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Abstract. In this paper, the potential of building more accurate and robust models for the 

prediction of the ultimate pure bending capacity of steel circular tubes using artificial 

intelligence techniques is investigated. Therefore, a database consisting of 104 tests for 

fabricated and cold-formed steel circular tubes are collected from the open literature and used 

to train and validate the proposed data-driven approaches which include the Random Forest 

methodology in two variants: the original version in which the control parameters are manually 

updated, and an enhanced RF-PSO variant, where Particle Swarm Optimization is used for 

optimizing these parameters. The data set has four input parameters, namely the tube thickness, 

tube diameter, yield strength of steel and steel elasticity modulus, while the ultimate pure 

bending capacity is considered as the target output variable. The obtained results are compared 

to the real test values through various statistical indicators such as the root mean square error 

and the coefficient of determination. The results indicate that the proposed enhanced model can 

provide an accurate solution for modelling the complex behavior of steel circular tubes under 

pure bending conditions. 

 
 

1 INTRODUCTION 

Circular steel tubes represent one of the most popular structural profiles used in the steel 

construction industry. Their double symmetry makes them particularly well suited for resisting 

bending stresses in any direction simultaneously [1]. As a result, they are usually one of the 

most economical alternatives for structural members that are subjected to various types of 

loading conditions, such as the case of columns or pipes. When circular steel tubes experience 
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large stresses on their cross-section, their deformation mechanism is characterized by a physical 

phenomenon referred to as “ovalization” [2]. This phenomenon has to do with the progressive 

deformation of the circular cross section into an oval-like shape. Consequently, the stiffness 

and the geometrical properties of the section change drastically resulting in a highly non-linear 

structural response [3]. Such a mechanism could lead to severe damage or complete failure that 

could result in severe environmental and economic loses. For this reason, it is of particularly 

high importance to find appropriate and reliable mathematical models to study the behavior of 

these structural elements in detail.  

Scientists and engineers have proposed various close-form solutions to estimate the bending 

moment capacity of circular steel tubes which are usually based on thorough experimental 

testing [4-10]. Among the most established and frequently used methods are those that are 

included in building design codes such as Eurocode 3 [11], AS/NZS 4600 [12], AS 4100 [13] 

and AISC [14]. However, most of these estimations assume that the deformed, ovalized shape 

is a perfect ellipse [15] which may not be accurate, especially in the case of large deformations. 

More advanced models with the inclusion of plastic hinges at specific points [16], or along the 

whole element length [1] have also been proposed. These methods can estimate the bending 

capacity considering higher degrees of ovalization with sufficient accuracy for practical 

purposes. Nevertheless, the most reliable models are highly detailed finite element models using 

appropriated plasticity constitutive laws and considering the geometric non-linearity in their 

formulation [17]. Such detailed models are capable of simulating both small and large degrees 

of ovalization, and even some other difficult physical phenomena, such as self-contact [18]. 

However, they are commonly used only for research purposes due to their heavy computational 

cost and the difficulty in their formulation and implementation. 

Although some of the previously mentioned mathematical models are capable of estimating 

the bending capacity of steel circular tubes, their applicability is limited because of the 

assumptions used in their formulations, or in the case of complex FE models, because of their 

heavy computational cost which poses simulation challenges [19]. On the other hand, data-

driven Artificial Intelligence (AI) methods offer much more flexibility as they do not require 

any assumptions and are able to estimate the bending capacity by directly interpolating from 

the available testing data with sufficient accuracy and with a considerably low computational 

effort. 

AI-driven methodologies have become very popular in solving practical engineering 

problems in the last decade. For example, problems related to masonry structures [20-22], 

degradation in steel structures [23, 24], concrete structures [25, 26], steel structures [27, 28], 

optimal cost-design of concrete footings [29] and other interesting and novel applications [30]. 

In terms of the estimation of the bending capacity of steel circular tubes , Shahin and 

Elchalakani [31] utilized artificial neural networks (ANNs) for this purpose, outperforming the 

estimations from the formulas in current building codes. Basarir et al. [32] used neuro-fuzzy 

inference algorithms and neural networks to predict the bending capacity of concrete-filled 

tubes, demonstrating the significant advantages of AI-based models compared to the traditional 

mathematical approaches.  

