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Abstract. During the thermo-mechanical processing of metals, complex microstructure evolution in-
evitably occur, altering the marcoscopic material properties. The vital microstructure mechanisms in-
clude viscoplastic deformation, dynamic recovery (DRV) and dynamic recrystallization (DRX), leading
to the hardening and softening of the material. A thermodynamic framework for dynamic recrystalliza-
tion is proposed covering the state in crystalline materials. Several improvements are presented for an
internal state variable (ISV) model to consider the evolution of dislocations dependent on recrystallized
volume fractions and derive the constitutive relations for microscopic and macroscopic quantities cou-
pled to viscoplasticity. The relation between microscopic quantities and the macroscopic hardening stress
is clarified based on thermodynamic arguments and thermodynamic consistency is derived. On the nu-
merical side a suitable explicit/implicit algorithm is presented and the evolution equations are validated
based on experimental data for OFHC copper. During parameter identification the material parameters
are determined solving the inverse problem. In numerical examples the constitutive equations are applied
to simulations for uniaxial loading and the characteristics of continuous dynamic recrystallization such
as strain softening are illustrated.

1 INTRODUCTION

Complex microstructure mechanisms, such as dynamic recovery and dynamic recrystallization heavily
affect material properties in engineering alloys. During hot deformation dislocation evolution changes
the material properties on the macroscopic scale. The prediction of microstructure mechanisms during
the hot forming of alloys leads to the adjustment of microstructures and thus to the gradation of mechan-
ical properties.

The focus lies on the mechanism of dynamic recrystallization. It describes the formation of strain
free grains and their successive growth until the stored energy of the initial deformed microstructure is
consumed. The grain boundary motion sweeps away the build-up dislocation structure, thus reducing
the dislocation density. During the process two phases are distinguished. According to [1] the material
consists of a hard unrecrystallized phase and a soft recrystallized phase. During plastic deformation the
dislocation density increases in the unrecrystallized phase leading to the harding of the material. In the
recrystallized phase the dislocations are annihilated and sub grain boundaries are removed by dynamic
recrystallization. During the process of dynamic recrystallization, the recrystallized and unrecrystallized
phases harden and recover with plastic deformation, thus recrystallizing in cycles resulting in multi-peak
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behavior.
In the present paper the continuum mechanical model for dynamic recrystallization in [2] is consid-

ered as a point of departure for further investigations. It is based on the internal state variable framework
proposed in [3] which was further developed in [4], [5] and [6]. The model in [2] combines a phe-
nomenological viscoplastic model with microstructural internal state variables representing dislocation
densities.

Though conceptionally well advanced, the following aspects of the works on on dynamic recrystal-
lization are worthwhile being improved: In [2] the microscopic stresses in the unrecrystallized phase are
assumed (rather than derived) to evolve unaltered by the recrystallization process. In the plastic poten-
tial for the macroscopic hardening stress, simply a sum of microscopic internal stress like variables is
assumed to represent the macroscopic yield stress without any further justification.

The general idea of the present work is to close the aforementioned gaps in [2]. The key objective is to
provide a general thermodynamic framework accounting for the microstructural mechanism of dynamic
recrystallization. Regarding the physical mechanism, the internal state variable model provided by [2] is
reworked to include recrystallization volume fractions at the onset of the thermodynamic framework and
to derive the constitutive relation for macroscopic and microscopic quantities in recrystallized media in
accordance with thermodynamic arguments.

2 THERMODYNAMIC FRAMEWORK

The following thermodynamic framework distinguishes between the macroscopic scale and the micro-
scopic scale. The scales of the two-scale model are illustrated in Figure 1.

(a) (b) (c) (d)

Figure 1: Two-scale model: (a) Macroscopic scale with material point P, (b)-(d) microscopic scale with
interfacial areas Ai between volume fractions Vi of recrystallized regions for two recrystallization cycles.

