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Abstract. Neural networks (NNs) as an alternative method for universal approximation of differential
equations have proven to be computationally efficient and still sufficiently accurate compared to estab-
lished methods such as the finite volume method (FVM). Additionally, analysing weights and biases can
give insights into the underlying physical laws. FVM and NNs are both based upon spacial discretisation.
Since a Cartesian and equidistant grid is a raster graphics, image-to-image regression techniques can be
used to predict phase velocity fields as well as particle and pressure distributions from simple mass flow
boundary conditions. The impact of convolution layer depth and number of channels of a Convolution-
Deconvolution Regression Network (CDRN), on prediction performance of internal non-Newtownian
multiphase flows is investigated. Parametric training data with 2055 sets is computed using FVM. To
capture significant non-Newtownian effects of a particle-laden fluid (e.g. blood) flowing through small
and non-straight channels, an Euler-Euler multiphase approach is used. The FVM results are normal-
ized and mapped onto an equidistant grid as supervised learning target. The investigated NNs consist of
n= {3,5,7} corresponding encoding/decoding blocks and different skip connections. Regardless of the
convolution depth (i.e. number of blocks), the deepest spacial down-sampling via strided convolution
is adjusted to result in a 1× 1× f · 2n feature map, with f = {8,16,32}. The prediction performance
expressed is as channel-averaged normalized root mean squared error (NRMSE). With a NRMSE of
< 2 ·10−3, the best preforming NN has f = 32 initial feature maps, a kernel size of k = 4, n= 5 blocks
and dense skip connections. Average inference time from this NN takes < 7 ·10−3 s. Worst accuracy at
NRMSE of approx 9 · 10−3 is achieved without any skips, at k = 2, f = 16 and n = 3, but deployment
takes only < 2 · 10−3 s Given an adequate training, the prediction accuracy improves with convolution
depth, where more features have higher impact on deeper NNs. Due to skip connections and batch nor-
malisation, training is similarly efficient, regardless of the depth. This is further improved by blocks
with dense connections, but at the price of a drastically larger model. Depending on geometrical com-
plexity, spacial resolution is critical, as it increases the number of learnables and memory requirements
massively.
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1 INTRODUCTION

The flow mechanics inside membrane oxygenators (MOs), as they are used in extracorporeal membrane
oxygenation (ECMO), are of great interest, since observed coagulation phenomena are believed to be
mediated by prevalent flow [1–3]. However, blood flowing through tubes or channels with diameters <
300µm exhibits strong non-linear effects, some of which are sometimes referred to as Fåhræus-Lindqvist-
Effekt (FLE) [4, 5]. This breakdown of the Newtonian assumption is due to the actual particulate nature
of blood and the properties of these particles. Blood is a multi component mixture of corpuscles, such
as red blood cells (RBCs) and platelets, proteins and a water-like fluid. RBCs are highly deformable,
oval biconcave disk-like corpuscles, additionally prone to biological processes. As simplification, from
a fluid mechanics point of view at length scales approximately ranging from 50µm to 500µm, blood can
be perceived as a mixture of particulated RBCs suspended in a Newtonian fluid phase.

Computing blood flows in complex geometries at aforementioned length scales is a non-trivial task, con-
sidering the trade off between precision and computational cost in real world applications. Using meth-
ods such as dissipative particle dynamics or smoothed particle hydrodynamics, for example, yield good
results, but are far from being computational feasible in large and complex geometries as represented by
MOs [6–8]. Multi-phase finite volume approaches are feasible, but still computationally costly. A trade
off in terms of computational cost and information value on local viscosity and shear rate distributions
could potentially be achieved by mixture theory using an Euler-Euler formulation [9, 10].

However, multi phase finite volume method (FVM) in general is still laborious, especially with a potential
application in patient specific studies, require a huge number of individual parameters. The advent
of deep learning (DL) approaches in various fields demonstrated broadly the advantages of inference
speed from DL models. Neural network (NN) as an alternative method for universal approximation of
differential equations have proven to be computationally efficient and still sufficiently accurate compared
to established methods such as the FVM [11, 12]. The general advantage of employing DL models, is
their deployment efficiency, outperforming classical computational methods by far. FVM are based
on spatial discretisation and resulting flow fields are represented only on this discrete grid. Since a
Cartesian, equidistant grid basically is a raster graphics, image-to-image regression techniques can be
used to predict phase velocity fields as well as particle and pressure distributions from simple mass flow
boundary conditions.

