TX Salt Well Receiver	200

Portable_Exhausters:

| $296-P-6$ |
| :--- | :--- |
| $296-25$ |$\quad 4,000$

DATE FILMED

$$
03 / 05 / 91
$$

