
D2.3. Adjoint-based error estimation
routines

Document information table

Contract number: 800898
Project acronym: ExaQUte
Project Coordinator: CIMNE
Document Responsible Partner: TUM
Deliverable Type: OTHER: Report & Software
Dissemination Level: Public
Related WP & Task: WP2, Task 2.3
Status: Final version

Deliverable 2.3

Authoring

Prepared by:
Authors Partner Modified Page/Sections Version Comments
Brendan Keith TUM

Contributors
Andreas Apostolatos TUM
Anoop Kodakkal TUM
Riccardo Rossi CIMNE
Riccardo Tosi CIMNE
Barbara Wohlmuth TUM

Change Log

Versions Modified Page/Sections Comments

Approval

Aproved by:
Name Partner Date OK

Task leader Barbara Wohlmuth TUM 05/30/2019 OK
WP leader Brendan Keith TUM 05/30/2019 OK
Coordinator Riccardo Rossi CIMNE 05/30/2019 OK

Page 2 of 26

Deliverable 2.3

Executive summary

This document presents a simple and efficient strategy for adaptive mesh refinement
(AMR) and a posteriori error estimation for the transient incompressible Navier–Stokes
equations. This strategy is informed by the work of Prudhomme and Oden [22, 23]
as well as modern goal-oriented methods such as [5]. The methods described in this
document have been implemented in the Kratos Multiphysics software and uploaded to
https://zenodo.org [27].1

This document includes:

• A review of the state-of-the-art in solution-oriented and goal-oriented AMR.

• The description of a 2D benchmark model problem of immediate relevance to the
objectives of the ExaQUte project.

• The definition and a brief mathematical summary of the error estimator(s).

• The results obtained.

• A description of the API.

1This release of the Kratos software with DOI (10.5281/zenodo.3235261) can be found at the following
link: https://zenodo.org/record/3235261.

Page 3 of 26

https://zenodo.org
https://zenodo.org/record/3235261

Deliverable 2.3

Table of contents

1 Introduction 7
1.1 A posteriori error estimation . 7
1.2 Adaptive mesh refinement . 7

1.2.1 Nested mesh adaptivity . 8
1.2.2 Marking strategies . 8
1.2.3 Adaptive remeshing . 10

1.3 Dynamic spatial meshes . 11
1.4 Adjoint-based strategies and other extensions 11

2 Problem statement 13
2.1 Set-up . 13
2.2 A mass conservation error estimator . 14
2.3 A momentum balance law error estimator 14

3 Results 15

A API definition and usage 17

Page 4 of 26

Deliverable 2.3

List of Figures

1 An adaptively generated mesh from a goal-oriented AMR algorithm for the
Navier–Stokes equations. Reproduced from [5]. 12

2 Goal-oriented AMR versus uniform refinement for the confined cylinder
problem. Reproduced from [5]. 12

3 Benchmark domain Ω and boundaries. 13
4 Initial mesh. 15
5 Adaptively refined meshes. 16
6 Velocity field at t = 2.5. 18

Page 5 of 26

Deliverable 2.3

Nomenclature / Acronym list

Acronym Meaning

AMR Adaptive mesh refinement
API Application Programming Interface

ExaQUte
EXAscale Quantification of Uncertainties for Technology
and Science Simulation

QoI Quantity of Interest
MC Monte Carlo
MLMC Multilevel Monte Carlo method
C-MLMC Continuation Multilevel Monte Carlo method
HPC High performance computing
PDE Partial differential equation

Page 6 of 26

Deliverable 2.3

1 Introduction

In this section, we give a brief overview of contemporary research on a posteriori error es-
timation and adaptive mesh refinement and their uses within the purview of the ExaQUte
project.

1.1 A posteriori error estimation

The field of a posteriori error estimation in finite element methods began with the Ph.D.
work of Ladevèze [17] and the research of Babuška et al. [2, 3]. These early ideas have
prospered throughout the intervening decades and have been applied to a plethora of
problems of engineering interest [1, 28].

There are two classical types of error estimators in computational engineering [1]:
residual estimators [2] and recovery estimators [30–32]. Both of these are concerned with
discerning the accuracy of numerical approximations in global “energy norms” endemic to
the given problem. In addition, one may consider adjoint-based error estimators which re-
sult from an optimal control approach to a posteriori error estimation [4, 12] and attempt
to estimate the error in quantities of interest to the engineer. We will refer to the former
(energy-based) class as solution-oriented error estimators and the latter (adjoint-based)
class as goal-oriented error estimators.

Recovery estimators have been used in many applications with Kratos and have a
long history of use in a posteriori error estimation, in particular with the Navier–Stokes
equations beginning with [29]. The support for residual estimators in Kratos is limited
compared to its support for recovery estimators and the ExaQUte project presents a
convenient opportunity to enlarge the support for this alternative. Therefore, in this
document, we shall mainly a focus on the residual type when describing solution-oriented
error estimation.

In the ExaQUte project, the objective of a posteriori error estimation is to two-fold:
(1) to estimate and control the accuracy of individual numerical simulations performed
throughout the project; and (2) to assist in the development of a hierarchy of adaptively
refined meshes {Tk} for use in multi-level Monte Carlo (MLMC) algorithms. Although
inevitably linked objectives, the former mainly manifests in asserting the stopping criteria
for and certifying the accuracy of individual algorithms. Meanwhile, the latter is central
to the composition of discretizations used in these algorithms. This is the subject of the
next subsection.

1.2 Adaptive mesh refinement

Adaptive mesh refinement (AMR) strategies seek to generate optimized approximation
spaces to improve the accuracy and efficiency of numerical methods. In mathematical
literature, the most pervasive strategy for AMR can be described by the following simple
loop [10, 11]:

. . .solve; estimate; mark; refine; . . . (1)

This procedure generates a nested sequence of meshes wherein each new mesh is can be
viewed as an enriched version of the previous mesh. An alternative, which is often seen in
engineering applications, is also referred to as adaptive remeshing. Here, at every refine-
ment step a completely new mesh is generated by reading a (scalar) weight or (tensor)

Page 7 of 26

Deliverable 2.3

metric which has been assigned to the entire computational domain. The standard adap-
tive remeshing procedure is similar to (1), however, instead of the marking step, the new
metric must be computed.

