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Summary. In aerodynamic shape optimization, gradient-based algorithms usually rely
on the adjoint method to compute gradients. Working with continuous adjoint offers a
clear insight into the adjoint equations and their boundary conditions, but discretization
schemes significantly affect the accuracy of gradients. On the other hand, discrete ad-
joint computes sensitivities consistent with the discretized flow equations, with a higher
memory footprint though. This work bridges the gap between the two adjoint variants
by proposing consistent discretization schemes (inspired by discrete adjoint) for the con-
tinuous adjoint PDEs and their boundary conditions, with a clear physical meaning. The
capabilities of the new Think-Discrete-Do-Continuous adjoint are demonstrated, for in-
viscid flows of compressible fluids, in shape optimization in external aerodynamics.

1 INTRODUCTION

In aerodynamic shape optimization, gradient-based methods are attractive since, thanks
to the adjoint method, can efficiently compute the extrema of an objective function J , by
computing its gradient with respect to (w.r.t.) the design variables. With the (continuous
or discrete) adjoint method, the cost of computing the gradient of J is independent of
the number of the design variables. The ease of implementation, the insight into the
adjoint PDEs and the low memory footprint are the main advantages of continuous ad-
joint, [1, 2]. On the other hand, discrete adjoint, [3, 4, 5], computes the gradient of the
objective/constraint function(s) with max. accuracy, thanks to the consistency of the dis-
cretized primal (flow) and adjoint equations. This paper develops discretization schemes
for the (continuous) adjoint PDEs which are inspired by, and are consistent with, discrete
adjoint. In other words, we combine the advantages of continuous and discrete adjoint
into a new Think-Discrete-Do-Continuous (TDDC ) adjoint, with low memory footprint
and comprehensible discretization schemes. Here, the development is restricted to invis-
cid flow models for compressible flows. Due to limitations on the number of pages, we
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refrain from presenting the discretization of sensitivity derivatives (SDs). The new TDDC
adjoint is used for the shape optimization of an airfoil and a wing, both at flow conditions
that lead to transonic flows. All runs are carried out using the in-house GPU–accelerated
flow simulation and adjoint-based optimization platform PUMA, [7]. PUMA solves the
Reynolds-Averaged Navier-Stokes equations for compressible and incompressible fluids
(here, the compressible variant, for inviscid flows, is used).

In a similar work, [6], the discrete adjoint fluxes were derived by hand and, through
reverse-engineering, discretization schemes for some of the continuous adjoint terms were
devised, for incompressible flows solved using the segregated pressure-based algorithm.

2 PRIMAL PROBLEM & ITS DISCRETIZATION

The inviscid flow equations for 3D compressible flows are solved in the form

RMF
n =

∂fnk
∂xk

= 0 , n = 1, .., 5, k = 1, ..., 3 (1)

where fnk=[ρvk ρvkv1 + pδ1k ρvkv2 + pδ2k ρvkv3 + pδ3k ρvkht]
T are the inviscid fluxes.

Eq. 1 is solved for the conservative flow variables U=[ρ ρv1 ρv2 ρv3 ρE]T after adding
a pseudo-time derivative term. Here, ρ, p, vk, E, ht and δkm are the density, pressure,
velocity components, total energy per unit mass, total enthalpy and the Kronecker symbol,
respectively. Eq. 1 is integrated over the finite volume ΩP of node P of an unstructured
grid, Fig. 1. By applying the Green-Gauss theorem we get

ˆ

ΩP

(
∂fnk
∂xk

)
dΩ =

ˆ

∂ΩP

fnkn̂kd (∂Ω) ≃
∑

Q∈N (P )

ΦPQ
n +

∑
ffl
∈B(P )

Φ
ffl
n (2)

where ∂ΩP is the boundary of ΩP and n̂k the unit normal vector pointing outwards.
Neighbors Q∈N (P ) and faces

ffl
∈B (P ) are defined in Fig. 1. Fluxes ΦPQ

n crossing the

Figure 1: Vertex–centered finite volumes for internal or boundary nodes P of a hybrid
2D grid. Nodes Qi are connected to P via a grid edge, while nodes Λi are neighbors of
P , connected or not via an edge. N (P ) = {Λi}, Qi ∈ N (P ). Similar notation in 3D.

interface of ΩP and ΩQ are discretized using the second-order Roe’s upwind scheme,