Here, the feasibility of employing convolutional neural networks (CNNs) for predicting internal non-
Newtonian multiphase flows is shown by way of blood flow in wavy geometries. Different NN designs
and hyperparameters are compared regarding inference duration and model accuracy.

2 METHODS

In order to test different NN designs and parameters, a set of training data capturing significant non-
Newtonian effects of a particle-laden, blood like fluid flowing through small and non-straight channels
is generated. Three different NN designs with different hyperparameters, such as convolution depth or
number of feature maps for example, are compared. As target measure a normalized deviation averaged
over all computed fields is used.
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Figure 1: General supervised machine learning work flow of training a NN with pre-computed target
flow fields. Inputs are the geometry R, mass flow of the fluid and particle phase ṁ f and ṁp, respectively.
Outputs are velocity fields u f , up and particle distributions h.

2.1 Training Data Generation

Since interpolation of known data is usually much more reliable than extrapolation, especially in DL
extensive training data is essential. In order to provide enough data comprising sufficient diversity and
consistency, parametric training data is generated using an FVM Euler-Euler multiphase approach. Us-
ing precomputed training targets is beneficial as all data is based on the same underlying model, while
still capturing relevant flow phenomena. Making machine learning (ML) models robust against noise
in the training data, as it common in real world or experimental data, demands for a large amount of
data or incorporated a priori knowledge incorporated in the learning process. Since the training targets
computed using FVM are parametric, the entire training target computation work flow comprising ge-
ometry generation, meshing, computing the flow fields using FVM and subsequent flow field extraction
is automated using Ansys Workbench Scripting.

As geometry, a two-dimensional (2D) channel with varying width is used, which is illustrated in fig. 2.
The changing width is constructed from circular segments, stitched together with a tangential continuity
constraint. This resulting wavy geometry segment can be used with periodic boundary conditions (BCs).
Alternatively, a certain number of waves is placed behind each other, where a straight inlet with length
of 50× throat width and outlet 10× throat width for the use without periodicity is added for improved
numerical stability.

The dimensions of the wavy geometry are normalized to be fully described with only four dimensionless
parameters, solely based on the particle diameter. Hence, the geometry is defined by the set

F=
D1

Dp
D=

D2

D1
L=

L2

D1
λ =

L1

L2
(1)

where Dp is the particle diameter, F a factor for the throat width, D1, D2, L1 and L2 are the dimensions
according fig. 2. The geometry is meshed in Ansys Meshing with triangles without inflation layers and a
constant element size of 0.5Dp.

The flow fields used as training target are computed with Ansys Fluent R2019v3 using an Euler-Euler
two-phase model for laminar flow, similar to [10, 13]. This mixture approach models the fluid phase
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(blood plasma) and the particulated phase (RBCs) as interacting and interpenetrating continua, which
exchange momentum in form of lift, drag or virtual mass, for example. Additionally, there are effects
that can be perceived as acting only within one phase. In terms of blood, this intra-phasic effects are
collision or a reversible aggregation of RBCs. The shear dependent aggregation/disaggregation of RBCs
is modelled as a shear-thinning viscosity of the particulated phase with a correction for phase fraction,
which aims on collisional dissipation. This particle phase viscosity as function of shear rate reads as

η
′
p(γ̇p) = ηp,∞ +(ηp,0−ηp,∞)

1+ log(1+ζ)γ̇p

1+ζγ̇p
(2)

with a correction for particle phase fraction φ it follows
ηp(γ̇p,φ) = η

′
p(C0 +C1φ+C2φ

2) (3)

where zero shear viscosity is taken to be ηp,0 = 2.0392Pas, infinite shear viscosity ηp,∞ = 0.0517Pas
and the response parameter ζ = 48.14 determine the shear thinning behaviour. The experimentally fitted
parameters C0 = 1, C1 = 2.5, C2 = 7.6 account for a phase fraction dependency [10]. Like other mixture
properties, the resulting mixture viscosity is assumed to be a volume fraction weighted average

η = (1−φ)η f +φηp (4)

The inter-phase momentum transfer in terms of drag and lift is determined by a Schiller-Naumann type
drag and a generalized Saffman-Mei lift. Virtual mass effects are neglected, due to the relatively small
slip Reynolds numbers.