2.1 Kinematics

The thermodynamic framework of the current proposal is set within the theory of large strains. At each
material point P of a macroscopic body B in Figure 1 the deformation gradient F and its Jacobian J is
introduced. This maps the line segments dX, volume elements dV and area elements dA of the reference
configuration B0 to its corresponding quantities of the current configuration B:

1. dx = F ·dX, 2. dv = JdV, 3. J = detF. (1)

2



Hendrik Westermann and Rolf Mahnken

The macroscopic kinematics are based on a multiplicative split of the deformation gradient

1. F = Fvol ·Fiso = Fiso ·Fvol ⇐⇒ 2. Fvol = J1/31, 3. Fiso = J−1/3F, (2)

where Fiso and Fvol are the isochoric and volumetric deformations and 1 is the unit tensor of second
order. For the modeling of thermo-elasto-viscoplasticity an additional split is required according to [8].
By following the assumptions in [8] we obtain

1. F = Fe ·Fi ·Fθ, where 2. Fe = J1/3
e Fiso, 3. Fθ = J1/3

θ
1. (3)

Taking the time derivative of the relation in Eq. (3) the additive decomposition for the velocity gradient
with respect to the intermediate configuration renders

1. L = Le +Li +Lθ where

2. Le = F−1
e · Ḟe, 3. Li = Ḟi ·F−1

i =−Fi · Ḟ−1
i , Lθ = F−1

θ
· Ḟθ,

(4)

with Le, Li and Lθ as the elastic, inelastic and thermal part of L, respectively. During dynamic recrys-
tallization the material may harden and recover in cycles according to [2]. To capture the multi-peak
behavior in recrystallization cycles within the kinematics of the present model, the notation Xi for the
recrystallized fraction of the material that went through a minimum of i recrystallization cycles is used.
The volume fraction Vi = Xi− Xi+1 denotes the volume fraction that has recrystallized i times, such
that V0 = 1−V1 is the unrecrystallized material. Three volume fractions are illustrated schematically in
Figure 1 (b)-(d). The volume fraction Vi for the i-th cycle in a general setting renders

1. Vi = Xi−Xi+1, i = 0, . . . ,nc where 2. X0 = 1, 3. Xnc+1, (5)

with nc being the number of recrystallization cycles. Since the evolution of recrystallization quantities
does not increase or remove any volume, a completeness condition is required

V =
nc

∑
i=0

Vi = 1. (6)

Each volume fraction Vi, i = 0, . . . ,nc in Figure 1 will have a separate set of internal variables. For the
formulation of the internal variables the general representation is

1. Φt = Φ[t,V [t]], 2. Φ̊ := Φ̇+ Φ̂, 3. Φ̇ =
∂Φ

∂t

∣∣∣∣
V
, 4. Φ̂ =

∂Φ

∂V
V̇
∣∣∣∣
t
, (7)

valid for any function Φ[·, ·] dependent on time t and volume fraction V . The total time derivative in

Eq. (7) has a convective part
∂Φ

∂V
V̇ , to account for time varying recrystallized volume fractions Vi(t).

Consequently, for any quantity, which is homogeneously distributed over the RVE it follows

1. Φt = Φ[t], 2. Φ̂ =
∂Φ

∂V
V̇ = 0 =⇒ 3. Φ̊ = Φ̇. (8)
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2.2 Balance relations

With respect to the reference configuration B0 the macroscopic balance relations read

1. ρ0ü−Div(F ·S) = ρ0f, (linear momentum)

2. ρ0ė+Divq0 = S : Ė+ρ0rθ, (energy)

3. −ρ0ė+ρ0θη̇+S : Ė− 1
θ

q0 ·Gradθ ≥ 0, (entropy)

(9)

where ρ0 is the density (reference configuration), u is the displacement vector, S is the second Piola-
Kirchhoff stress tensor, f is the mass of density of external forces, e is the mass density of the internal
energy, q0 is the heat-flux vector, rθ is the mass density of heat supply and E = (1/2)(F ·F) ist the Green
strain tensor.

With the additive split of the velocity gradient tensor in Eq. (4) the Clausius-Duhem inequality in Eq.
(9.3) results in(

1
ρ0

M−2Ce ·
∂Ψ

∂Ce

)
: L+2Ce ·

∂Ψ

∂Ce
: Li−

∂Ψ

∂ε
ε̊− ∂Ψ

∂α
α̊− ∂Ψ

∂V
V̇ −

(
η+

∂Ψ

∂θ

)
θ̇− 1

ρ0θ
q0 ·Gradθ≥ 0,

(10)
where the total time derivative in Eq. (7) for microscopic quantities ε and α dependent on the volume
fractions V . Moreover, the thermodynamic forces κ = [κ0,κ1, . . . ,κnc ]

T , α = [α0,α1, . . . ,αnc ]
T and P =

[P0,P1, . . . ,Pnc ]
T are defined, which in summary renders a set of constitutive relations as

1. M = ρ02Ce ·
∂Ψ

∂Ce
, 2. κ = ρ0

∂Ψ

∂ε
, 3. ζ = ρ0

∂Ψ

∂α
, 4. P = ρ0

∂Ψ

∂V
, (11)

