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Abstract. The choice of the time step for the Material Point Method (MPM) is often
addressed by using a simple stability criterion, such as the speed of sound or a CFL
condition. Recently there have been several advances in understanding the stability of
MPM. These range from non-linear stability analysis, through to Von Neumann type
approaches. While in many instances this works well it is important to understand how
this relates to the overall errors present in the method. Although it has been observed
that spatial errors may dominate temporal ones at stable time steps, recent work has
made more precise the sources and forms of the different MPM errors. This now makes it
possible to understand how the different errors and the stability analysis are connected.
At the same time this also requires simple computable estimates of the different errors in
the material point method. The use of simple estimates of these errors imakes it possible
to connect some of the errors introduced with the stability criteria used. A number of
simple computational experiments are used to illustrate the theoretical results.

1 INTRODUCTION

The Material Point Method (MPM) has proved to be invaluable for many very chal-
lenging problems. However in many ways the method is not as far advanced as, say,
finite element methods, in terms of accuracy and stability analysis and computable error
estimates for errors in both space time. For example the time step in the MPM is often
controlled by a simple speed of sound or CFL-type condition. It is also observed that
that the spatial error dominates for cases in which the calculation is stable [12]. This
raises the question of the precise relationship between the spatial error and stability. This
question may be addressed by characterizing the spatial error in the different parts of
MPM, estimating this error and showing how parts of this error may be viewed as being
part of a speed of sound stability condition. Section 2 describes the MPM method and
its application to a simple example problem. A full description of the method and its
errors is provided in Section 3. Simple computational estimates of the different mapping
errors in MPM are derived in Section 4. In Section 5 these estimates are applied to a
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simple model problem solution that shows how well they may work. A simple derivation
of the speed of sound stability condition is derived in Section 6. Finally in Section 7 the
stability and error conditions are connected.

2 MPM MODEL PROBLEM AND METHOD

The description of MPM used here follows [5] in that the model problem used here is a
pair of equations connecting velocity v, displacement u and density ρ:

Du

Dt
= v, (1)

ρ
Dv

Dt
=
∂σ

∂x
+ b(x, t), (2)

with a linear stress model σ = E ∂u
∂x

for which Young’s modulus, E, is constant, a body
force b, which is initially assumed to be zero, and with appropriate boundary and initial
conditions. For convenience a mesh of equally spaced N + 1 fixed nodes Xi with intervals
Ii = [Xi, Xi+1] , on on the interval [a, b] is used where

a = X0 < X1 < ... < XN = b, (3)

h = Xi −Xi−1. (4)

These fixed nodes are referred to as the i points. It will also be assumed that periodic
boundary conditions exist in that

σ(a)v(a) = σ(b)v(b) (5)

together with appropriate initial conditions. While the analysis of MPM for time inte-
gration error and energy conservation uses the model problem above it does apply more
generally and in multiple space dimensions with a few obvious modifications. The com-
puted solution at the pth particles will be written as unp = u(xnp , t

n). Suppose that there
are np particles in total. The calculation of the internal forces in MPM at the nodes
requires the calculation of the volume integral of the divergence of the stress [14] using

f int
i = −

∑
p

Dpi(x
n
p )σpVp (6)

The subscript pi represents a mapping from particles p to node i while the subscript ip
represents a mapping from nodes i to particles p. The negative sign arises as a result of
using integration by parts [5]. The mass at node i is defined by

mi =
∑
p

mpSpi(x
n
p ) (7)

It is important to note that the coefficients Dpi(x
n
p ) and Spi(x

n
p ) (which here will be

abbreviated to Dn
pi and Sn

pi, depend explicitly on the background mesh and the particle
positions and that they also be chosen to reproduce derivatives of constant and linear
functions exactly [5]. The initial volume of the particles is uniform for the np particles
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in an interval. The particle volumes are defined using the deformation gradient, F n
p , and

the initial particle volume,V 0
p ,

V n
p = F n

p V
0
p , where V 0

p ,=
h

np

, where F 0
p = 1 (8)

