Computer methods
in applied
mechanics and
engineering

——

ELSEVIER Comput. Methods Appl. Mech. Engrg. 151 (1998) 233-265

Derivation of stabilized equations for numerical solution of

advective—diffusive transport and fluid flow problems
Eugenio Onate

International Center for Numerical Methods in Engineering, Universidad Politécnica de Cataluna, Gran Capitdn s/n, 08034 Barcelona,
Spain

Dedicated to J. Tinsley Oden on the occasion of his 60th birthday

Abstract

The concept of the so-called ‘artificial or balancing diffusion’ used to stabilize the numerical solution of advective—diffusive {ransport .an.d
fluid flow problems is revised in this paper. It is shown that the standard forms of the balancing diffusion terms, usually chosen in a l:leurlsulc
manner, can be naturally found by introducing higher-order approximations in the derivation of the governing differential equations via
standard conservation (or equilibrium) principles. This allows us to reinterpret many stabilization algorithms and concepts used in every-day
practice by numerical analysts and also provides an expression for computing the stabilization parameter.

1. Introduction

It is widely accepted that the accurate numerical solution of advective—diffusive transport and fluid flow
problems using either finite difference (FD) [1], finite volume (FV) [1,2], finite element (FE) [3-12], or finite
point (FP) methods [13,14] requires invariably the addition of some balancing diffusion (also called ‘artificial
diffusion’) terms. The role of this apparently non-physical diffusion is typically two fold: (a) to counter-balance
the underdiffusive character of most integration schemes in space (such as the central difference scheme in FD
or FV methods, or the equivalent Galerkin form in FEM, etc.), and (b) to stabilize the numerical solution in the
vicinity of high gradients (such as wave shocks, etc.) by smoothing out local oscillations.

Although extensive work has been devoted to the development of stabilization procedures in FD, FV and FE
methods, it i1s acknowledged that most of the existing procedures are based on somewhat heuristic arguments.
Indeed, it is widely accepted that the origins and precise definition of the stabilization parameters used in
numerical computations are, in most cases, unsolved mysteries whose solution has motivated much research in
recent years mainly within the FEM context [14,16-18].

The purpose of this paper is to show that the stabilization terms emerge naturally in the governing differential
equations of the problem, once the concept of flow balance (or equilibrium) over a ‘finite’ domain is accepted.
This allows us to reinterpret the stabilization terms as an intrinsic and natural contribution to the original
differential equations, instead of a correction term introduced at the discretization level as it is usually
understood by most FD, FV and FE practitioners. Moreover, by exploiting this natural stabilization concept, the
standard forms of the balancing terms appearing in many well-known stabilized schemes for advective—diffusive
and fluid flow problems such as direct artificial diffusion, upwinding and Petrov—Galerkin weighting, Streamline
Upwind Petrov—Galerkin (SUPG), Subgrid Scale (SS), Galerkin Least Squares (GLS), Lax~Wendroff,
Characteristic Galerkin, Laplacian pressure operator etc. are easily recognized and can be reinterpreted in a more
physical manner.
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An additional important benefit from the approach proposed is that it provides an expression for computing
numerically the stabilization parameter.

The layout of the paper is the following. In the next section the stabilization procedure is detailed for
one-dimensional advective—diffusive problems. The two-dimensional case is considered next. The stabilization
method is then generalized to the case of compressible and incompressible flows. Analogies of the proposed
methodology with standard stabilization procedures are presented in all cases. The generalization of the method
to incorporate higher-order stabilization terms is also shown. The paper finishes with a proposal for computing
numerically the stabilization parameter. The accuracy of the method is shown in the study of a simple
advective—diffusive problem.

2. The one-dimensional advective—diffusive problem
2.1. Basic governing equations

Let us consider for simplicity, the standard convection—diffusion transport problem to be solved in a
one-dimensional domain of length ! (Fig. 1(a)). Fig. 1(b) shows a typical segment AB of length AB = h where
balance (equilibrium) of fluxes must be satisfied. The values of the diffusive flow rate g and the advective
transport rate u¢ at a point A with coordinate x, = x, — h can be approximated in terms of values at point B
using a second-order Taylor’s expansion in the standard manner as

= qxy — h) = g( —hf‘i| +O0(h%)
qs = qlxp — h) = q(xg) dx | 5

1
(), = [uplxz — h) = [ud)Cxz) — h %‘? , T Ot a
The balance of fluxes between points A and B is written as
> Fluxes = [Flux in A] — [Flux in B] + Qh =0 (2)
or
[q(xg — h) + v[ud)xz — h)] — [q(xp) + v[ul(xy)] + Qh =0 (3)

In Egs. (1)-(3) ¢ is the unknown transported variable, u is the known velocity field which is taken as
positive if it acts in the direction of the x axis, » is the advective material parameter which is assumed to be
constant and Q is a distributed source which is assumed here to act uniformly over the domain AB.