In some contexts, nested mesh adaptivity is desirable because the generation of new
meshes is usually faster and geometry changes at each refinement step are usually very
small. Adversely, remeshing may may deliver an optimized mesh in a shorter series of
iterations, especially when anisotropic meshes are necessary or when a good initial mesh is
not known. Kratos only supports adaptive remeshing, therefore this will be our principal
focus. Neverthess, for completeness, we now briefly review the state-of-the-art in nested
mesh adaptivity.

1.2.1 Nested mesh adaptivity

Normally, at the first stage of the “estimate” step, a special dedicated estimate of the
global error, ηΩ, is computed. If this estimate is below a specific tolerance TOL, the loop is
broken. Otherwise, it continues until plenteous time or computational resources have been
consumed. In some scenarios, ηΩ comes in the form of special dedicated bounds on the
solution error [18, 21, 25, 26]. Other times, it is simply derived from the accumulation of
element-wise error estimates, ηK , which drive the refinement process, otherwise known as
refinement indicators. For simplicity, we will make the following simplifying assumption,
holding to the latter scenario: η2

Ω =
∑

K∈T η
2
K , where T is the given finite element mesh.

The abstract AMR strategy we will consider is given in Algorithm 1. Note that, at least
for the time being, we do not wish to consider anisotropic refinement or mesh coarsening.
Therefore, in step (4), it is assumed that each marked element is isotropically refined in a
consistent and stable way; see, e.g., [7]. This algorithm can be generalized in a straight-
forward way when multiple sets of refinement indicators {η1

K}T∈T , {η2
K}T∈T ,. . . are used,

as can appear naturally in the analysis of coupled PDEs (cf. Sections 2.2 and 2.3).

Algorithm 1 Adaptive mesh refinement

Input: initial mesh T0, tolerance TOL, a marking strategy.
i← 0.
loop

(1) Solve the discrete problem on Ti.
(2) Compute the refinement indicators {ηK}K∈Ti .
if ηΩ < TOL then

break
(3) Mark a set of elements M⊂ Ti, as dictated by the marking strategy.
(4) Refine all marked elements M ∈M and construct the next mesh Ti+1.
(5) i← i+ 1.

return solution uh.

1.2.2 Marking strategies

In step (3) of Algorithm 1, the construction of M ⊂ T can be performed in numerous
ways. Here, we outline three common strategies which we plan to investigate in the
ExaQUte.

Page 8 of 26

Deliverable 2.3

Fixed proportion marking. In some applications, it is desirable to ensure a fixed rate
of growth in computational complexity between each mesh Tk and Tk+1. This objective
readily manifests in the following simple marking strategy:

Marking strategy 1. Fixed proportion marking

Input: constant 0 < θ < 1.
Define M to be the largest subset of T such that

|M| ≤ θ · |T | and ηM > ηM ′ for each ηM ∈M and ηM ′ ∈ T \M .

The maximum strategy Of course, in some problems it may be a drawback if the same
proportion of elements are added at each refinement step. For instance, if as the mesh is
developed new features appear in the solution, which were not present at coarse scales,
then naturally the proportional of new elements should change with the refinement level.
This issue is partially avoided if the refinement criteria is based on the relative values of
the refinement indicators, such as in the following strategy:

Marking strategy 2. Maximum value marking

Input: constant 0 < θ < 1.
Define

ηmax = max
K∈T

ηK .

Define M to the largest subset of T such that

ηM ≥ (1− θ) · ηmax for all M ∈M .

Dörfler marking An important improvement on Marking Strategy 2 was made in [10]
which, with certain PDEs, can be used to prove the recovery of optimal convergence rates
in the presence of some singularities. This strategy is given as follows:

Marking strategy 3. Dörfler marking

Input: constant 0 < θ < 1.
Define

ηΩ =

(∑
K∈T

η2
K

)1/2

.

Define M to be the smallest subset of T such that∑
M∈M

η2
M ≥ θ · η2

Ω .

Page 9 of 26

Deliverable 2.3

Remark 1. In general, every refinement indicator ηK will be non-negative. Therefore,
notice that each of the Marking Strategies 1–3 reproduce or mimic uniform refinement in
the limit θ → 1. Conversely, no refinements are usually performed in the limit θ → 0.
When setting the bulk parameter θ ∈ (0, 1), these dependences should be kept in mind.

Remark 2 In order to construct the maximal or minimal setsM⊂ T in Marking Strate-
gies 1 or 3, respectively, a global sort of the set of refinement indicators {ηK}K∈T is usually
necessary.

1.2.3 Adaptive remeshing

In a two-dimensional adaptive remeshing strategy, one often designs a metric g : Ω →
R2×2

sym. encoding the desired node spacing δ(x), aspect ratio r(x), and alignment direction
a(x), which vary through each point x in the domain. For instance, let λi(x), i = 1, . . . , 2,
taken in decreasing order, be the eigenvalues of g(x) and let vi(x) be the associated eigen-

vector field. Generally, δ ∝ 1/
√
λ1, r ∝

√
λ1
λ2

, and a(x) ∝ v1(x). At each refinement step,

instead marking in step (3) in Algorithm 1, the metric g(x) is updated. Generalization
to three dimensions is straightforward.

Usually, the metric is constructed using second order information derived from an a
posteriori error estimator. Let I ∈ R2×2 be the identity matrix and f(x) be some scalar-
valued function. In this report, we use only first order information, which restricts the
type of metric structure we may consider. Specifically, we only account for tensors of the
form2 g(x) = f(x) · I. Therefore, all of the meshes we will be able to produce will be
isotropic; i.e., r(x) = 1.