As outlet BC constant pressure, which is shared by both phases in Euler-Euler models, is used. As inlet
BC, the mass flow rate for each individual phase is used, which is derived from the Reynolds number.
Conversion is done by scaling with mixture viscosity given in eq. (4) and phase fraction φ. Hence, it
follows

ṁ f = (1−φ)ηRe

ṁp = φηRe (5)

For the ML approach the Reynolds number is converted to a inlet velocity scaled by the throat width

ubc =
ηRe
ρD1

(6)

The pressure based steady and laminar solver in Fluent R2019v3 is employed with solving each volumet-
ric phase fraction independently. This improves convergence as it initially allows more deviation from
continuity. Additional stability is incorporated by using an implicit under relaxation scheme that allows
different relaxations factors for each equation to be set and adapt during computation automatically. As
convergence criterion, the variation of the phase fraction over the computational domain is monitored
and a variation below 5 ·10−4 over more than 20 iterations is considered as convergence.

The FVM flow computation is performed on a triangular mesh, where the flow information is stored
at grid points not being equidistantly spaced. For the use as training and validation target, the FVM
fields are mapped onto an equidistant rectangular grid of same dimensions as used by the NNs under
investigation. Due to the limited memory on the used graphics processing units (GPUs), the spatial
resolution is restricted to 128× 128. This mapping is performed in Matlab R2019b, using a natural
neighbour scheme with a Delaunay triangulation for locating neighbours. As depicted in fig. 2, the wavy
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Figure 2: The non-straight confined fluid domain is parametrised according to section 2.1, depending
only on the particle diameter Dp. Circular segments (radii R1, R2) are stitched together with tangential
continuity.

geometry does not convert to a strictly convex polygon and identified neighbours might be located far
away spanning acros the concave area, with values being interpolated in between. Hence, a correction
by comparing the mapped field with the original geometry must be applied to ensure correct geometrical
representation. In order to not being additionally limited by numerical accuracy during the training, the
data is normalized to the range [−1,1]. As input, or BCs, for the NN, an inlet velocity ubc as given by
eq. (6) and the particle phase fraction φ are encoded together with the geometry in two fields with the
same dimensions as the output fields.

2.2 Neural Network Designs

Considering a non-linear function in the general form of Ŷ = f̂ (X ,r), NNs in general can be used to
approximate the true function f̂ in the form Y ≈ f (X ,r). Hence, the task is to get a suitable representation
of f̂ → f capable of approximating Ŷ ≈ Y from the input X , while respecting the underlying degrees
of freedom r [12]. As approximator f , NNs can be used, given a sufficient degree of freedom r and
correspondingly sufficient training data. Since it is hard to balance r, which might be perceived as a
design choice of the NN, and the complexity of the data Ŷ , measures against potential overfitting are
necessary.

A basic design choice is to use convolutional layers as they are especially suited for working on grid-
structured inputs with local context [14]. Hence, CNNs are popular for image processing, often in-
corporating a classification task, which usually sacrifices locality for enhancing context [15]. In order to
approximate a functional Y ≈ f (X ,r), regression rather than classification is required. For grid structured
data, working on different length scales is beneficial as it combines maximum locality, i.e. where in the
domain (at scale 1, ni = 0), with maximum context, i.e. what are the neighbours (at scale 1

2n , ni = n) [15].
To represent the increasing context, an increasing number of features with progressing convolutions is
required. The resulting spatial down-sapling while expanding the feature space, much like in pyramids,
loosely relates to the idea of information being preserved, just like energy in any physical system [16].
Regressing a flow field, which has a certain spatial extent and a certain number of variables, from this
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downsampled feature rich abstract space, requires a subsequent spatial up-sampling with feature reduc-
tion in order to match the final dimensions. The downsampling and upsampling can be performed using
either pooling and unpooling, or with strided convolutions and deconvolutions, respectively [17]. The
term deconvolution covers an actual deconvolution as well as sometimes a transposed convolution with
additional interpolation for upsampling. This upsamling interpolation, like the interpolation in unpool-
ing, might follow a neighbouring scheme, polynomial interpolation or a learnable interpolation of any
complexity. Here, deconvolution is a transposed convolution with learnable interpolation for upsampling.
The repetitive up-sampling can be lossy, as information about locality is lost because neighbour relations
are split. This local correspondence in formation then needs to be re-trained or simply passed through
the network using paths without down-sampling [15]. Therefore, a way to preserve this locality while
still incorporating context information is the use of skip connection [18].