Substituting Eqgs. (1) into Eq. (3) and noting that the position of point B is arbitrary, i.e. x, = x, gives after
simplification

(b)
(2) Q
Q(x)
q
3 —_—— e —— e  —a q [u@]. A B [u¢]-
) ‘ ) i b ko
= S

95 = qlxg); g, = q(x,) = g(xy — h)
[u®P); = [uP](xg); [P], = [uP)(x,) = [uP)(x, — h)

Fig. 1. (a) One-dimensional convection-diffusion problem; (b) finite balance domain AB.
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dlug] dg B

The diffusive flow rate g is related to the change of the unknown variable ¢ by Fourier's law as
q = —k d¢p/dx. Substituting this equation into Eq. (4) leads to the standard form of the advection—diffusion
equation

-V

diug] d [ dqb] _
VT +dx kdx +Q0=0 (5)
Clearly, if u is constant this gives
49 i[ %] -
—mg ot kg | T2=0 (6)

The transient case is obtained by invoking again the conservation law, i.e.

a h
> Fluxes = V'(.;J'U ¢ dx (7a)

It is usual to assume that ¢ is constant within the balancing domain for computation of the integral in the
r.h.s. of Eq. (7a), ie.

a [ d
EJ; :;de:ha—(f (7b)

The same expression can be obtained by using the mean value of ¢ within the balancing domain to compute
the r.h.s. of Eq. (7b). A higher order approximation for ¢ will be chosen in a next section. Combining Egs.
(2)—(7) the standard transient form of the balancing equation is obtained as

(2282) 2 [12] -0

As an example, ¢ and u could be interpreted in Eqs. (1)—(8) as the temperature and the velocity, respectively,
in a convective thermal problem, where Q and k represent the thermal source and the thermal conductivity,
respectively, and v = pc where p is the material density and c¢ the specific heat.

The problem is completed with the following spatial and temporal boundary conditions.

Prescribed value of ¢ (Dirichlet b.c.)
¢—6=0 onx=0 (9)

where ¢ is the prescribed unknown field at the Dirichlet boundary.

Prescribed total flux (Neumann b.c.)
q—qg=0 onx=| (10)

where g is the prescribed total flux at the Neumann boundary. The total flux g, can be splitted into the advective
and diffusive contributions as

d
g.= b+ q= -k 5L (11)
Substituting (11) into (10) gives
d¢ _
—vu¢+k£+q=0 onx =/ (12)

Initial condition

b—¢,=0 forr=t, (13)
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where ¢, is the value of ¢ at some initial time 1,,.

REMARK 1. In many occasions only the diffusive flux is prescribed at the Neumann boundary. Eq. (12) is
simply written in these cases as

do

k-&x—ﬂ;:@ onx=1 (14)

2.2. The concept of balancing diffusion

Let us assume now that the advective transport term has an important variation over the segment AB. In order
to capture this variation, the advective term will be now expanded in Taylor series up to third order as

B diug] | h* &’[ud] 3
(gl = ) = W0 —h =g— |, +7 = 1 |~ o) (15)
Substituting this equation into Eq. (3) gives
dug] h d’u¢] dg
VTG T2 e 20 (16)
and using Fourier’s law yields finally
dlug] hd’u¢] d ( gg) B
—v=g t3 o + kg ) te=0 (17)
Assuming now u to be constant, Eq. (17) can be rewritten as
ERCCNEN (AT P
vuclx+dx k+2 i +0=0 (18)

where hereafter the distance # will be termed the characteristic length of the stabilized problem.

Note that the effect of accounting for a higher approximation of the advective term introduces ‘naturally’ an
additional diffusion uh/2 in the governing equation. Obviously, as the length of the balance domain tends to
zero the standard ‘infinitesimal’ form of the advection—diffusion equation is recovered. The problem remains
now to find the value of the characteristic length /& so as to ensure accuracy and stability of the numerical
solution of Eq. (18).

The ‘stabilized’ transient form equivalent to Eq. (8) can be now written as

dp  duPp)\ 8 ( dd\ hdwe)
or ax )_ax aix/ 2 g’ —e=0

524202+ ) ¥ 0

for a constant velocity u.

(19a)

or

REMARK 2. The characteristic length & can be written as h = 27u where 7 is the so-called intrinsic time scale
in the convective transport and fluid flow stabilization literature [5]. Note that 7 is the time for a particle to
travel the distance h/2 at a speed equal to u.