From (7) the continuous from of acceleration equation in the MPM method in this simple
case is

ai(t) =
−1

mi

∑
p

Dpi(xp(t))σp(t)Fp(t)V
0
p (9)

The equation to update velocity at the nodes, as denoted by vni is then given by

v̇i = ai (10)

The equation for the update of the particle velocities then

v̇p = ap (11)

where the value of the acceleration at a point xnp is given by interpolation based upon
nodal values of acceleration

ap =
∑
i

Sip(xp(t))ai (12)

The equation for the particle position updates is

ẋp = vp (13)

The update of the deformation gradients is given using,

∂v

∂x
(xp(t)) =

∑
i

Dip(xp(t))vi (14)

The deformation update equation is
Ḟp =

∂v

∂x
(xp(t), t)Fp (15)

While the stress update equation is, using the appropriate constitutive model and Young’s
Modulus, E,

σ̇p = E
∂v

∂x
(xp(t)) (16)

3 Stress Last MPM and Local Errors in Space and Time

In solving the system of equations defined above by equations (6) to (16) one standard
approach used is to order the equations in a certain order and then to solve them in
turn using explicit methods. Differences in how the equations are solved corresponds to
whether or not the stress is updated first or last in a time step, a choice that is discussed
at length by [1]. These two different choices are related to the use of the semi-implicit
Euler A or B method, [7], [2]. Following Bardenhagen [1] it is preferable to increment
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stress last. In this case it is assumed that at time tn a consistent set of particle positions
xnp , velocities vp, stresses σn

p and deformation gradients F n
p are available. The description

here of the method and the sources of error follows that in [3]. It is also assumed that the
GIMP method is use for spatial discretization The nodal velocity vi is calculated using

vni =
∑
p

Sn
pi

mp

mi

vnp (17)

with an associated local error vni,true− vni = EInpi as defined below. The nodal acceleration
is updated by using the stresses and deformation gradients at the current grid points

ani =
−1

mi

∑
p

DSn
piσ

n
pF

n
p V

0
p (18)

where the nodal mass is is defined by equation (7). The equation to update velocity at
the nodes is then given by

vn+1
i = vni + dtani (19)

The local error in this forward Euler step is given by

vn+1
i,true − vn+1

i = levn+1
i =

dt2

2

d2vni
dt2

+ dtEani (20)

where Eani is the spatial error from using the approximation in equation (18), see Section
4 below and the time derivative term is the local error [7]. The value of the acceleration
at a point xnp is given by interpolation based upon nodal values of acceleration:

anp =
∑
i

Sn
ipa

n
i (21)

While there is no new temporal error here the error in acceleration Eani is interpolated too
and an additional interpolation error associated with the coefficients Sn

ip used in equation
(21)is introduced, as denoted by EInip, see Section 4 below. The equation for the update
of the particle velocity is then:

vn+1
p = vnp + dtanp (22)

The associated local error is

vn+1
p,true − vn+1

p = levn+1
p =

dt2

2

d2vp
dt2

+ dtEanp + dt
∑
i

Sn
ipEa

n
i (23)

The velocity gradients at particles are calculated using the formula

∂vn+1

∂x
(xp) =

∑
i

Dn
ipv

n+1
i (24)
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with an associated differentiation error denoted by Evi+1
xp , see Section 4 below. These

velocity gradients are used to update the stress and deformation gradients at particles

F n+1
p = F n

p + dt
∂vn+1

∂x
(xnp , tn)F n

p dt (25)

For the deformation gradient leF n+1
p is the local time and space error given by

leF n+1
p =

dt2

2

d2F

dt2
+ dtF n

p

(
Evnxp +

∑
i

Dn
iplev

n+1
i

)
(26)

Stress is updated using the appropriate constitutive model and Young’s Modulus, E,