Over the union of all elements in the mesh K, let η̃ :
⋃
K → R be the linear interpolant

of the piecewise constant function K 3 x 7→ ηK and let N be the number of elements in
the mesh. The function f(x) is constructed as follows: First, fix φ ∈ (0, 1) and define the
piece-wise linear mesh density factor

C(x) =
φ · ηΩ

N1/2 · η̃
,

which is a scaling factor penalizing the deviation of the local element error estimate from
mean element error. Here, the factor φ serves to make the average element size throughout
the domain change by a factor of φ, after each refinement.

The function f(x) could be set directly in terms of hcurr(x) · C(x), where hcurr is the
nodal element size function for the current mesh. However, if C(x) is too large or small
in some regions of the domain, this may induce too rapidly graded meshes. Therefore, we
use an additional tolerance C0 ∈ R to bound this density factor and, thereby, define the
restricted mesh density factor C0(x) = min{max{C(x), 1/C0}, C0} ∈ [1/C0, C0].

Now define the mesh density function h(x) = hcurr(x) · C0(x). It is also a potential
issue if the element size becomes too small or large. Therefore, we must introduce limits
on these values: hsafe(x) = min{max{h(x), hmin}, hmax}. Finally, set f(x) = hsafe(x)−2.

2In Euclidean coordinates.

Page 10 of 26

Deliverable 2.3

1.3 Dynamic spatial meshes

In transient problems, one has the choice of whether or not to dynamically update the
spatial mesh T ; i.e., reconstruct a new mesh after each (or a certain number) of time steps
[29]. Although such dynamic AMR strategies ultimately optimize the mesh distribution
over each spatial refinement window, they can easily become prohibitively expensive on
modern computing systems [9]. This is due in part to the extra computational resources
necessary for mesh generation and load balancing in distributed environments and, in
turn, requires numerous considerations in order to control runtimes.

In taking this and ExaQUte objectives into account, one of the most important AMR
studies to compare with is [5]. From their paper, we reprint their justification for avoid-
ing dynamic AMR in the confined cylinder flow problem, which has many important
similarities to the problems to be encountered in within the ExaQUte project:

“We do not use dynamic spatial meshes in this example for two reasons. On
the one hand, the use of dynamic meshes leads to wrong approximations of
the drag coefficient if no additional projection steps are applied each time the
spatial mesh is changed, which would be rather costly (see Besier and Wollner
[6] for a discussion of this problem). The other reason becomes clear if we have
a look at Figure 9. . .We observe that in order to precisely determine the mean
drag coefficient, it is not necessary to resolve the whole van Kármán vortex
street. Only a small recirculation zone behind the obstacle is strongly refined.
As the vortices in this region develop relatively early, we may conclude that
allowing dynamic meshes would not provide a notable reduction in the degrees
of freedom needed to reach the same accuracy as with adaptively refined but
fixed spatial meshes. In view of the additional effort on dynamic meshes due
to more frequent matrix reassembling and the additional projection steps, we
reach the conclusion that the use of dynamic spatial meshes does not make
sense in this particular flow example.”

For similar reasons, we choose to neglect dynamic spatial remeshing at this stage of the
ExaQUte project.

1.4 Adjoint-based strategies and other extensions

The vast majority of early work on a posteriori error estimation was focused on estimates
of the global solution error in deterministic problems. However, in the late 90s, an adjoint-
based (goal-oriented) error estimation theory devoted to the error in functional outputs
of computer simulations—so-called quantities of interest (QoI)—was developed by Oden
and Prudhomme [19, 24], Becker and Rannacher [4], Patera and Peraire [21], and Giles
and Süli [12]. More recently, sophisticated a posteriori error estimation techniques have
also been developed for stochastic problems with parametric and domain uncertainties
[13, 14, 20]. However, this theory is still limited in nonlinear or transient settings.

In general, goal-oriented AMR strategies deliver far superior performance in problems
where the error in the QoI has outsize sensitivity to localized solution features which
are not prioritized by traditional solution-oriented AMR algorithms. Conversely, in some
other scenarios, there is little advantage in goal-oriented AMR over solution-oriented
AMR or, in some cases, even uniform refinement [4]. For the ExaQUte objectives, one

Page 11 of 26

Deliverable 2.3

Figure 1: An adaptively generated mesh from a goal-oriented AMR algorithm for the
Navier–Stokes equations. Reproduced from [5].

Figure 2: Goal-oriented AMR versus uniform refinement for the confined cylinder problem.
Reproduced from [5].

of the most important studies into adjoint-based strategies is [5] (cf. Section 1.3). Here,
a sophisticated dual-weighted residual (DWR) method [4, Section 5] is proposed for the
transient Navier–Stokes equations in 2D. Moreover, it is analyzed on the canonical con-
fined cylinder problem where the QoI is the drag coefficient on the cylinder.

In Figure 1, we have reproduced an adaptively generated mesh from one of the confined
cylinder experiments in [5]. This mesh was generating by a goal-oriented AMR strategy
without dynamic remeshing where the quantity of interest was the drag coefficient on the
cylinder. Although their results were not compared with a solution-oriented approach, we
clearly see several notable features in the mesh pattern which often appear in solution-
oriented AMR with this class of problems; see, e.g., [15, 16, 24]. For instance, one sees
the finest mesh scales near the cylinder; namely, in a region around the boundary of the
object, in its immediate wake, and along the nearest regions of the channel wall.

In Figure 2, we reproduce the corresponding convergence plot comparing the goal-
oriented AMR strategy with uniform refinements. Here, we see only about a one order of
magnitude gain in efficiency at the 1% error mark and nearly a two order of magnitude
gain at the 0.1% error mark. Even though solution-oriented AMR was never compared
with these results in this study, given the mesh pattern depicted in Figure 1, one would
obviously expect the accuracy of solution-oriented AMR to be far more similar to results
from goal-oriented refinement rather than uniform refinement.

At best, the results in [5] are not persuasive that goal-oriented AMR will be a benefit to
the objectives of the ExaQUte project. Therefore, we have decided to avoid this investing
in this feature.