REMARK 3. The characteristic length h is usually defined in FE and FV procedures as al'’ where « is a
stabilization (upwinding) parameter and /'’ is a characteristic element dimension (i.e. the element length for 1D
problems). The search for the optimal characteristic length / or the optimum intrinsic time scale 7 is, therefore,
equivalent to finding the optimum value of the stabilization parameter «. This topic is discussed in Section 8.
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2.3. Generalization of the stabilization process

Let us assume now that the changes in the advective and diffusive terms over the balance segment are so
important that a higher-order expansion is required for all terms. The balance equation (3) reads now

1
gx) + v[udl(x) — glx — h) = vludllx —h) — 5 [QKX) + Qx — W)]h =0 (20)

where a linear distribution of the external source @ over the balance domain AB has been assumed (see Fig. 2).
Note that in Eq. (15) x; = x has been taken.

The following expansions can be written
dg h’d’q ;
—h)= —h—+—=——+0kh
glx—h)=g(x) = h -+ 75— +O(h") o

d
Qx —h)=Q(x)—h £ +0(*)

Substituting Egs. (15) and (21) into (20) gives after simplification

AP (@) o gg [ L (1P ref o @

Eq. (22) can be rewritten a more compact form as

o<x<I (23)

I
<

~

|
ST
&ls

with

R d(u¢) (k ) +0 (24)

2.4. Stabilized Neumann boundary condition

The essential (Dirichlet) boundary condition to Eq. (23) is the standard one given by Eq. (9).

To obtain the stabilized Neumann boundary condition we write the balance equation at a boundary point.

For reasons which will be evident later, the length of the balance segment AB at the boundary is taken now as
half of the characteristic length A for the interior domain. The balance equation is now, assuming now the source
Q to be constant over AB (see Fig. 3).

Q Q
q A q‘B qﬁ -q—-
NS ———
[uﬂ A [11@ ] B u A i
e ) - n/z
l-_)‘(* X,

Fig. 2. Equilibrium of fluxes in a finite balance domain with linear external source.

Fig. 3. Balance domain next to a Neumann boundary point B.
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- h
g~ qxy) — viudl,,—52=0 (25)

where g is the prescribed total flux at x =1 and x, =x, — h/2.
Let us now express the advective and diffusive fluxes at point A in terms of second-order expansions via Egs.
(1). After little algebra we obtain

i +k_.c_i..(é+_ ﬁ — —_
vue e g=5r=0 onx=1[ (26)

where r is given by Eq. (24).

Eq. (23) can now be solved together with Egs. (9) and (26). These equations are the starting point to derive
stabilized numerical schemes using FD, FE, FV and FP methods. The importance of using the stabilized form
(26) is discussed in [14] in the context of the FP method.

REMARK 4. In the case that only the diffusive flux is prescribed at the Neumann boundary equation (26) is
written as
(980 0 e .

A onx= (27
REMARK 5. A stabilized form identical to Eq. (23) was proposed by Donea et al. [19] on the basis of heuristic
arguments only. This was subsequently used for deriving stable Galerkin FE formulations with quadratic
elements [19,20]. In none of these works the stabilized Neumann boundary condition (26) was considered. This
condition has been found here to be essential for deriving the standard SUPG form as shown in a next section.

REMARK 6. The choice of ‘downwind’ higher-order expansions for deriving the balance equations leads to a
change of the negative sign in the stabilization term in Egs. (23) and (26) to a positive one. However, a study of
the stability of the numerical solution for the simplest one-dimensional advection—diffusion problem leads to a
negative value of the optimum characteristic length in this case. This proves that the original ‘upwind’
expansions chosen here are the correct ones leading to positive values of # in all cases.

REMARK 7. The analytical solution of Eq. (23) is

r= Ae(lx}a’h (28)
Using Eq. (26) gives

_ 2 h!{ZL)[ d¢ ...]
A= he vud +k ax +g — (29)
The solution is therefore written as
.__2_ M{ZUI: % *] (2x)/h
r=ge —vuc +k o Ta. e (30)

Note that exact pointwise satisfaction of the Neumann boundary condition at x =/, i.e. —wvu¢ +kde/dx +
g =0, gives r =0 in the whole analysis domain and the equivalent problem can be written in the standard form

r=0, 0<x<l
b—d=0 onx=0 31

+ a2 g=0 =1
—vugp+kg-+g=0 onx=
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Eq. (30) therefore expresses the effect in the global solution of the error in satisfying the Neumann boundary
condition.

2.5. General stabilized transient form

The stable form of the transient balance equation is obtained by substituting Eq. (22) into (7a). For
consistency with previous section let us assume now a linear variation of ¢ within the balancing domain giving

o[ _E(M) __'3_( h 3¢
arJ:, $x) dx = at 2 h=3\?"3 ax)h (32)

In the derivation of Eq. (32) use of the first-order approximation ¢, = ¢, — h 3¢/ dx|, has been made. Also,
as usual x, = x has been taken. Combining Eqs. (7a), (21) and (32) gives after simplification

v (v =r) =0 &
It is interesting to note that Eq. (33) can be casted in the same form (23), i.e.
_ hor
Fe5ao= (34a)
with
r=uy %ﬁé —-r (34b)

Obviously, a simpler form of Eq. (33) can be obtained by neglecting the time derivative within the
stabilization term, giving

¢ ﬂa"_o
Yar Tt (35)

2.6. Equivalence with characteristic and Lax-Wendroff approximations
The explicit forward time integration of Eq. (35) reads
Ar | ar7"
&(,‘b:—;“ [r— Tt ‘—“] (36a)

where A¢ = ¢""' — ¢" and h = 27u has been taken.