σn+1
p = σn

p + dtE
∂vn+1

∂x
(xnp , tn) (27)

In this case the stress local time and space error, leσn+1
p , is given by

leσn+1
p =

dt2

2

d2σ

dt2
+ dtE

(
Evnxp +

∑
i

Dn
iplev

n+1
i

)
(28)

The equation for the particle position update is

xn+1
p = xnp + dtvn+1

p (29)

For the particle update the local error as denoted by lexn+1
p is given by

lexn+1
p =

dt2

2

d2xp
dt2

+ dtlevn+1
p (30)

This section shows that many of the material point errors result from the applications of
the mapping matrix from particles to nodes Spi (and its transpose Sip ) and the differen-
tiation matrix Dpi (and its transpose Dip).

4 ESTIMATING THE SPATIAL ERROR

The above derivations illustrate how the spatial and temporal errors associated with
MPM combine to give the overall error. Steffen et al. [12] observed these errors experi-
mentally and arrived at the conclusion that for a stable time step with the methods they
considered that temporal errors are dominated by spatial errors. The error framework
presented in the previous section makes it possible to derive estimates for the individual
parts of MPM associated with the mapping matrix Sip and the differentiation matrix Dip

(and their transposes) and to thus provide computable estimates for the error. There are
two parts to this process. The first part is is that the error in mapping from particles
to the grid. The second part is estimating the error in mapping from the grid back to
particles.
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4.1 Particles to Nodes

Consider the mapping defined by equation (18). The first step is to expand the stress
at a particle about the node by using a simple Taylor expansion.

σp = σi + (xp −Xi)
∂σ

∂x
(Xi, t) +

(xp −X2
i )

2

∂2σ

∂x2
(Xi, t) +

(xp −X3
i )

6

∂3σ

∂x3
(Xi, t) + ... (31)

Substituting this in equation (18) gives after assuming that the coefficients Dpi exactly
differentiate linear functions (

∑
pDSpi = 0 and

∑
pDSpixp = 1), see [5] who also provide

a procedure for this.

Eai =
−1

m̃i

∑
p

DSn
pi

[
(xp −Xi)

2

2

∂2σ

∂x2
(Xi, t) +

(xp −Xi)
3

6

∂3σ

∂x3
(Xi, t) + ...

]
(32)

Truncating the series gives the estimate

Eai ≈
−1

m̃i

∑
p

DSn
pi

[
(xp −Xi)

2

2

∂2σ

∂x2
(Xi, t) +

(xp −Xi)
3

6

∂3σ

∂x3
(Xi, t)

]
(33)

The estimation of these second and third derivatives at the nodes is described below. This
is a first order error estimate as the coefficients Dpi differentiate the quadratic and cubic
terms. However if the term

∑
p(xp −Xi) is zero (e.g. symmetric particles about a node)

then the error is second order.
In the case of the mapping defined by equation (17),(ignoring the contributions of the

masses for the moment) using the approach of [5] it is assumed that the mapping is again
linearity preserving i.e.

∑
p Spi = 1 and

∑
p Spixp = Xi A similar line of argument to that

above gives

EInpi ≈ −
∂2v

∂x2
(Xi, t)

∑
p

Sn
pi

(xp −Xi)
2

2
− ∂3v

∂x3
(Xi, t)

∑
p

Sn
pi

(xp −Xi)
3

6
(34)

where again cases we have to estimate higher order derivatives at the nodes.

4.2 Nodes to Particles

In this case we have to consider two cases the first is the differentiation of velocity
values at nodes to get velocity derivatives at particles given by equation (24), while the
second is the mapping from nodal values of accelerations to accelerations at particles,
given by equation (22). It is assumed that the transposes of the mapping matrices S and
DS (as denoted by switching the subscript pi to ip satisfy the same equations as above
for preserving linearity in the mapping and for differentiating linear functions exactly, e.g.
using the procedure of Gritton [5]. In both these cases we expand the nodal values about
particles. In the case of velocities we have from a Taylor expansion:

vn+1
i = vn+1

p +(Xi−xp)
∂v

∂x
(xp, t

n+1)+
(Xi − xp)2

2

∂2v

∂x2
(xp, t

n+1)+
(Xi − xp)3

6

∂3v

∂x3
(xp, t

n+1)+...