The basic NN design idea with feature expanding down-sampling, or encoding, and subsequent feature
reducing up-sampling, or decoding, is referred to as Convolution-Deconvolution Regression Network
(CDRN). The basic structure of skip connections in CDRNs is a well performing approach in medical
image segmentation [19]. Also the idea of incorporating additional convolution paths in the skip connec-
tions, i.e. dense skips, stems from medical image segmentation [20]. Here, a straight, i.e. flat, CDRN
design is compared to a CDRN with plain skip connections (skip) and a CDRN with dense skips (dense).
Additionally, the impact of different hyperparameters are investigated in a simple exploration grid search.
The three basic resulting designs are illustrated in fig. 3. The tested parameters are

- flat / skip / dense

- number of encoding/decoding blocks, i.e. NN depth n= {3,5,7}
- feature map size fi = f ·2ni , with f= {8,16,32}
- kernel size k = {2,4,8}

In all thee CDRN designs, each convolution or deconvolution is followed by a leaky leaky rectified
linear unit (lReLU) layer with a slope of 0.1 as non-linear activation function, a channel wise batch
normalisation, and a drop-out layer with 0.5 drop rate. The sequence of (de-)convolution, activation,
normalization and drop out is referred to as block. Each convolution n reduces the spatial footprint by
a factor of 2, while the the feature map is expanded by f · 2ni . The spatial upsampling with feature
reduction in order to match space dimensions, works correspondingly, enabling skipped information to
be concatenated at each individual level. Adding leakage to the rectified linear unit (ReLU) is beneficial
to prevent dying neurons and ensures gradients to be propagated though the entire layer, even if a node
is inactive. The batch normalisation after each convolution reduces the covariance shift and hence, it is
able to reduce overfitting while preserving abstraction power of the model, and allows for higher learning
rates, even if it adds two more learnables per layer [21, 22]. To further suppress over-fitting, which might
happen if a powerful model is trained on only little data, a dropout layer is incorporated completing each
convolution block.

2.3 Training

The basic idea of ML is to determine the parameter values of the approximating functional f , that Ŷ ≈Y ,
or min

(
|Ŷ −Y |

)
in an automated manner. As goal for this supervised learning approach, a L1 loss, or

mean absolute error, is used, which reads as
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Figure 3: The three investigated designs of CDRNs including a flat structure, additional skip connections,
or dense skip connections.

L1(Y,Ŷ ) = min

[
1

Nmb

Nmb

∑
n=0

(
1

Nch

Nch

∑
i=0
|Ŷni−Yni|

)]
(7)

where Nmb , Nch is the number of observations in a mini batch and number of features, respectively. In
order to evaluate the forecasting accuracy of the trained NN the deviation from its prediction Y to the true
validation data Ŷ is computed as root mean squared error (RMSE) per channel or feature, much like the
loss in eq. (7). To make this measure independent from the range of data and collapse it to one measure
per prediction, the RMSE is rescaled to the range of data and averaged across channels. This normalized
root mean squared error (NRMSE) then reads as

NRMSE =
1

Nch

Nch

∑
n=0


√(

Ŷch−Ych
)2

max(Ŷch)−min(Ŷch)

 (8)

where max(Ŷch)−min(Ŷch) represents the range of data in each individual channel.

The training is performed on 2055 pre-computed parametric data sets with parameter ranges

0.05≤ Re≤ 10

0.1≤ φ≤ 0.5

Dp = 7.5 ·10−6 m

F= 10 (9)

2≤ D≤ 4

2≤ L≤ 4

0.2≤ λ≤ 0.5

using an ADAM optimizer with a mini batch size of Nmb = 50 and shuffling every epoch [23]. The data
is split into training, validation and test sets at ratios of 0.7, 0.15 and 0.15, respectively. Initial learn
rate is set to 10−3, dropping each 100 epochs by a factor of 0.5. The training is limited to a maximum
of 200 epochs or if the mean error according to eq. (7) is not improving for 20 subsequent iterations.
The entire ML workflow is implemented in Matlab R2019b and performed on a Nvidia Titan X Pascal
GPU, while a Nvidia RTX2080 was used for performance testing. Since the key benefit of ML models is
the fast inference time, the time per prediction as average over an entire test set is given as performance
measure.
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(a) ML (b) FVM

Figure 4: Resulting fields of relative volume phase fraction h
φ
. Inference from skipped CDRN with

f = 16, n= 5.