As a modification to [2], the thermodynamic forces are obtained within a thermodynamic context.
Accounting for the constitutive relations (10) and (11) the following inequalities are obtained

1. D i = M : Li−κ · ε̊−ζ · α̊≥ 0, 2. DV =−PV̇ ≥ 0, 3. Dθ =−1
θ

q0 ·Gradθ≥ 0. (12)

where D i represents the dissipation due to dislocation evolution, DV represents the dissipation due to
volume fraction evolution whilst the term Dθ represents dissipation due to thermal evolution. The in-
equalities Eq. (12.1), Eq. (12.2) and Eq. (12.3) sufficiently validate the Clausius-Duhem inequality Eq.
(9), thus proving thermodynamic consistency. For a more in-depth derivation of the validity of Eqs. (12)
the authors are referred to [7].

3 PROTOTYPE MODEL

Concrete proposals are made for the model introduced in Section 2, by specifying the Helmholtz energy
as well as the evolution of internal variables.

3.1 Helmholtz energy and thermodynamic forces

The Helmholtz energy represents the energy storage caused by small reversible deformations in the
crystal lattice and inelastic deformations. Additionally, storage mechanisms, such as dislocation density
and energy changes from interfacial effects are included in the Helmholtz energy. The Helmholtz energy
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is assumed as the thermodynamic potential

1. Ψ = Ψ
e[Ce,θ]+Ψ

θ[θ]+Ψ
p[ε,α,V ,θ], where

2. Ψ
e =

1
2ρ0

K[θ](ln Je)
2 +

G[θ]

4ρ0

(
tr
[
lnĈe

]2)− 3K[θ]

ρ0
αθ[θ]∆θ ln Je,

3. Ψ
θ =

1
ρ0

∫
θ

θ0

cd [θ]dθ− θ

ρ0

∫
θ

θ0

cd [θ]

θ
dθ

4. Ψ
p =

G[θ]

2ρ0

nc

∑
i=0

Vicεε
2
i +

G[θ]

2ρ0

nc

∑
i=0

Vicαα
2
i ,

(13)

In Eq. (13.1) Ĉe represents the isochoric elastic strains, εi are the lattice strains and αi are the lattice
curvatures.

The thermodynamic forces proposed in Section 2 are specified below. The stress like variables are
obtained as

1. κi = ρ0
∂Ψ

∂εi
=Viκi, where κi = G[θ]cεεi,

2. ζi = ρ0
∂Ψ

∂αi
=Viζi, where ζi = G[θ]cααi,

3. Pi = ρ0
∂Ψ

∂Vi
=

G[θ]

2
(
cεε

2
i + cαα

2
i
)
=

1
2G[θ]

(
κ2

i

cε

+
ζ2

i

cα

)
, i = 0, . . . ,nc

(14)

The thermodynamic forces κi and ζi are stress like internal variables conjugate to εi and αi obtained with
thermodynamic arguments, in contrast to [2]. The thermodynamic forces Pi are the driving forces for
boundary motion sweeping through unrecrystallized material and removing the dislocation density, see
e.g. [1].

3.2 Evolution equations for viscoplasticity and recrystallization variables

The evolution equations for viscoplasticity incorporating dynamic recrystallization are specified as

1. Li = Li[Z], 2. ε̊ = ε̊[Z], 3. α̊ = α̊[Z], 4. V̇ = V̇ [Z], where

5. Z = [MC,κ,ζ,ε,α,V ,P,θ]
(15)

formulated with the generalized vector Z, including the Mandel stress tensor MC, the microscopic
stresses κ and ζ as well as the driving force P written in terms of their respective internal variables
Li, ε̊, α̊ and V̇ .

The flow rule for the viscoplastic part of the velocity gradient Li in intermediate configuration in

5



Hendrik Westermann and Rolf Mahnken

Eq. (4) is obtained as

1. Li = λ̇

√
3
2

NT
, where

2. λ̇ = f [θ]
(

sinh
〈

Φ

Y [θ]+Q

〉)n[θ]

,

3. Φ = σv− (Y [θ]+Q),

4. σv =

√
3
2
||MC||,

5. N =
Mdev

C

||Mdev
C ||

,

(16)

where the temperature dependent scalar variables are defined as

1. f [θ] = c1 exp
(
−c2

θ

)
, 2. n[θ] = c3 +

c4

θ
, 3. Y [θ] = c5G[θ], (17)

and where G[θ] is the shear modulus and ci, i = 1, . . . ,5 are material parameters. Each recrystallized
volume fraction Vi is deformed with the same plastic rate λ̇ in Eq. (16.2) based on the following assump-
tions