ΦPQ
n =

1

2

(
AP

nmkU
P
m + AQ

nmkU
Q
m

)
nPQ
k − 1

2

∣∣∣ÃLR
nmkn

PQ
k

∣∣∣ (UR
m − UL

m

)
(3)
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where Anmk =
∂f inv

nk

∂Um
is the flux Jacobian and Ãnmk the Jacobian computed using Roe-

averaged quantities, [8]. Superscripts L and R indicate the left (toward P ) and right
(toward Q) states at this interface and nPQ

k is the dimensional face normal pointing toward

Q. UL
m, U

R
m are computed based on the primitive V L

m , V R
m quantities, V=[ρ v1 v2 v3 p]T ,

using Taylor expansions,

V L
m =V P

m +
1

2
tPQ
ℓ

∂V P
m

∂xℓ

,
∂V P

m

∂xℓ

=DP
ℓ V

P
m +

∑
Λ∈N (P )

ZPΛ
ℓ V Λ

m (4a)

V R
m =V Q

m − 1

2
tPQ
ℓ

∂V Q
m

∂xℓ

,
∂V Q

m

∂xℓ

=DQ
ℓ V

Q
m +

∑
K∈N (Q)

ZQK
ℓ V K

m (4b)

where tPQ
ℓ are the Cartesian components of

−→
PQ and Dℓ, Zℓ are geometrical quantities. For

the farfield boundary, the Flux Vector Splitting scheme, [9], is used, Φ
ffl
n = A+P

nmkn
ffl
kU

P
m +

A−P
nmkn

ffl
kU

Q
m, where Q is a halo node where infinite flow quantities are imposed. Along the

solid walls, the no-penetration condition (vknk=0) yields Φ
ffl
n=

[
0, pPn

ffl
k , 0

]
.

3 THE THINK-DISCRETE-DO-CONTINUOUS ADJOINT

In continuous adjoint, J is augmented by the field integrals of the product of the state
equations’ residuals with the adjoint variable fields, Jaug = J+

´
Ω

ΨnRndΩ. Differentiating

Jaug w.r.t. the design variables bi and setting the multipliers of δUn

δbi
to zero leads to a

new set of PDEs, the so–called field adjoint equations (FAE), and the adjoint boundary
conditions (ABC). In an inviscid flow, the FAE are written as, [10].

−Amnk
∂Ψm

∂xk

= 0 (5)

Its integral over ΩP is approximated by the following balance of adjoint fluxes

−
ˆ

ΩP

Amnk
∂Ψm

∂xk

dΩ ≃
∑
Q

Φadj,PQ
n +

∑
ffl Φadj,

ffl
n (6)

A non-conservative discretization scheme for Eq. 6, [1], which mimics the primal one, is

Φadj,PQ
n = −1

2
AP

mnkn
PQ
k

(
ΨP

m +ΨQ
m

)
− 1

2

∣∣∣ÃLR
mnkn

PQ
k

∣∣∣ (ΨR
m −ΨL

m

)
(7)

The adjoint solver that makes use of the above discretization scheme will be referred as
the standard continuous adjoint. In the TDDC adjoint, we seek discretization schemes

for Φadj,PQ
n and Φ

adj,
ffl

n which are consistent with discrete adjoint and also have a clear
physical meaning (as Eq. 7 does). Inspired by discrete adjoint (the presentation of which
is beyond the scope of this paper), the following expression for the adjoint fluxes

Φadj,PQ,TDDC
n =−1

2
AP

mnkn
PQ
k

(
ΨP

m+ΨQ
m

)
− 1

2

[(∣∣∣ÃLR
mℓknk

∣∣∣Ψm

)R,adj

−
(∣∣∣ÃLR

mℓknk

∣∣∣Ψm

)L,adj]∂V P
ℓ

∂UP
n

(8)

3



Marina G. Kontou, Xenofon S. Trompoukis, Varvara G. Asouti and Kyriakos C. Giannakoglou

is proposed. Here,

ϕL,adj=ϕP+
1

2

∂ (trϕ)

∂xr

∣∣∣∣P,adj , ∂ (trϕ)

∂xr

∣∣∣∣P,adj= tPQ
r DP

r ϕ
P+

∑
Λ∈N (P )

ZΛP
r

∑
M

tΛMr ϕΛ (9a)

ϕR,adj=ϕQ+
1

2

∂ (trϕ)

∂xr

∣∣∣∣Q,adj

,
∂ (trϕ)

∂xr

∣∣∣∣Q,adj

= tPQ
r DP

r ϕ
Q+

∑
Λ∈N (P )

ZΛP
r

∑
M

tΛMr ϕM (9b)

andM is any node connected to Λ∈N (P ) by an edge.
∣∣∣ÃLR

mℓ

∣∣∣=∣∣∣ÃLR
mn

∣∣∣∂UL
n

∂V L
ℓ
−
(
UR
n −UL

n

)∂|ÃLR
mn|

∂V L
ℓ

(Amn=Amnknk) is the modified absolute Jacobian which includes the derivatives of the
absolute Jacobian w.r.t. the primitive flow variables. This corresponds to an “adjoint”
Taylor expansion in the V space. Note that, if the primal discretization was first-order
accurate, an expansion in the U space would have been used instead.