In this paper, we investigate various hybrid-AI methodologies based on the random forest 

(RF) methodology, for estimating the ultimate bending capacity of circular steel tubes. The RF 

technique is implemented in two variants: the original RF and an optimized RF using particle 

swarm optimization (PSO). The proposed models are trained and tested on an experimental 
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database before being evaluated using various performance metrics. The structure of the paper 

is as follows: Sections 2 presents the collected data and the proposed framework based on RF 

and PSO. Section 3 presents the results and the relevant discussion, while Section 4 summarizes 

the main conclusions of the work.  

2 DATA AND IMPLEMENTATION 

2.1 Database of circular steel tubes bending capacity  

To build accurate models using artificial intelligence techniques, the use of a comprehensive 

database is of particular importance. In this regard, a database containing 104 experimental tests 

of circular steel tubes subjected to pure bending obtained from the open literature is used in this 

work to train and test the developed models. 47.1% of the experimental data is from fabricated 

tubes (49 experimental tests) and is labeled as F01 to F49 [4-8]), while the remainder 52.9% is 

from cold-form tubes (55 experimental tests) and is labeled as C01 to C55 [9, 10]. The 

information is gathered from a variety of sources, such as those listed in [4-10]. 

The target output is the ultimate bending capacity (UBC) of the steel tube, while the inputs 

are 4 parameters, namely (1) the section’s thickness t, (2) the section’s diameter d, (3) the 

yielding stress of the fabrication steel fy, and (4) the elastic modulus E of the material. All the 

relevant experimental data values are reported in Table 1. It should be noted that these data are 

randomly divided into two categories: training data (80%) for creating the models, and testing 

data (20%) for testing the performance of the generated models. 

 
Table 1: Experimental test results: Fabricated tubes [4-8] and cold-formed circular tubes [9, 10]. 

ID 

Inputs Output  

ID 

Inputs Output 

t 

(mm) 

d 

(cm) 

fy 

(MPa) 

E 

(GPa) 

Mu 

(kN∙m) 

 t 

(mm) 

d 

(cm) 

fy 

(MPa) 

E 

(GPa) 

Mu 

(kN∙m) 

F01 26.6 45.7 279 199.63 1442.1  C01 2.53 10.18 365 199.80 8.8 

F02 18.7 45.7 299 199.90 1237.0  C02 2.6 8.86 432 209.50 8.0 

F03 16.5 45.8 338 200.36 1198.1  C03 2.45 7.63 415 217.10 5.1 

F04 13.1 45.8 299 200.35 830.9  C04 3.35 8.93 412 217.90 9.9 

F05 9.9 45.8 294 200.59 562.9  C05 2.44 6.06 433 211.10 3.1 

F06 6.9 45.8 325 199.43 381.5  C06 3.24 7.62 456 211.10 7.6 

F07 6.1 45.6 314 200.91 346.6  C07 3.01 6.06 408 204.70 4.2 

F08 6.3 45.6 309 201.07 358.6  C08 1.98 3.36 442 204.20 0.8 

F09 12.9 61.0 314 200.08 1490.1  C09 2.63 3.38 460 207.10 1.1 

F10 6.8 61.0 373 201.20 810.4  C10 1.1 11.01 408 190.90 3.9 

F11 25.4 45.7 374 199.94 1892.7  C11 1.0 10.99 408 190.90 3.7 

F12 19.6 45.8 390 199.86 1408.6  C12 0.9 10.97 408 190.90 3.4 

F13 18.8 45.5 367 198.94 1391.7  C13 1.25 11.04 408 190.90 4.5 

F14 16.4 45.8 424 199.92 1302.9  C14 1.7 9.86 410 212.30 5.8 

F15 13.3 45.8 411 199.93 1111.5  C15 1.2 9.88 404 191.20 4.3 

F16 10.0 45.8 410 200.49 783.4  C16 1.4 9.92 404 191.20 4.9 

F17 6.8 45.8 434 199.50 538.8  C17 1.6 9.96 365 199.80 5.4 

F18 13.6 61.0 405 199.14 1729.7  C18 1.8 10.00 365 199.80 5.3 

F19 13.7 60.8 378 199.72 1828.2  C19 2.3 9.98 410 212.30 8.9 

F20 7.0 60.9 429 200.62 918.3  C20 2.4 8.73 412 217.90 5.7 

F21 9.9 60.8 401 200.25 1317.2  C21 2.1 10.06 404 191.20 7.5 

F22 14.9 27.3 290 210.00 306.1  C22 2.44 10.18 365 200.00 8.7 
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F23 7.8 27.3 304 210.00 160.0  C23 2.52 8.93 378 182.00 6.4 