We now offer a partial heuristic justification for the drawback of goal-oriented re-
finement in this particular example. In such problems, consider that large errors in the

Page 12 of 26

Deliverable 2.3

Figure 3: Benchmark domain Ω and boundaries.

downstream solution usually have little influence on the accuracy of quantities measured
upstream. On the contrary, large upstream errors can easily propagate in a way which
ruins the accuracy of downstream quantities. This may be a great concern when trying
to construct an optimal mesh for a flow over of sequence of bluff bodies when a quantity
such as the drag on a single body is of interest. However, when only a single object is
impeding the flow, the influences are much simpler to discern because every boundary
layer is generated near the object in question. In this case, the boundary layers will be
resolved with similar accuracy with a solution-oriented strategy or a goal-oriented strat-
egy (at least one based on a quantity measured in a vicinity of the object) because both
will emphasize every boundary layer present in the solution.

2 Problem statement

In the ExaQUte project, the PDEs of principle concern are the incompressible Navier–
Stokes equations, given as follows:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u ,

∇ · u = 0 .

In this section, we will use these equations to define a simple benchmark problem and
propose a straightforward error estimator for use in AMR during its analysis.

2.1 Set-up

In the ExaQUte project, we will be simulating wind flow past large complicated structures
under calibrated physical conditions. Figure 3 is an extremely simplified 2D representation
of this scenario. Here, the impeding object is simply a square, which leaves behind the
computational domain Ω.

On the inflow boundary, Γin, the following temporal average velocity is prescribed:

u(t,Γin) · n = u
(z
z0

)α
, u(t,Γin) · n⊥ = 0 , (2)

where n is the unit normal vector field on ∂Ω and n⊥ is any unit length vector field
orthogonal to n. In our experiments, we have set α = 0.12 and u = 10 ms−1. The

Page 13 of 26

Deliverable 2.3

remaining boundaries, Γsurf , Γzen, and Γout have wall, free slip, and zero flux boundary
conditions, repectively; i.e.,

u(t,Γsurf) = 0 , σ(t,Γout)n = 0 ,

u(t,Γzen) · n = 0 , σ(t,Γzen)n · n⊥ = 0 ,
(3)

where σ = −pI + ν
(
∇u +∇u>

)
is the Cauchy stress tensor.

2.2 A mass conservation error estimator

Solution-oriented a posteriori error estimation for the transient Navier–Stokes equations
was considered in rigorous detail in [22, 25]. In those works, the finite element residuals
of the momentum balance and mass conservation equations are analyzed separately and
two separate a posteriori error estimators are derived out of these residuals.

From the mass conservation equation residual, for each time step n and elementK ∈ T ,
they arrive at the following error estimator:

ηmass
K,n = ‖div(unh)‖L2(K) .

Taking the root mean square of this estimator over the time interval [0, T], delivers the
following averaged residual estimator:

ηmass
K =

(
1

T

∫ T

0

‖div(uh(s, ·))‖2
L2(K) ds

)1/2

, (4)

and its corresponding global error estimator,

ηmass
Ω =

(
1

T

∫ T

0

‖div(uh(s, ·))‖2
L2(Ω) ds

)1/2

. (5)

2.3 A momentum balance law error estimator

The error estimator above is extremely convenient as it has an immediate physical meaning
and can be efficiently computed at the element level. Nevertheless, it is agnostic to all
errors in the discrete pressure field pnh and errors in the solenoidal part of the velocity
field unh. In order to rigorously control these errors, a separate error estimator may also
be computed.

By analyzing the momentum balance law, Prudhomme and Oden arrive at the implicit
error estimator

ηmom.
K,n =

(1

∆t
‖ϕh‖2

L2(K) +
1

2
Re−1|ϕh|H1(K)

)1/2

,

where ϕh is the unique solution of an auxiliary problem on an enriched approximation
space Wh ⊂ H1(Ω). To define this auxiliary problem, first denote the discrete residual
of the momentum balance law by Rmom.

h . The Riesz projection of the residual, ϕh ∈Wh,
is then defined as the unique solution to

1

∆t
(ϕh,v) +

1

2
Re−1(∇ϕh,∇v) = Rmom.

h (v) , for all v ∈Wh . (6)

Page 14 of 26

Deliverable 2.3

Figure 4: Initial mesh.

The solution of (6) can be made computationally feasible by forming Wh out of a
localized approximation space using bubble functions. Otherwise, one may formally con-
sider the limit Re→∞ and observe that the difficult (∇ϕh,∇v) vanishes. In this case,
one may also consider constructing a different Riesz representation ϕ̃h ∈ W̃h solving

1

∆t
(ϕ̃h,v) = Rmom.

h (v) , for all v ∈ W̃h ,

where W̃h (
∏

K∈T H
1(K) is a nonconforming enriched approximation space. This

second alternative is convenient for the ExaQUte objectives since the Reynolds number
may eventually grow to eight order of magnitude, Re ∼ 108.

Obviously, (4) can also be extended to averaged local and global residual estimators.
Namely,

ηmom.
K =

(
1

T

∫ T

0

1

∆t
‖ϕh‖2

L2(K) +
1

2
Re−1|ϕh|H1(K) ds

)1/2

,

and

ηmom.
Ω =

(
1

T

∫ T

0

1

∆t
‖ϕh‖2

L2(Ω) +
1

2
Re−1|ϕh|H1(Ω) ds

)1/2

.

3 Results

In this section, we present results from our adaptive remeshing strategy with a wind field
simulation over a five second time interval. Here we start the simulation with a zero initial
velocity field and use ν = 1.846 · 10−5 kg/(m · s). Additionally, we begin the simulation
with the two-scale initial mesh depicted in Figure 4.

With the parameters φ = 0.9, C0 = 2, hmax = 5, and hmin = 0.01, the first three
successively adapted meshes are depicted in Figure 5. Note that, in order to avoid early
transients, the time averages in (4) and (5) did not include the first 20% of the simulation.
It is clear from these figures that the boundary layer region near the block is targeted
for refinement. However, there clearly appear larger scale spurious refinements in the
originally coarsely meshed part of the domain. It is unclear whether these mesh artifacts
are a direct result of the adaptive scheme because they do not appear in what was, in the
initial mesh, the finely meshed region. This is an immediate concern which will need to
be addressed going forward.