(35)
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with a similar equation for acceleration. Substituting the right side of this in equation
(21) and truncating the series gives

Eanp = an+1
p,true −

∑
i

Sn
ipa

n+1
i (36)

where

Eanp ≈ −
∑
i

Sn
ip

(
(Xi − xp)2

2

∂2a

∂x
(xp, t

n) +
(Xi − xp)3

6

∂3a

∂x3
(xp, t

n)

)
(37)

This expression requires velocity derivatives at the particles. In the case of estimating the
error in derivatives at particles a similar approach gives

Evn+1
xp =

∂vn+1
true

∂x
(xp)−

∑
i

DSn
ipv

n+1
i , (38)

Evn+1
xp ≈ −

∑
i

DSn
ip

(
(Xi − xp)2

2

∂2v

∂x2
(xp, t

n+1) +
(Xi − xp)3

6

∂3v

∂x3
(xp, t

n+1)

)
(39)

Again this expression requires velocity derivatives at the particles. These values may
be approximated by interpolating from the nodal derivatives using say (21) so that, for
instance,

∂2v

∂x2
(xp, t) ≈

∑
i

Sip
∂2v

∂x2
(Xi, t) (40)

to get

Evn+1
xp ≈ −

∑
i

DSn
ip

(
(Xi − xp)2

2

∑
i

Sip
∂2v

∂x2
(Xi, t

n+1) +
(Xi − xp)3

3

∑
i

Sip
∂3v

∂x3
(Xi, t

n+1)

)
(41)

4.3 Estimating the Spatial Derivatives

The second derivative of the stress is straightforwardly estimated using finite differences
of nodal stress values.

∂2σ

∂x2
(Xi, t) ≈

σi+1 − 2σi + σi−1

h2
(42)

and the third derivative similarly

∂3σ

∂x3
(Xi, t) ≈

σi+2 − 2σi+1 + 2σi−1 + σi−2

h3
(43)

With appropriate modifications at the boundaries.
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4.4 Estimating the Local Stress Error

Consider the local stress error at the end of the step as given by equation (28) and
ignore the temporal error contribution from that equation and from equation (20) to get.

leσn+1
p = dtE

(
Evn+1

xp + dt
∑
i

Dn
ipEa

n
i

)
(44)

Of the two terms to consider, Evn+1
xp may be estimated by using equation (41) while the

second term, involves he product of the matrices Dip and Dpi. In order to simplify the
testing of this we consider here the mapping from a velocity at particles to a spatial
derivative at nodes to a second spatial derivative at particles. A key part of this is to
ensure that this mapping satisfies derivative boundary conditions at the nodes. It is
worth remaking that the formula involves replacing the velocity values by their spatial
derivatives in equation (41), as we are estimating the error in the second derivative at the
particles calculated by differentiating to the nodes and then differentiating back to the
particles.

5 TESTING THE ESTIMATES OF THE SPATIAL ERROR

In order to test the estimates derived above a simple example velocity used in the
vibrating bar example that is often the simplest MPM problem studied is used, e.g. [5].
The velocity is defined by

v(x, t) = Csin(2πX)cos(Cπt), (x, t) ∈ [0, 1]× (0, te) (45)

where C =
√
E for a uniform density and E the Young’s modulus (here E=1) may very

greatly. The testing procedure used is to vary the number of nodes and the number of
particles. Suppose that the error in the stress at a spatial point x is given by eσ(x), then
the following definitions are needed.