F24 5.6 27.3 405 210.00 150.9  C24 2.17 7.63 415 217.00 4.7 

F25 4.9 27.3 419 210.00 139.7  C25 3.1 8.93 412 218.00 9.4 

F26 3.5 27.3 287 210.00 64.7  C26 2.23 6.07 433 211.00 3.0 

F27 2.5 27.3 311 210.00 48.8  C27 3.07 7.62 456 211.00 7.7 

F28 1.9 10.9 269 210.00 7.1  C28 2.9 6.07 408 205.00 3.7 

F29 1.4 10.3 270 210.00 4.3  C29 2.4 3.38 460 207.00 1.1 

F30 1.1 10.5 270 210.00 3.2  C30 2.44 10.18 365 200.00 8.4 

F31 0.94 10.3 245 210.00 2.3  C31 2.44 10.18 365 200.00 8.7 

F32 0.76 10.4 267 210.00 1.6  C32 2.52 8.93 378 182.00 6.7 

F33 2.9 10.0 358 210.00 10.3  C33 3.08 8.91 473 201.00 10.0 

F34 2.3 12.5 359 210.00 12.2  C34 2.29 6.02 407 211.00 3.3 

F35 1.6 11.2 357 210.00 7.4  C35 3.07 7.62 456 211.00 7.4 

F36 0.99 8.9 370 210.00 2.7  C36 2.95 6.04 413 196.00 4.0 

F37 1.3 11.7 394 210.00 6.2  C37 2.54 10.11 400 190.00 10.5 

F38 5.9 27.3 380 210.00 167.2  C38 2.52 8.93 378 182.00 7.2 

F39 8.9 27.3 334 210.00 232.1  C39 2.35 7.61 370 202.00 4.6 

F40 6.6 40.6 342 210.00 385.7  C40 3.08 8.91 473 201.00 10.6 

F41 6.5 50.8 375 210.00 593.1  C41 2.29 6.02 407 211.00 3.3 

F42 3.9 11.4 308 210.00 15.4  C42 3.13 7.59 402 198.00 6.7 

F43 3.9 16.8 305 210.00 33.2  C43 2.95 6.04 413 196.00 4.3 

F44 4.8 16.8 368 210.00 48.3  C44 2.52 8.93 378 182.00 7.3 

F45 5.6 27.3 306 210.00 126.7  C45 2.29 6.02 407 211.00 3.8 

F46 6.4 32.4 377 210.00 248.9  C46 2.95 6.04 413 196.00 4.6 

F47 6.4 35.6 297 210.00 231.3  C47 2.54 10.11 400 190.00 8.7 

F48 6.3 40.6 309 210.00 297.0  C48 2.52 8.93 378 182.00 6.4 

F49 6.4 50.8 362 210.00 509.5  C49 2.35 7.61 370 202.00 4.3 

       C50 3.08 8.91 473 201.00 9.8 

       C51 2.29 6.02 407 211.00 3.3 

       C52 3.13 7.59 402 198.00 5.9 

       C53 2.95 6.04 413 196.00 4.1 

       C54 2.52 8.93 378 182.00 6.2 

       C55 2.95 6.04 413 196.00 4.0 

2.2 Random Forest 

Leo Breiman’s Random Forest (RF) is a powerful Ensemble Learning (EL) approach that 

combines bagging ensemble learning theory [33] with Ho’s random subspace method [34]. RFs 

are a combination of tree predictors such that each tree depends on the values of a random 

vector sampled independently and with the same distribution for all trees in the forest. A 

decision tree (DT) has the same basic structure as the RF for prediction problems, but it suffers 

from overfitting in cases where the input variables are complex and as a result DTs are unable 

to cope effectively with classification problems. Consequently, RF outperforms the standard 

DT model in terms of generalization and prediction accuracy [35]. The unpredictability of the 

RF model is most visible in the two aspects stated below. To begin, the bootstrap technique is 

used to generate K new sample sets randomly from the training set based on the model inputs, 

with each new sample set being used to train a DT. As a result, the basis estimator in the RF 

model is K DTs. The unselected samples make up the out-of-bag (OOB) databases. Second, 

during the DT construction, a certain number of features (N) from the input variables must be 

retrieved at random. For prediction purposes, each DT will generate an estimated result, and all 
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prediction results from the K DTs will be voted on to determine the final predicted RF outcome. 