Page 15 of 26

Deliverable 2.3

(a) First mesh.

(b) Second mesh.

(c) Third mesh.

Figure 5: Adaptively refined meshes.

Page 16 of 26

Deliverable 2.3

Snapshots of the solution at t = 2.5 are provided in Figure 6 to verify that the
persistent boundary layer is indeed captured by the adaptive algorithm.

A API definition and usage

This appendix provides a brief documentation and explanation of the API for the adaptive
mesh refinement and how it may be used [27]. As in most other standard Kratos Mul-
tiphysics software R©, a simulation invoking adaptive mesh refinement is controlled via a
python layer. In Kratos, the remeshing facility is provided by the MMG software library
[8]. We will use the file ProblemZero ForwardOnly.py, which runs the Navier–Stokes
problem defined in Section 2, in order to demonstrate the API.

The Kratos meshing application may be loaded using the following python import
command:

10 import KratosMultiphysics.MeshingApplication as KratosMeshing

After solving the problem, the user may call the divergence error estimator and adaptive
mesh remeshing utility in the following way:

120 # Calculate divergence metric of the variable

121 metric_parameters = KratosMultiphysics.Parameters("""

122 {

123 "minimal_size": 0.01,

124 "maximal_size": 5.0,

125 "refinement_strategy": "mean_distribution_strategy",

126 "mean_distribution_strategy": {

127 "target_refinement_coefficient" : 0.9,

128 "refinement_bound" : 2.0

129 }

130 } """)

131 local_divergencefree_metric =

KratosMeshing.MetricDivergenceFreeProcess2D(fluid_solver._GetSolver().main_model_part,metric_parameters)↪→
132 local_divergencefree_metric.Execute()

133 print("divergence free metric computed")

Currently, only the refinement strategy "refinement strategy": "MeanDistributor"

is supported. Clearly, the parameters minimal size and maximal size fix the minimial
and maximal sizes of the elements, hmin and hmax, respectively. Meanwhile, the param-
eters target refinement coefficient and refinement bound are, respectively, φ and
C0 from Section 1.2.3.

After the metric parameters have been set, the remeshing process is executed in the
next sequence of lines:

135 # Execute remeshing process

136 remesh_parameters = KratosMultiphysics.Parameters()

137 MmgProcess = KratosMeshing.MmgProcess2D(fluid_solver._GetSolver().main_model_part,remesh_parameters)

138 MmgProcess.Execute()

139 print("MMG refinement computed")

after which, the new mesh and problem information is output to .gid and .mdpa file
using the commands

143 computational_name = fluid_solver._GetSolver().GetComputingModelPart().Name

144 print(computational_name)

145 fluid_solver._GetSolver().main_model_part.RemoveSubModelPart(computational_name)

146

Page 17 of 26

Deliverable 2.3

(a) Velocity field.

(b) Close-up (without mesh).

(c) Close-up (with mesh).

Figure 6: Velocity field at t = 2.5.

Page 18 of 26

Deliverable 2.3

147 # PRINT MDPA AND GID

148 CreateGidControlOutput(fluid_solver._GetSolver().main_model_part,"ProblemZero_finaltime")

149 KratosMultiphysics.ModelPartIO("ProblemZero_refined", KratosMultiphysics.IO.WRITE |

KratosMultiphysics.IO.MESH_ONLY).WriteModelPart(fluid_solver._GetSolver().main_model_part)↪→

In most applications, a sequence of meshes will need to be generated. In this case, it is
necessary to rerun the simulation the necessary number of times after changing input file-
name in the .json parameter file ProblemZeroParameters.json to ProblemZero refined.
Note that in order to run MLMC algorithms, a sequence of refined meshes may be re-
quired. The technology to read only once and at coarsest level the model part has already
been developed (see deliverable 4.2 and 5.2). The implementation of this benchmark
problem into those MLMC routines will be a future concern.

A copy of the complete file ProblemZero ForwardOnly.py now follows.

1 from __future__ import absolute_import, division #makes KratosMultiphysics backward compatible with python

2.6 and 2.7↪→
2

3 # Importing the Kratos Library

4 import KratosMultiphysics

5

6 # Import applications

7 import KratosMultiphysics.FluidDynamicsApplication as KratosFluidDynamics

8 from fluid_dynamics_analysis import FluidDynamicsAnalysis

9 import KratosMultiphysics.MultilevelMonteCarloApplication as KratosMLMC

10 import KratosMultiphysics.MeshingApplication as KratosMeshing

11

12 # Avoid printing of Kratos informations

13 KratosMultiphysics.Logger.GetDefaultOutput().SetSeverity(KratosMultiphysics.Logger.Severity.WARNING) #

avoid printing of Kratos things↪→
14

15 # Importing the base class

16 from analysis_stage import AnalysisStage

17

18 # Import packages

19 import numpy as np

20

21 # Import Monte Carlo library

22 import mc_utilities as mc

23

24 # Import cpickle to pickle the serializer

25 try:

26 import cpickle as pickle # Use cPickle on Python 2.7

27 except ImportError:

28 import pickle

29

30 # Import exaqute

31 from exaqute.ExaquteTaskPyCOMPSs import * # to execute with pycompss

32 # from exaqute.ExaquteTaskHyperLoom import * # to execute with the IT4 scheduler

33 # from exaqute.ExaquteTaskLocal import * # to execute with python3

34 '''

35 get_value_from_remote is the equivalent of compss_wait_on: a synchronization point

36 in future, when everything is integrated with the it4i team, importing exaqute.ExaquteTaskHyperLoom you

can launch your code with their scheduler instead of BSC↪→
37 '''

38

39 '''

40 function evaluating the QoI of the problem: int_{domain} TEMPERATURE(x,y) dx dy

41 right now we are using the midpoint rule to evaluate the integral: improve!