1. λ̂ =
∂λ

∂V
V̇ = 0 =⇒ 2. λ̊ = λ̇, where λ̇ =

√
2
3

Li : Li = ėv ≥ 0. (18)

The macroscopic flow stress Q, introduced in Eq. (16), is derived as

Q :=
nc

∑
i=0

b∗

2

(
κik1k3 +

k1cε

cα

ζi

)
+ζihζ

(
ζi

G[θ]

)1−1/r
1
cα

 , (19)

where both microstresses κi and ζ contribute to the macroscopic flow stress Q.
Following [2], during dynamic recrystallization in polycrystalline materials the microscopic quanti-

ties are three-fold. Firstly, during the plastic deformation of polycrystalline materials, the grains rotate
and adjust themselves towards loading direction. This is expressed by the generation of geometrically
necessary dislocations, resulting in lattice curvature. The geometrically necessary dislocations L−1

gi are
assumed to evolve as following

1.
˚

L−1
gi = f g

i λ̊ = f g
i λ̇≥ 0, where 2. f g

i = cLg

(
L−1

gi

)1−1/r
, (20)

and where cLg and r are material parameters. With the inverse of the average spacing Lgi the evolution of
the lattice curvature αi is introduced with

1. α̊i =
b∗k2

k1

˚
L−1

gi = f α
i λ̇, where 2. f α

i =
b∗k2

k1
f g
i , (21)

where k1 as well as k2 are material parameters and b∗ is the magnitude of the burgers vector. Following
the derivations in [2] this renders the misorientation variable ζi as

ζi = G[θ]cα

b∗k2

k1
L−1

gi , (22)
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with G[θ] being the shear modulus and cα being a material parameter.
Secondly, with progressing deformation statistically stored dislocations occur, which in contrast to

the geometrically necessary dislocations are divided into generation and annihilation. The evolution
equations for the statistically stored dislocations density read as

1. ρ̊i = f ρ

i λ̊ = f ρ

i λ̇, where 2. f ρ

i = k1L−1
si + k2L−1

gi −Rd [θ]ρi,

3. L−1
si = k3

√
ρi, 4. Rd [θ] = c6exp

(
−c7

θ

)
,

(23)

With the dislocation density ρi at hand the evolution of lattice s train εi for each cycle is specified to

1. ε̊i = f ε
i λ̇, where 2. f ε

i =
b∗

2
√

ρi
f ρ

i . (24)

The corresponding micro stress is to be interpreted as the hardening variable and reads as

κi = cεG[θ]b∗
√

ρi. (25)

Thirdly, as stated in section 2.1 dynamic recrystallization occurs in cycles described by recrystallized
fractions Xi. According to [2] the recrystallized fraction is written as follows:

1. Ẋi = AiGi f [Xi−1], 2. Ai = Xi−1

(
Xi

Xi−1

)a(1−Xi

Xi−1

)b

, 3. Gi = MiPi,

4. Mi[ζi] = M0exp
(
−Qg

Rθ

)(
1− exp

(
−B
(

ζi

G[θ]

)m))
,

5. Pi[εi,αi] =
1

2G[θ]

(
κ2

i

cε

+
ζ2

i

cα

)
, 6. 1+ c(1−Xi−1),

(26)

where Ai is the interfacial area dividing recrystallized and unrecrystallized material. The interfacial area
sweeps through the unrecrystallized area with the interface velocity Gi related to the boundary mobility
Mi. Finally, M0, Qq, R, B and M are material parameters.

4 SIMULATION EXAMPLES

The objective of the numerical examples is the validation of the proposed model based on the experimen-
tal data for OFHC copper provided in [9]. The material parameters in Table 1 are obtained solving the
inverse problem during parameter identification. Since the same data is used in [2], comparison between
the numerical results of [2] and the proposed model can be drawn.
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Table 1: Material parameters for strain type formulation for OFHC copper