Apart from the use of the modified absolute Jacobian (
∣∣∣ÃLR

mℓ

∣∣∣), instead of the standard

one (compare Eqs. 7 and 8), the adjoint L and R states (“L, adj”, “R, adj”) for an adjoint
variable are defined differently than in the primal problem. In the primal discretization,
Eq. 4, the L state of any variable ϕ, along edge PQ, results from a first-order Taylor

expansion and is the sum of ϕP and the inner product of the half of
−→
PQ and the spatial

gradient of ϕ at P . The latter depends on the ϕ values at P and its neighbors Λi (Fig.
1). The adjoint L (“L, adj”), Eq. 9, state of ϕ at edge PQ is the sum of the value of ϕ at

P and half of the divergence of
−→
PQ scaled by ϕ, viz. ∂(trϕ)

∂xr

∣∣∣P,adj.
Given that this paper is dealing with cases in which J is a force defined in integral

form along the walls (airfoil contours or wing surface), in continuous adjoint the wall ABC

yields Ψm+1nm =−∂J
∂p
. Since J =

∑
P

pPn
ffl
krk (rk is the direction of the component of the

force; rk is different for lift and drag), in discrete sense, ∂J
∂p

∣∣∣P =n
ffl
krk. Thus, in the TDDC

adjoint, fluxes crossing the wall boundaries of each finite volume are written as

Φadj,
ffl
,TDDC=

 vPk n
ffl
k

[
Ψm+1vm−Ψ5

(
−ht+

γ−1
2
vkvk

)]P
−[Ψ1+Ψm+1vm+Ψ5ht]

Pn
ffl
λ+vPk n

ffl
k [−Ψλ+1+(γ−1)Ψ5vλ]

P

−γΨP
5 v

P
k n
ffl
k

+n
ffl
krk(γ−1)

vkvk2

−vλ
1

P (10)

λ=1, 2, 3. The first term in square brackets on the r.h.s. in Eq. 10 refers to the adjoint
flux which is independent of J , while the second one is the contribution of J . In the first
part, terms Ψm+1nm are absent from the adjoint flux at the wall; this agrees with the
ABC in continuous adjoint, if J is not defined along the wall.

In the farfield boundaries, a standard discretization scheme for the adjoint fluxes is

Φ
adj,
ffl

n = −ΨP
mA

−P
mnkn

ffl
k − ΨQ

mA
−P
mnkn

ffl
k where, at the halo node, ΨQ

m = 0. In the TDDC
adjoint, the discretization scheme for the same fluxes becomes

Φadj,
ffl
,TDDC

n = −ΨP
mA−P

mnkn
ffl
k (11)
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where A−P
mnkn

ffl
k =

1
2

(
AP

mnkn
ffl
k−

∣∣∣AP
mnkn

ffl
k

∣∣∣) and
∣∣∣AP

mnkn
ffl
k

∣∣∣= ∣∣∣AP
mnkn

ffl
k

∣∣∣−(
UQ
ℓ −UP

ℓ

)
∂
∣∣∣AP

mℓkn
ffl
k

∣∣∣
∂UP

n

is the modified absolute Jacobian. Due to the fact that farfield conditions are imposed by
means of a single halo node per boundary node, Eq. 11 differs from standard continuous
adjoint in the use of the modified absolute Jacobian.

4 SHAPE OPTIMIZATION STUDIES

In the first application, the shape optimization of the isolated NACA0012 airfoil for
min. drag coefficient (CD), with the constraint that the lift coefficient (CL) remains close
to the reference value (±1‰) is carried out. An additional inequality constraint, requiring
that the airfoil area should not drop below 85% of the starting one, is imposed. The flow is
inviscid with M∞=0.75 and α∞=2.0◦. At these conditions, the flow around the starting
airfoil is transonic and the presence of a shock wave contributes to the computed drag.
The airfoil is parameterized using a 10×7 volumetric NURBS (Non-Uniform Rational
B-Splines) control grid, Fig. 3.