eσN = [eσ(X1), ..., eσ(XN ]T (46)

eσp = [eσ(x1), ..., e]σ(xnp]
T (47)

with obvious extensions to errors in velocity evN and other quantities Suppose that the
estimated error is similarly denoted by estσp. The L∞ vector norm is used. The error
index of the estimated error norm is given by

EIk =
||estσN ||∞
||eσN ||∞

(48)

Where the index k refers to the particular error quantity that is being estimated. Case
1: EI1 the error index of the estimate given by equation (17) and so is the second-order
error in mapping the solution from particles to nodes. Case 2: EI2 the error index of
the estimate given by equation (18) with evenly spaced particles and so is the second-
order error in mapping from the solution at particles to its derivative at nodes. Case 3:
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Table 1: Error Norms and Error Indices for Model Problem Solution

Points/ Error Norms: Intervals N= Error Indices N=
Case Interval 21 41 81 161 21 41 81 161

4 6.5e-3 1.6e-3 4.1e-4 1.0e-4 0.99 0.99 1.0 1.0
1 8 6.0e-3 1.5e-3 3.7e-4 9.4e-5 0.99 0.99 1.0 1,0

8 5.8e-3 1.4e-3 3.7e-4 9.2e-5 0.99 0.99 1.0 1.0
16 5.8e-3 1.4e-4 3.6e-4 9.1e-5 0.99 0.99 1.0 1.0
2 3.2e-2 8.0e-3 2.0e-3 5.0e-4 0.98 0.99 1.0 1.0

2 4 3.5e-2 8.8e-3 2.2e-3 5.5e-4 0.98 0.99 1.0 1.0
8 3.6e-2 9.1e-3 2.3e-4 5.6e-4 0.98 0.99 1.0 1.0
16 3.6e-3 9.1e-3 2.3e-4 5.7e-4 0.98 0.99 1.0 1.0
2 6.5e-3 1.6e-3 4.1e-4 1.0e-4 0.98 5.2 5.3 5.3

3 4 8.1e-3 2.0e-3 5.2e-4 1.3e-4 0.98 4.1 4.4 4.2
8 8.5e-3 2.1e-3 5.4e-4 1.3e-4 0.98 0.99 1.0 1.0
16 8.6e-3 2.1e-3 5.4e-4 1.3e-4 0.98 0.99 1.0 1.0
2 3.5e-1 1.7e-1 8.7e-2 4.4e-2 0.98 1.0 1.0 1.0

4 4 5.2e-1 2.6e-1 1.3e-1 6.5e-2 0.99 1.0 1.0 1.0
8 6.0e-1 3.0e-1 1.5e-1 7.6e-2 0.99 1.0 1.0 1.0
16 6.5e-1 3.3e-1 1.6e-1 8.2e-2 0.99 1.0 1.0 1.0
2 2.2 4.6 2.5 1.3 0.75 3.0 3.9 3.3

5 4 3.5 4.6 2.5 1.1 0.88 2.3 2.5 2.5
8 4.8 2.3 1.1 5.7e-1 0.94 1.0 1.1 1.1
16 4.6 2.5 1.2 6.4e-1 0.97 1.0 1.0 1.0

EI3 the error index of the estimate given by equation (21) and so is the second-order
error in mapping from the solution at nodes to particles. Case 4: EI4 the error index of
the estimate given by equation (24) and so is the first-order error in mapping from the
solution at nodes to its derivative at particles. Case 5: In this case EI5 is the error index
of the combined error of applying the derivative matrix Dpi and its transpose Dip to the
particle velocity given by equation (45) to calculate the second derivative at the particles
is estimated. In estimating these errors and the error indices, the analytical solution given
above is used at t = π/4, The number of intervals used was 20,40,80 and 160 while in
each case 1,2,4 and 8 evenly-spaced material points were used per interval. These results
show that the error estimators we have developed initially appear to do a good job of
estimating the errors as is shown by the error indices close to 1.