The ultimate decision outcome of the RF model is calculated using Eq. (1) [36]: 

 𝐻(𝑿) = arg 𝑚𝑎𝑥 ∑ 𝐼(ℎ𝑖(𝑿) = 𝒀)𝐾
𝑖=1  (1) 

where H(X) denotes an RF model with various DTs; hi is the i-th individual DT; K is the total 

number of DTs; and X and Y represent the vectors of the input variables and the correct 

prediction, respectively. 

2.3 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a metaheuristic optimization algorithm that is based 

on the dynamic movements and social behavior that is observed in social animals such as bird 

flocks or schools of fishes. It was introduced by Kennedy and Eberhart [37] and since then it 

has been widely implemented for solving practical optimization problems in engineering and 

other disciplines [38-41]. The searching method of PSO iteratively updates a population 

(swarm) of possible solutions, which are known as “particles”. Each particle is labeled with its 

location (i.e. coordinates) and velocity in the D-dimensional search space [42]. The particles’ 

positions represent alternative solutions of the optimization problem, where at an iteration k, 

the relevant position and velocity for a particle i are expressed as follows: 

 𝑿𝑖,𝑘 = {𝑿𝑖1, 𝑿𝑖2, … , 𝑿𝑖𝐷} (2) 

 𝒗𝑖,𝑘 = {𝒗𝑖1, 𝒗𝑖2, … , 𝒗𝑖𝐷} (3) 

where 𝒗𝑖,𝑘 and 𝒙𝑖,𝑘 denote the velocity and position of the i-th particle at iteration k, 

respectively. The velocity of each particle changes with the iterations according to Eq. (4) as 

follows: 

 𝒗𝑖,𝑘+1 = 𝜒 ∗ ((𝒗𝑖,𝑘 + 𝑐1𝑟1(𝒑𝒃𝒆𝒔𝒕𝑖,𝑘 − 𝒙𝑖,𝑘) + 𝑐2𝑟2(𝒈𝒃𝒆𝒔𝒕𝑘 − 𝒙𝑖,𝑘)) (4) 

where pbesti,k signifies the i-th particle’s best position at the k-th iteration; gbestk denotes the 

best position ever found by the entire swarm, while c1 and c2 are positive, predefined 

acceleration constants and r1, r2 are uniformly distributed random numbers in the range [0, 1]. 

The parameter χ, known as the convergence factor, is computed as follows 

 𝜒 =
2

|2−𝜃−√𝜃2−4𝜃|
 (5) 

with θ=c1+c2>4. Commonly, θ is equal to 4.1, and as a result χ = 0.729. Each particle changes 

its position at each iteration according to Eq. (6): 

 𝑿𝑖,𝑘+1 = 𝑿𝑖,𝑘 + 𝒗𝑖,𝑘+1 (6) 

Both pbesti (for every particle i) and gbest (for the entire swarm) are updated at each iteration 

if a new location corresponds to an improved value of the objective function. 

3 RESULTS AND DISCUSSIONS 

Before presenting and discussing the results, the appropriate tools for evaluating the 

performance of the RF and RF-PSO models for predicting the ultimate bending capacity of 

circular steel tubes should be described. Thus, after obtaining the modeling results, the 
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following procedure is followed which takes into account three types of evaluation tools: (1) 

Statistical indicators, (2) Graphical indicators, and (3) The Taylor Diagram [43]. The first set of 

tools includes four statistical indicators: (i) Root mean squared error (RMSE), (ii) Relative root 

mean squared error (RRMSE), (iii) Mean bias error (MBE), and (iv) Mean absolute relative 

error (MARE). The mathematical expressions of these performance metrics are described in 

Eqs (7)-(10) as shown below, 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑈𝐵𝐶𝑖

𝑒𝑥𝑝 − 𝑈𝐵𝐶𝑖
𝑝𝑟𝑒)

2𝑛
𝑖=1  (7) 

 𝑅𝑅𝑀𝑆𝐸 =
√1

𝑛
∑ (𝑈𝐵𝐶

𝑖
𝑒𝑥𝑝

−𝑈𝐵𝐶
𝑖
𝑝𝑟𝑒

)
2𝑛

𝑖=1

∑ 𝑈𝐵𝐶
𝑖
𝑒𝑥𝑝𝑛

𝑖=1

 (8) 

 𝑀𝐵𝐸 =
1

𝑛
∑ (𝑈𝐵𝐶𝑖

𝑒𝑥𝑝 − 𝑈𝐵𝐶𝑖
𝑝𝑟𝑒)

2𝑛
𝑖=1  (9) 