3 RESULTS

The NRMSEs of the hyperparameter grid search range from approx. 9 · 10−3 down to < 2 · 10−3. The
accuracies in terms of NN designs are shown in fig. 5 as NRMSE vs. the number of learnables. There,
the number of convolution blocks n= {3,5,7} is encoded in the number of learnables.

Figure 5a illustrates the impact of the number of features f = {8,16,32}. The best performance for all
three NN designs is achieved by f = 32 at approx. 2 ·10−3. The dense CDRN with f = 32 and n= 7 is
to large to be evaluated on a RTX2080 (8GB memory) or Titan X (12GB memory), even with reduced
batch size.

The NN performance with different convolution kernel sizes k = {2,4,8} ranges from 9 ·10−3 down to
approx. 3 ·10−3 for several constellations, as depicted in fig. 5b.

In terms of inference durations or deployment performance, which is expressed as accuracy NRMSE
over time needed per prediction, is shown in fig. 6. Even the slowest prediction durations are below
10−2 s and thus, by far faster than a typical FVM solution run.

Exemplary, the normalized phase fraction h
φ
, resulting from FVM computation and ML inference, is

shown in fig. 4. The ML model is a CDRN with skip connections, an initial feature map size f = 16 and
n= 5 convolution/deconvolution blocks.

4 DISCUSSION

This feasibility study demonstrates the use of CNNs as approximating model for confined non-Newtonian
multiphase flows. Even the largest models with more than 108 learnables compute a flow field in less
than 10 milliseconds on consumer level hardware.

The resulting fields of 128×128 grid points are relatively coarse, compared to typical mesh independent
FVM solutions of the Navier-Stokes equations, as depicted in fig. 4. In general, the resolution of ML
computations is only limited by GPU memory. Hence, simply larger GPUs allow for better resolved
fields. Another way could be to incorporate additional upsampling steps to get finer resulting fields.
Since this would incorporate some kind of interpolation, it has to be taken care of discontinuities in
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(a) number of features f = {8,16,32} (b) convolution kernel size k = {2,4,8}

Figure 5: Impact of number of feature maps f and kernel size k for flat, skipped and dense CDRNs with
n= {3,5,7} encoder/decoder blocks on the prediction accuracy.

the fields as well as the geometry. If a small spatial resolution is sufficient, employing NN models is a
powerful computation method, as it outperforms classical computational methods in terms of speed by
far.

Maybe taking only inference durations into account is not correct, since a relevant amount of computing
effort is part of the training and model prediction might only be perceived as interpolation between
elaborately trained cases. If the accuracy of NN models is not sufficient for a particular application, it
might also be used to create initial solutions for other, more accurate and also more trusted methods. As
with most ML methods, deep field regression is prone to errors that are hard to be recognized. A way to
improve this is to incorporate a priori knowledge into the training, such as continuity or impermeability of
walls. An alternative is to use statistics on learnable model parameters, commonly known as explainable
artificial intelligence, in order to retrieve measures for reliability of the result.

Precomputing training targets is advantageous as the data is consistent, available in almost any number,
and does not comprise noise. Using experimental data as training targets in contrast would result in
a ML model, representing real world data, rather than an approximation of a FVM solution. Since
experimental training data is hard to provide in sufficient number, a hybrid or transfer learning approach
could incorporate real world information into a DL model, pretrained on computed targets.

The challenge in NN design in general is that hyperparameters usually are not independent of each
other. Therefore, a simple grid search as presented above can hardly be comprehensive and a Bayesian
optimization may be more efficient.

The results of the hyperparameter search suggest that more features per layer seem beneficial in general
and dense skips are beneficial if there are more features. In smaller numbers of features it depends on
the number of encoder/decoder blocks, if additional skip paths improve accuracy. In terms of network
depth, i.e. number of encoder/decoder blocks, it might be depending on variance in the data, as deeper
networks usually have more abstraction power and therefore are more likely to be prone to overfitting.
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(a) number of features f = {8,16,32} (b) convolution kernel size k = {2,4,8}

Figure 6: Inference performance, i.e time required for one prediction, for different number of feature f
and kernel size k for flat, skipped and dense CDRNs with n= {3,5,7} encoder/decoder blocks.
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