42 '''

43 def EvaluateQuantityOfInterest():

44 # TODO AK: Look for a better way to do this

45 """here we evaluate the QoI of the problem: """

46

47 fluid_model = KratosMultiphysics.Model()

48

Page 19 of 26

Deliverable 2.3

49 fluid_project_params_file_name = 'ProblemZeroParameters.json'

50 with open(fluid_project_params_file_name,'r') as parameter_file:

51 parameters_fluid = KratosMultiphysics.Parameters(parameter_file.read())

52

53 '''

54 # --

55 # ----- Setting up and initializing the Fluid Solver -----

56 # --

57 '''

58 fluid_solver = FluidDynamicsAnalysis(fluid_model, parameters_fluid)

59

60 fluid_solver.Initialize()

61

62 fluid_model_part = fluid_model["MainModelPart"]

63 fluid_inlet_model_part = fluid_model["MainModelPart.AutomaticInlet2D_inlet"]

64

65 print("==")

66 print("||||||||||||||||||||||| SETTING UP FLUID DONE ||||||||||||||||||||||||")

67 print("==")

68

69 # compute the drag

70 def CalcDrag(time):

71 structure = fluid_model_part.GetSubModelPart('NoSlip2D_structure')

72 nodes = structure.Nodes

73 rx = 0.0

74 ry = 0.0

75 rz = 0.0

76 for node in nodes:

77 reaction = node.GetSolutionStepValue(KratosMultiphysics.REACTION, 0)

78 #print(node, reaction)

79 rx += -1 * reaction[0]

80 ry += -1 * reaction[1]

81 rz += -1 * reaction[2]

82 # AK : Reaction is negative of the action on the structure

83 drag_force = [time,rx,ry,rz]

84 return drag_force

85

86

87 # ----- Solving the problem (time integration) -----

88 drag_force_vector = np.zeros([0,4])

89 while(fluid_solver.time <= fluid_solver.end_time):

90

91 fluid_solver.time = fluid_solver._GetSolver().AdvanceInTime(fluid_solver.time)

92

93 fluid_solver.InitializeSolutionStep()

94

95 #ApplyInletVelocity(fluid_inlet_model_part, gust_velocity,fluid_solver.time)

96

97 fluid_solver._GetSolver().Predict()

98 fluid_solver._GetSolver().SolveSolutionStep()

99

100 fluid_solver.FinalizeSolutionStep()

101

102 drag_force = CalcDrag(fluid_solver.time)

103 drag_force_vector = np.vstack((drag_force_vector,drag_force))

104 fluid_solver.OutputSolutionStep()

105

106 # disp = tip_node.GetSolutionStepValue(KratosMultiphysics.DISPLACEMENT)

107 # file_writer.WriteToFile([time, disp[0], disp[1], disp[2], num_inner_iter])

108

KratosFluidDynamics.WeightedDivergenceCalculationProcess(fluid_solver._GetSolver().main_model_part).Execute()↪→
109 print("divergence weighted average computed")

110 # for elem in fluid_solver.model.GetModelPart("MainModelPart").Elements:

111 # if (elem.GetValue(KratosFluidDynamics.DIVERGENCE) > 10.0):

112 # print(elem.GetValue(KratosFluidDynamics.DIVERGENCE))

113

114

115 # Calculate NODAL_H

116 find_nodal_h =

KratosMultiphysics.FindNodalHNonHistoricalProcess(fluid_solver._GetSolver().main_model_part)↪→
117 find_nodal_h.Execute()

Page 20 of 26

Deliverable 2.3

118 print("nodal h computed")

119

120 # Calculate divergence metric of the variable

121 metric_parameters = KratosMultiphysics.Parameters("""

122 {

123 "minimal_size": 0.01,

124 "maximal_size": 5.0,

125 "refinement_strategy": "mean_distribution_strategy",

126 "mean_distribution_strategy": {

127 "target_refinement_coefficient" : 0.9,

128 "refinement_bound" : 2.0

129 }

130 } """)

131 local_divergencefree_metric =

KratosMeshing.MetricDivergenceFreeProcess2D(fluid_solver._GetSolver().main_model_part,metric_parameters)↪→
132 local_divergencefree_metric.Execute()

133 print("divergence free metric computed")

134

135 # Execute remeshing process

136 remesh_parameters = KratosMultiphysics.Parameters()

137 MmgProcess = KratosMeshing.MmgProcess2D(fluid_solver._GetSolver().main_model_part,remesh_parameters)

138 MmgProcess.Execute()

139 print("MMG refinement computed")

140

141 # Remove model part created by the solver

142 # TODO: find a smarter way for this removing, but at least working

143 computational_name = fluid_solver._GetSolver().GetComputingModelPart().Name

144 print(computational_name)

145 fluid_solver._GetSolver().main_model_part.RemoveSubModelPart(computational_name)

146

147 # PRINT MDPA AND GID

148 CreateGidControlOutput(fluid_solver._GetSolver().main_model_part,"ProblemZero_finaltime")

149 KratosMultiphysics.ModelPartIO("ProblemZero_refined", KratosMultiphysics.IO.WRITE |

KratosMultiphysics.IO.MESH_ONLY).WriteModelPart(fluid_solver._GetSolver().main_model_part)↪→
150

151

152 # TIME LOOP END

153

154 fluid_solver.Finalize()

155

156 time_stable= int(0.2 * len(drag_force_vector))

157 mean_force_x = np.mean(drag_force_vector[time_stable:, 1])

158 print(mean_force_x)

159

160 return mean_force_x

161

162

163 '''

164 function called in the main returning a future object (the result class) and an integer (the finer level)

165 input:

166 pickled_coarse_model : pickled model

167 pickled_coarse_parameters : pickled parameters

168 output:

169 MonteCarloResults class : class of the simulation results

170 current_MC_level : level of the current MLMC simulation

171 '''

172 def ExecuteMonteCarloAnalysis(pickled_model, pickled_parameters):

173 current_MC_level = 0 # MC has only level 0

174 return (ExecuteMonteCarloAnalysis_Task(pickled_model, pickled_parameters),current_MC_level)

175

176

177 '''

178 function executing the problem

179 input:

180 model : serialization of the model

181 parameters : serialization of the Project Parameters

182 output:

183 QoI : Quantity of Interest

184 '''

185 @ExaquteTask(returns=1)