 𝑀𝐴𝑅𝐸 =
1

𝑛
∑ |

𝑈𝐵𝐶𝑖
𝑒𝑥𝑝

−𝑈𝐵𝐶𝑖
𝑝𝑟𝑒

𝑈𝐵𝐶
𝑖
𝑒𝑥𝑝 |𝑛

𝑖=1  (10) 

where 𝑼𝑩𝑪𝒊
𝒆𝒙𝒑

and 𝑼𝑩𝑪𝒊
𝒑𝒓𝒆

 are the experimental and predicted values of the ultimate bending 

capacity of circular steel tubes, respectively. It should be noted that in general, the lower the 

values of the metrics RMSE, RRMSE, MBE, and MARE, the better the model predictions. 

The second evaluation tool is the graphical representation, which is used to compare the 

agreement between the experimental results (ground truth values) and the predicted values 

using the RF and RF-PSO prediction models. For this purpose, a scatterplot-based coefficient 

of determination (Eq.11) is used, as shown in Eq. (11), 

 𝑅2 = (
∑ (𝑼𝑩𝑪𝒊

𝒑𝒓𝒆
−𝑼𝑩𝑪𝒂𝒗𝒈

𝒑𝒓𝒆
)(𝑼𝑩𝑪𝒊

𝒆𝒙𝒑
−𝑼𝑩𝑪𝒂𝒗𝒈

𝒆𝒙𝒑
)𝒏

𝒊=𝟏

√∑ (𝑼𝑩𝑪𝒊
𝒑𝒓𝒆

−𝑼𝑩𝑪𝒂𝒗𝒈
𝒑𝒓𝒆

)
𝟐

𝒏
𝒊=𝟏 .∑ (𝑼𝑩𝑪𝒊

𝒆𝒙𝒑
−𝑼𝑩𝑪𝒂𝒗𝒈

𝒆𝒙𝒑
)

𝟐
𝒏
𝒊=𝟏

)

2

 (11) 

where 𝑼𝑩𝑪𝒂𝒗𝒈
𝒆𝒙𝒑

and 𝑼𝑩𝑪𝒂𝒗𝒈
𝒑𝒓𝒆

 are the mean values of the experimental and predicted values for 

the ultimate bending capacity of circular steel tubes, respectively. 

The Taylor Diagram [43] is a globe-based graphical comparison tool that includes and 

combines three statistical indicators: (i) the (Centered) Root mean squared error, (ii) the 

standard deviation, and (iii) the Pearson correlation coefficient R (Eq. (12)), which is used as 

the last performance comparative tool in this study. 

 𝑅 =
𝑛 ∑ (𝑼𝑩𝑪𝒊

𝒑𝒓𝒆
.𝑼𝑩𝑪𝒊

𝒆𝒙𝒑
)𝒏

𝒊=𝟏 −∑ (𝑼𝑩𝑪𝒊
𝒑𝒓𝒆

)𝒏
𝒊=𝟏 ∑ (𝑼𝑩𝑪𝒊

𝒆𝒙𝒑
)𝒏

𝒊=𝟏

√[𝑛 ∑ (𝑼𝑩𝑪𝒊
𝒑𝒓𝒆2

)−(∑ (𝑼𝑩𝑪𝒊
𝒑𝒓𝒆

)𝒏
𝒊=𝟏 )

2𝒏
𝒊=𝟏 ][𝑛 ∑ (𝑼𝑩𝑪𝒊

𝒆𝒙𝒑2
)−(∑ (𝑼𝑩𝑪𝒊

𝒆𝒙𝒑
)𝒏

𝒊=𝟏 )
2𝒏

𝒊=𝟏 ]

 (12) 

3.1 Statistical indicators results and discussion  

Table 2 displays the results of the aforementioned statistical indicators, for the two phases 

of training and testing, as well as the overall results (training and testing, together). The results 

show that using the hybrid model, RF-PSO, provides the best performance when compared to 

the original RF model when using all indicators and for all phases. During the training and 

testing phases, RF-PSO achieved RMSE values of 96.40 kN∙m and 148.04 kN∙m, respectively. 
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This draws attention to the fact that the training phase is slightly better than the testing phase, 

which can be explained by the amount of data used for training the models (80%) compared to 

the amount of data used for testing the models (20%). Another point to note is the high values 

obtained by using the MBE statistical indicator, which can be attributed to the fact that this 

indicator is capable of accurately representing problems with relatively small values when 

compared to large value results. Overall, it is estimated that using PSO to optimize the RF 

control parameters yields better results in comparison to the simple RF model. Particularly, the 

RF metric values are larger than the corresponding RF-PSO values, by 40.2% for RMSE, 41.9% 

for RRMSE, 77.5% for MBE and 11.5% for MARE, as shown in Table 2. 