The accuracy of the SDs computed using standard continuous and TDDC adjoint, on
different grids, is investigated; the progressively finer grids consist of ∼1.5K, ∼7.8K and
∼26.4K nodes, respectively. CD and CL values, as well as their SDs, differ among the
three computational grids. The SDs are also compared with Finite Differences (FDs).
The computed SDs for CD and CL, as well as the optimization convergence histories
are illustrated in Fig. 2. In all cases, the TDDC adjoint perfectly matches the SDs
computed by FDs, even on the coarse, non-adapted to the shock wave, grid. This is why,
the three grids compute different transonic flow regions and shocks and, obviously, SDs
will be quite different. It is very interesting though that, in all cases, the TDDC adjoint
computes consistent SDs. The optimization is performed using the sequential least squares
programming algorithm (SLSQP), [11]. The SDs based on the TDDC adjoint have at
least a six significant digit accuracy, even on the coarsest grid. Small discrepancies can
be seen with standard continuous adjoint though; these are more intense for the CD

value and, as expected, decrease as grid becomes finer. The difference in the accuracy of
SDs affects the optimization; with all grids, the TDDC adjoint reduces the CD value by
∼25− 30%, by also meeting the constraints. The Mach number field for the baseline and
the optimized (based on the TDDC adjoint, on the finest grid that makes sense) airfoil
is presented in Fig. 3; the shock strength becomes less strong and this reduces CD. The
baseline and optimized airfoils, as well as the pressure coefficient (Cp) distribution along
the airfoil contour, are presented in Fig. 4 for the fine-sized grid.

The shape optimization of an isolated transonic wing for max. lift (L) with the con-
straint that drag (D) is less or equal to that of the reference wing is, then, studied. The
free-stream flow conditions are M∞=0.8395, α∞,pitch=3.06◦ and α∞,yaw=0◦. The wing
shape is controlled by a 8×7×5 volumetric NURBS control grid, Fig. 5.

The accuracy of the SDs of the two quantities of interest and the optimization conver-
gence history are shown in Fig. 6. The TDDC adjoint yields a precision of six significant
digits in all SDs; for the standard continuous adjoint small discrepancies in the SDs of D
can be seen. The two optimizations lead to ∼19.2% and ∼21.5% increase in the value of
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Figure 2: Isolated Airfoil : SDs of CD (left) and CL (center) computed using FDs, standard
continuous and the TDDC adjoint on coarse (top), medium (center) and fine (bottom)
grids. Evolution of CD (objective) and CL (constraint) during the optimization (right).

Figure 3: Isolated Airfoil : Left: Coarse grid and shape/grid parameterization: control
points in blue remain constant, while red ones are allowed to move in the normal-to-the-
chord direction, leading to 16 design variables. Mach number fields around the baseline
(center) and the optimized (using the TDDC adjoint, right) airfoil, on the finest grid.
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Figure 4: Isolated Airfoil : Shape (left) and Cp distribution (right) of the baseline, the
optimized airfoils using the standard continuous and the TDDC adjoint. On the right,
the reduction in pressure recovery (i.e. the reduction in the strength of the shock wave)
becomes clear.
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Figure 5: Transonic Wing : Parameteri-
zation. Control points in blue remain
constant, red ones are allowed to move
in the chordwise and the normal-to-the-
planform directions resulting in 36 design
variables.

L, meeting the constraint on D. The flow fields for the baseline and the optimized wings
are presented in Fig. 7.
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Figure 6: Transonic Wing : SDs and optimization history based on the standard continu-
ous and TDDC adjoint as well as FDs.

Figure 7: Transonic Wing : Mach number field for the baseline (left) and the optimized
wing computed using standard continuous (center) and TDDC adjoint (right).

5 CONCLUSIONS

The Think-Discrete-Do-Continuous (TDDC ) adjoint presented in this paper reflects
research efforts carried out at the Parallel CFD & Optimization Unit of NTUA to create
accurate discretization schemes for use in continuous adjoint; to do so, discrete adjoint
shows the way. This paper corresponds to the first part of the corresponding research
(only for inviscid flows) and the extension to viscous, even turbulent flows (including
the adjoint to the turbulence model equations) will follow. The TDDC adjoint bridges
continuous and discrete adjoint, as it computes exact gradients (this is where discrete
adjoint has an advantage) by using interpretable discretization schemes, with minimal
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storage requirements (this is where continuous adjoint prevails). This is demonstrated in
2D and 3D applications.
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