Function Parameter Value Unit Function Parameter Value Unit
b∗ 0.250E+00 - Qi[T ] B 1.360E+09 -

f [θ] c1 2.135E−01 1/s m 2.802E+00 -
c2 1.326E+00 K cκ 8.657E+11 K/MPa s

n[θ] c3 1.640E+01 - cζ 6.017E+11 K/MPa s
Y [θ] c5 8.797E−04 - gi[θ] a 2.704E−01 -
H[θ] c8 1.318E−02 - b 1.142E+00 -
Rd [θ] c6 8.090E+00 - c 2.579E+01 -

c7 3.282E+02 K k1 0.720E+00 -
hζ 2.307E−05 1/s k2 1.003E+00 -
r 6.481E−01 - k3 1.083E+01 -

Ri[θ] cT 1.831E+04 K

The experimental data for OFHC copper as well as the results of the proposed equations for the case
of uniaxial loading is presented in Figure 2. Here, σ is the non-vanishing part of the Cauchy stress tensor
and ε is the axial component of the Eulerian strain tensor. From Figure 2 characteristic phenomena for
dynamic recrystallization become apparent.

• Recrystallization does not occur at room temperature, thus the true stress at θ = 25°C does not
show softening.

• Depending on temperature and strain rate, single as well as multi-peak recrystallization may occur.
Especially low strain rate exhibit the cyclic hardening and recovering.

• OFHC copper shows a high temperature and strain rate dependence, which can be captured by the
model.

To discuss the characteristic behavior of dynamic recrystallization, the load case with constant tem-
perature θ = 337°C and uniaxial strain rate ε̇ = 0.0004/s is presented in more detail. The strain type
microscopic quantities are presented in Figure 3 and Figure 4 for six concurrent recrystallization cycles.
Figure 3a shows the average spacing between geometrically necessary dislocations L−1

gi and Figure 3b
shows the statistically stored dislocation density ρi. The evolution of lattice curvature αi as well as lattice
strain εi is presented in Figure 4a and 4b, respectively. In Figure 5 the evolution of stress type variables
is compared to the numerical results of [2]. The results of the proposed mode are presented with solid
lines, while results of [2] use dashed lines. The micro stresses ζi describing the misorientation of the
grains is shown in Figure 5a, whereas the micro stresses κi describing the hardening and recovering is
presented in Figure 5b. Due to increasing strain the sub grain spacing decreases and the misorientation
ζi variable can be seen to increase. The rate of the isotropic hardening variable κi declines continually
while never reaching a steady-state value. At the onset, the isotropic hardening variable κ2 increases and
causes hardening and decreases as more recrystallized material is added to the volume fraction. With
increasing volume fraction V2 hardening starts to overtake softening and the isotropic hardening variable
increases again.
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Figure 2: True stresses σ at various temperatures and strain rates, experimental data by [9] (markers),
results of parameter identification for present model (solid lines), (a) constant strain rate ε̇ = 0.0004/s,
(b) constant temperatures θ = 269 °C (blue) and θ = 541 °C (red).
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Figure 3: Strain type variables: (a) Average spacing between geometrically necessary dislocation L−1
g,i ,

(b) statistically stored dislocation density ρi.
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Figure 4: Strain type variables: (a) Lattice curvature αi, (b) Lattice strain εi.
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Figure 5: Stress type variables: Comparison between present model (solid lines) and the original model
[2] (dashed lines): (a) Misorientation variable ζi, (b) Isotropic hardening variable κi.

10



Hendrik Westermann and Rolf Mahnken

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True strain ε [-]

R
ec
ry
st
a
ll
iz
ed

fr
ac
ti
o
n
X

i
[-
]

X1

X2

X3

X4

X5

X6

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True strain ε [-]
V
o
lu
m
e
fr
a
ct
io
n
V
i
[-
]

V1

V2

V3

V4

V5

V6

Figure 6: Recrystallization kinetics: Comparison between present model (solid lines) and the original
model [2] (dashed lines): (a) Recrystallized fraction Xi, (b) Recrystallized volume fraction Vi.

5 CONCLUSIONS

A thermodynamic framework for viscoplasticity coupled to dynamic recrystallization was developed, as
modification to the proposal in [2]. The recrystallized volume fractions are incorporated in the Helmholtz
energy, thus defining the recrystallization quantities dependent on time for varying recrystallization quan-
tities. As a result the evolution equations are split into an explicit and convective part. By distinguishing
between true micros tresses in the recrystallized phase and nominal micro stresses in the complete phase,
similar evolution equations for the recrystallization quantities in [2] were derived.

The capabilities of the model have been presented in numerical examples. During parameter identifi-
cation material parameters were identified and subsequent numerical results are in good agreement with
the experimental data presented in [9] and the results of the original model in [2].
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