 
Table 2: Results of the evaluation during the training, testing and overall phases. 

  Proposed models 

Phase Indicator RF RF-PSO 

Training  

RMSE 132.7186 96.3956 

RRMSE 0.7171 0.5208 

MBE 17614.2377 9292.1201 

MARE 0.9661 0.8794 

Testing  

RMSE 217.5238 148.0406 

RRMSE 2.5564 1.7398 

MBE 34420.1532 21916.0087 

MARE 1.1385 0.9674 

Overall 

RMSE 149.6797 106.7246 

RRMSE 1.0849 0.7646 

MBE 20975.4208 11816.8978 

MARE 1.0006 0.8970 

 

3.2 Graphical analysis  

To illustrate the agreement between the predicted results and the experimental (ground truth) 

values, the scatter plots are plotted in Figure 1 and Figure 2, for the RF and RF-PSO models, 

respectively, during the training and the testing phases. The coefficient of determination R2 is 

included in each subfigure. In these figures, the black line represents the perfect agreement 

between the predicted and the experimental values, whereas the dashed red line represents the 

linear relationship between predicted and experimental values according to the linear regression 

model. It can be seen that during the training and testing phases, RF-PSO provides R2 values of 

0.9638 and 0.9392, respectively, compared to 0.9121 and 0.9125 for the corresponding values 

of the simple RF model, which indicates that the RF-PSO model is better than the RF model. 

In terms of R2 values, the RF-PSO model outperforms the original RF model in the training and 

testing phases by 5.7% and 2.9%, respectively. 
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(a) (b) 

Figure 1: Scatterplots of predicted vs experimental (ground truth) results, using RF: 

(a) Training phase, (b) Testing phase. 

  
(a) (b) 

Figure 2: Scatterplots of predicted vs experimental (ground truth) results, using RF-PSO: 

(a) Training phase, (b) Testing phase. 

3.2 Taylor diagram   

The Taylor diagram [43], can provide a global performance comparison based on multiple 

indicators. Figure 3 depicts the results of the Taylor diagram-based analysis for the training and 

testing phases. The standard deviations are defined by the dashed black circles, including the 

red dashed circle which corresponds to the standard deviation of the experimental values set. 

The Pearson correlation coefficient is defined by the gray straight line. The closer the obtained 
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model results point is to the real/experimental value point (full red circle), the better the model’s 

overall performance in general. In both the training and the testing phases, the RF-PSO model 

results are the closest to the experimental results. In comparison to the original RF model, the 

proposed RF-PSO model has a higher Pearson correlation coefficient equal to 0.982 during the 

training phase and 0.969 during the testing phase, compared to 0.955 during both phases using 

the original RF model. Thus, it is shown that the use of meta-heuristic algorithms and in 

particular PSO can improve the performance of the original RF model when solving complex 

prediction problems such as the problem of estimating the ultimate bending capacity of circular 

steel tubes. 

 

 

  
(a) (b) 

Figure 3: Taylor diagram for the RF and RF-PSO models: (a) Training phase, (b) Testing phase. 

4 CONCLUSIONS 

The behavior of steel tubes and in particular their ultimate bending capacity is modeled in 

this study using artificial intelligence models based on the random forest technique and particle 

swarm optimization. The proposed approach includes the original RF technique in which the 

control parameters are manually updated, as well as the new RF-PSO approach, where PSO is 

used for optimizing these parameters. Following that, a database of 104 samples extracted from 
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remaining 20% used for testing. The performance of the models is evaluated using a variety of 
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The results show that the proposed RF-PSO model outperforms the original RF in terms of 

accuracy and efficiency. In particular, the RF metric values are larger than the corresponding 

PSO-optimized RF model values, by 40.2% for RMSE, 41.9% for RRMSE, 77.5% for MBE 

and 11.5% for MARE. Furthermore, in terms of R2 values, the RF-PSO model outperforms the 

original RF model in the training and testing phases by 5.7% and 2.9%, respectively. The study 

can be improved further by using more robust and powerful nature-inspired algorithms to 

improve the generalization and performance of the RF model. In addition, future research 

should investigate the impact of random database splitting on model performance, as well as 

the impact of input parameters on the target output. 
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