186 def ExecuteMonteCarloAnalysis_Task(pickled_model, pickled_parameters):

Page 21 of 26

Deliverable 2.3

187 '''overwrite the old model serializer with the unpickled one'''

188 model_serializer = pickle.loads(pickled_model)

189 current_model = KratosMultiphysics.Model()

190 model_serializer.Load("ModelSerialization",current_model)

191 del(model_serializer)

192 '''overwrite the old parameters serializer with the unpickled one'''

193 serialized_parameters = pickle.loads(pickled_parameters)

194 current_parameters = KratosMultiphysics.Parameters()

195 serialized_parameters.Load("ParametersSerialization",current_parameters)

196 del(serialized_parameters)

197 '''initialize the MonteCarloResults class'''

198 current_level = 0 # always 0 for MC

199 mc_results_class = mc.MonteCarloResults(current_level)

200 QoI = EvaluateQuantityOfInterest()

201 mc_results_class.QoI[current_level].append(QoI) # saving results in the corresponding list, for MC

only list of level 0↪→
202 return mc_results_class

203

204

205 '''

206 function serializing and pickling the model and the parameters of the problem

207 the idea is the following:

208 i) from Model/Parameters Kratos object to StreamSerializer Kratos object

209 ii) from StreamSerializer Kratos object to pickle string

210 iii) from pickle string to StreamSerializer Kratos object

211 iv) from StreamSerializer Kratos object to Model/Parameters Kratos object

212 input:

213 parameter_file_name : path of the Project Parameters file

214 output:

215 pickled_model : model serializaton

216 pickled_parameters : project parameters serialization

217 '''

218 @ExaquteTask(parameter_file_name=FILE_IN,returns=2)

219 def SerializeModelParameters_Task(parameter_file_name):

220 with open(parameter_file_name,'r') as parameter_file:

221 parameters = KratosMultiphysics.Parameters(parameter_file.read())

222 local_parameters = parameters

223 model = KratosMultiphysics.Model()

224 serialized_model = KratosMultiphysics.StreamSerializer()

225 serialized_model.Save("ModelSerialization",model)

226 serialized_parameters = KratosMultiphysics.StreamSerializer()

227 serialized_parameters.Save("ParametersSerialization",parameters)

228 # pickle dataserialized_data

229 pickled_model = pickle.dumps(serialized_model, 2) # second argument is the protocol and is NECESSARY

(according to pybind11 docs)↪→
230 pickled_parameters = pickle.dumps(serialized_parameters, 2)

231 print("\n","#"*50," SERIALIZATION COMPLETED ","#"*50,"\n")

232 return pickled_model,pickled_parameters

233

234 def CreateGidControlOutput(model_part, output_name):

235 from gid_output_process import GiDOutputProcess

236 gid_output = GiDOutputProcess(

237 model_part,

238 output_name,

239 KratosMultiphysics.Parameters("""

240 {

241 "result_file_configuration" : {

242 "gidpost_flags": {

243 "GiDPostMode": "GiD_PostBinary",

244 "MultiFileFlag": "SingleFile"

245 },

246 "nodal_results" : ["VELOCITY","PRESSURE"],

247 "nodal_nonhistorical_results": ["DIVERGENCE","NODAL_H","METRIC_TENSOR_2D"],

248 "nodal_flags_results": []

249 }

250 }

251 """)

252)

253 gid_output.ExecuteInitialize()

254 gid_output.ExecuteBeforeSolutionLoop()

255 gid_output.ExecuteInitializeSolutionStep()

Page 22 of 26

Deliverable 2.3

256 gid_output.PrintOutput()

257 gid_output.ExecuteFinalizeSolutionStep()

258 gid_output.ExecuteFinalize()

259

260

261 if __name__ == '__main__':

262

263 '''set the json parameters path'''

264 parameter_file_name = "ProblemZeroParameters.json"

265 # parameter_file_name = "ProblemZeroParameters.json"

266 '''create a serialization of the model and of the project parameters'''

267 pickled_model,pickled_parameters = SerializeModelParameters_Task(parameter_file_name)

268 '''customize setting parameters of the ML simulation'''

269 settings_MC_simulation = KratosMultiphysics.Parameters("""

270 {

271 "tolerance" : 1,

272 "cphi" : 5e-1,

273 "batch_size" : 5,

274 "convergence_criteria" : "MC_higher_moments_sequential_stopping_rule"

275 }

276 """)

277 '''contruct MonteCarlo class'''

278 mc_class = mc.MonteCarlo(settings_MC_simulation)

279 '''start MC algorithm'''

280 while mc_class.convergence is not True:

281 mc_class.InitializeMCPhase()

282 mc_class.ScreeningInfoInitializeMCPhase()

283 for instance in range (mc_class.difference_number_samples[0]):

284 mc_class.AddResults(ExecuteMonteCarloAnalysis(pickled_model,pickled_parameters))

285 break

286 break

287 mc_class.FinalizeMCPhase()

288 mc_class.ScreeningInfoFinalizeMCPhase()

289

290 #mc_class.QoI.mean = get_value_from_remote(mc_class.QoI.mean)

291 print("\nMC mean = ",mc_class.QoI.mean)

Page 23 of 26

Deliverable 2.3

References

[1] M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis,
volume 37. John Wiley & Sons, 2000.

[2] I. Babuška and W. C. Rheinboldt. A-posteriori error estimates for the finite element
method. Int. J. Numer. Meth. Eng., 12(10):1597–1615, 1978.

[3] I. Babuška, R. B. Kellogg, and J. Pitkäranta. Direct and inverse error estimates for
finite elements with mesh refinements. Numer. Math., 33(4):447–471, 1979.

[4] R. Becker and R. Rannacher. An optimal control approach to a posteriori error
estimation in finite element methods. Acta Numer., 10:1–102, 2001.

[5] M. Besier and R. Rannacher. Goal-oriented space-time adaptivity in the finite el-
ement Galerkin method for the computation of nonstationary incompressible flow.
International Journal for Numerical Methods in Fluids, 70(9):1139–1166, 2012.