6 STABILITY CONTROL IN MPM

6.1 Stability Condition

The stability of the MPM is complicated as the method is inherently nonlinear and as the
points move then the matrices used to map between particles and nodes and vice versa
change with every time step potentially. Hence while linear stability theory may be used
to provide some insight as in [8] a full analysis must be nonlinear [9, 2]. The problem
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of variable coefficients is considered by [6], but the whole topic of nonlinear stability is
a very complex issue. In terms of what is done computationally, the simplest approach
used for the stability of the MPM is the speed of sound heuristic that gives rise to the
equation:

E
dt2sound
h2

≤ 1 (49)

In the form of MPM given above the only place that E appears is in the equation for
stress, σ. Suppose that we consider only stress errors and suppose that each step starts
with an error δσn

p at each particle. The acceleration is updated with these two values
which are the updated stresses an deformation gradients at the current grid points

δani =
−1

mi

∑
p

DSn
piδσ

n
pF

n
p V

0
p (50)

where the nodal mass is is defined by equation (7). The equation to update velocity at
the nodes is then given by

δvn+1
i = dtδani (51)

The velocity gradient errors at particles are calculated using the formula

∂δvn+1

∂x
(xp) =

∑
i

DSn
ipδv

n+1
i (52)

Although these velocity gradients are used to update the stress and deformation gradients
at particles here only the stress is considered While stress is updated using the appropriate
constitutive model and Young’s Modulus, E,

δσn+1
p = δσn

p + dtE
∂δvn+1

∂x
(xnp , tn) (53)

Combining the above equations gives

∂δvn+1

∂x
(xnp , tn) =

∑
i

DSn
ipdt
−1

mi

∑
p

DSn
piδσ

n
pF

n
p V

0
p , (54)

Substituting this in equation (53) gives

δσn+1
p = δσn

p − Edt2
∑
i

DSn
ip

1

mi

∑
p

DSn
piδσ

n
pF

n
p V

0
p , (55)

Which may be written in matrix form as

δσn+1
p =

[
I − Edt

2

h2
D∗F

]
δσn

p (56)

where F is a diagonal matrix with pth diagonal entry F n
p V

0
p and D∗ = (DS)TMDS where

DS is the matrix with entries hDSn
pi and M is a diagonal matrix with ith diagonal entry
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1/mi. The standard stability requirement is [9] for the quantity

∥∥∥∥[I − E dt2

h2 D
∗F
]k∥∥∥∥ to

be bounded as k → ∞, assuming that this matrix is constant, which is only the case if
the MPM particles do not move. This decomposition immediately does lead to a speed
of sound type condition as a small speed of sound parameter E dt2

h2 will limit the norm of
this matrix.

6.2 Connection to Error Estimates

There is a connection from the stability condition above to the error estimates derived
above in that in the expression for leσn+1

p , the term

E
dt2

h2
D∗∆σ = dt2E

∑
i

Dn
ipEa

n
i (57)

Where ∆σ is simply the term in [...] in the right side of equation (33). Hence there is
a simple estimate for the norm of the amplification matrix given by using the standard
definition of a matrix norm that is subordinate to a vector norm by∥∥∥∥[I − Edt2h2

D∗F

]∥∥∥∥ ≥
∣∣|∆σ − dt2E∑iD

n
ipEa

n
i

∣∣ |
||∆σ||

(58)

This expression shows how the spatial error estimate derived above may be viewed as
being a lower bound for the norm of the stability matrix. This may make it possible to
track stability automatically.

7 CONCLUSIONS

The result of the approach presented here is that a decomposition of the different errors
in MPM has been used to derive estimates for the mappings inherent in MPM between
particles and nodes and vice versa. These simple estimates have been shown to work
well in the simple demonstration case used here. The connection to the standard speed
of sound stability approach has also been demonstrated. Future work involves applying
this approach in a full MPM simulation and for two and three space dimensions. As the
estimates derived here involve approximating derivatives of solution values on a regular
mesh, this would seem to be entirely possible.
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