[6] M. Besier and W. Wollner. On the pressure approximation in nonstationary in-
compressible flow simulations on dynamically varying spatial meshes. International
Journal for Numerical Methods in Fluids, 69(6):1045–1064, 2012.

[7] J. Bey. Tetrahedral grid refinement. Computing, 55(4):355–378, 1995.

[8] C. Dapogny, C. Dobrzynski, and P. Frey. Three-dimensional adaptive domain remesh-
ing, implicit domain meshing, and applications to free and moving boundary prob-
lems. Journal of computational physics, 262:358–378, 2014.

[9] T. Dickopf, D. Krause, R. Krause, and M. Potse. Design and analysis of a lightweight
parallel adaptive scheme for the solution of the monodomain equation. SIAM Journal
on Scientific Computing, 36(2):C163–C189, 2014.

[10] W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer.
Anal., 33(3):1106–1124, 1996.

[11] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to adaptive methods
for differential equations. Acta Numer., 4:105–158, 1995.

[12] M. B. Giles and E. Süli. Adjoint methods for PDEs: a posteriori error analysis and
postprocessing by duality. Acta Numer., 11:145–236, 2002.

[13] D. Guignard, F. Nobile, and M. Picasso. A posteriori error estimation for elliptic
partial differential equations with small uncertainties. Numerical Methods for Partial
Differential Equations, 32(1):175–212, 2016.

[14] D. Guignard, F. Nobile, and M. Picasso. A posteriori error estimation for the steady
Navier–Stokes equations in random domains. Computer Methods in Applied Mechan-
ics and Engineering, 313:483 – 511, 2017.

[15] B. Keith. New ideas in adjoint methods for PDEs: A saddle-point paradigm for
finite element analysis and its role in the DPG methodology. PhD thesis, University
of Texas at Austin, Austin, Texas, 2018.

Page 24 of 26

Deliverable 2.3

[16] B. Keith, P. Knechtges, N. V. Roberts, S. Elgeti, M. Behr, and L. Demkowicz.
An ultraweak DPG method for viscoelastic fluids. Journal of Non-Newtonian Fluid
Mechanics, 247:107–122, 2017.

[17] P. Ladevèze. Comparaison de modeles de milieux continus. PhD thesis, Université
P. et M. Curie, Paris, France, 1975.

[18] P. Ladevèze, F. Pled, and L. Chamoin. New bounding techniques for goal-oriented
error estimation applied to linear problems. Int. J. Numer. Meth. Eng., 93(13):
1345–1380, 2013.

[19] J. T. Oden and S. Prudhomme. Goal-oriented error estimation and adaptivity for
the finite element method. Comput. Math. Appl., 41(5-6):735–756, 2001.

[20] J. T. Oden, I. Babuška, F. Nobile, Y. Feng, and R. Tempone. Theory and methodol-
ogy for estimation and control of errors due to modeling, approximation, and uncer-
tainty. Computer Methods in Applied Mechanics and Engineering, 194(2-5):195–204,
2005.

[21] A. T. Patera and J. Peraire. A general Lagrangian formulation for the computation of
a posteriori finite element bounds. In Error Estimation and Adaptive Discretization
Methods in Computational Fluid Dynamics, pages 159–206. Springer, 2003.

[22] S. Prudhomme and J. Oden. A posteriori error estimation and error control for
finite element approximations of the time-dependent Navier–Stokes equations. Finite
elements in analysis and design, 33(4):247–262, 1999.

[23] S. Prudhomme and J. Oden. Numerical stability and error analysis for the incom-
pressible Navier–Stokes equations. Communications in numerical methods in engi-
neering, 18(11):779–787, 2002.

[24] S. Prudhomme and J. T. Oden. On goal-oriented error estimation for elliptic prob-
lems: application to the control of pointwise errors. Comput. Methods Appl. Mech.
Eng., 176(1-4):313–331, 1999.

[25] S. Prudhomme and J. T. Oden. Computable error estimators and adaptive techniques
for fluid flow problems. In Error estimation and adaptive discretization methods in
computational fluid dynamics, pages 207–268. Springer, 2003.

[26] S. Prudhomme, J. T. Oden, T. Westermann, J. Bass, and M. E. Botkin. Practical
methods for a posteriori error estimation in engineering applications. Int. J. Numer.
Meth. Eng., 56(8):1193–1224, 2003.

[27] R. Rossi, C. Roig, P. Dadvand, M. Núñez, R. Tosi, R. M. Badia, R. Amela, and
B. Keith. Kratosmultiphysics/kratos: Exaqute m12, May 2019. URL https://doi.

org/10.5281/zenodo.3235261.

[28] R. Verfürth. A posteriori error estimation techniques for finite element methods.
Oxford University Press, Oxford, 2013.

[29] J. Wu, J. Zhu, J. Szmelter, and O. Zienkiewicz. Error estimation and adaptivity in
Navier–Stokes incompressible flows. Computational mechanics, 6(4):259–270, 1990.

Page 25 of 26

https://doi.org/10.5281/zenodo.3235261
https://doi.org/10.5281/zenodo.3235261

Deliverable 2.3

[30] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure
for practical engineerng analysis. International journal for numerical methods in
engineering, 24(2):337–357, 1987.

[31] O. C. Zienkiewicz and J. Z. Zhu. The superconvergent patch recovery and a posteriori
error estimates. Part 2: Error estimates and adaptivity. International Journal for
Numerical Methods in Engineering, 33(7):1365–1382, 1992.

[32] O. C. Zienkiewicz and J. Z. Zhu. The superconvergent patch recovery and a posteriori
error estimates. Part 1: The recovery technique. International Journal for Numerical
Methods in Engineering, 33(7):1331–1364, 1992.

Page 26 of 26

	Introduction
	A posteriori error estimation
	Adaptive mesh refinement
	Nested mesh adaptivity
	Marking strategies
	Adaptive remeshing

	Dynamic spatial meshes
	Adjoint-based strategies and other extensions

	Problem statement
	Set-up
	A mass conservation error estimator
	A momentum balance law error estimator

	Results
	API definition and usage