Let us compare Eq. (36a) with the well established ‘characteristic’ and Lax—Wendroff approximations. The
discretized equations in time for these two procedures can be expressed in identical form for the 1D case as
[3,21,22,23]

At

Agp=—
14

' At or]”
] (36b)
The equivalence between above two expressions is evident. In fact, both equations are identical if the intrinsic
time 7 in Eq. (36a) is taken equal to half the time increment within the brackets in Eq. (36b). The different
meaning of the two time increments appearing in characteristic approximation schemes is now clear.
A simpler form of Eq. (36b) neglecting the diffusion flux in the balancing derivative term dr/dx is typically
used in the FEM with linear elements [3,11]. The full expression of Eq. (24) is however necessary if
higher-order approximations are chosen as pointed out in [11].

2.7. Equivalence with the Petrov—Galerkin FE formulation

The standard Galerkin form for the FE solution of Egs. (23) and (26) is equivalent to the so-called stabilized
Petrov—QGalerkin formulation. This equivalence is shown next.
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Let us construct first a finite element discretization {/°} of / with index e ranging from | to the number of
elements N,. The standard interpolation within an element ¢ with n nodes can be written as [3]

¢z$=§lm 37)

where N, are the element shape functions and ¢, are nodal values of the approximate function ¢. Substitution of
Eq. (37) into Egs. (23), (9) and (26) gives

. hdf

P ae = ras O0=sx=l (38a)

b-p=r, inx=0 (38b)
d¢ _ h

—mrf)ﬂ—kﬁ-%q—i.?:rq inx=1 (38¢)

where 7 = r($) and r,, r, and r, are the residuals of the approximate solution in the domain and the Dirichlet
and Neumann boundaries, respectively.
The weighted residual expression of Eqs. (38) is

; J— —_
fWr”dQﬂqu}Fﬁ|Wr¢]_r20=0 (39a)
0

or
L (. hdf — . dd _ h = . _
J;W(r—'z—a)dx-i-[W(—vuqb+k-a"x—+qm-2—r)]x__;+[W(q5—q§)]mn=0 (39b)

where W, W and W are appropriate test functions. As usual, W and W are assumed to be zero on the Dirichlet
boundary at x =0, which implies satisfaction of the essential boundary conditions [3].
A simple integration by parts of the term Wh/2 d7/dx in the integral of Eq. (39b) leads to

[[w s ae-[hws]. o [#(-mb 1 4a-42) | -0 40
. W+2dx Fdx— > Wi |, W\ —vuc + dx+q—2r T (40a)

Choosing now W= —W and recalling that W= 0 at x = 0 gives

! h dW7] I - d¢ _)
L [W-l‘-z"a]rdx— W(—Pmﬁ +ka—+q :IF.‘:U' (40b)
Expression (40b) provides the final system of equations by making W= W, with index i ranging from 1 to the
number of nodes in the FE mesh. Note that by choosing W, = N, the standard Petrov—Galerkin form used in FE
analysis is recovered [3].
Integrating by parts the advective and diffusive terms in the product W7 of Eq. (40b) and recalling again that
W=0 in x =0 gives finally

Toaw . aw d(};] J‘*hdw[ dud) d( d&)]

L [——-"] (vu¢5)+m’ k—-| dx + 05—] L T k—l dx

~rw —qw +F—h4—dw dx i=1N, 40¢
- 0 de Q[ 1.‘ o 2 dx Q =1, e ( )

With W, =N, and h = 27u the one-dimensional version of the so-called Streamline Upwind Petrov—Galerkin
(SUPQ) formulation is readily recognized [1]. Also note that for # = 0 the standard Galerkin form is recovered
31

REMARK 8. The choice of the length A/2 for the balance domain next to the Neumann boundary appears now
necessary to ensure the vanishing of the term W# on the boundary, thus recovering the standard Petrov-Galerkin
formulation [3]. Recall that the value #/2 coincides also with the distance traveled by a particle for a value of
the intrinsic time 7= 1.
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REMARK 9. Integration by parts of the advective term in the expression of WF is not necessary if only the
diffusive flux is prescribed at the Neumann boundary. The first integral in the Lh.s. of Eq. (40) is now given by

T due) dw qu] .
L[W & T ay K (41a)

whereas all remaining terms in Eq. (40) remain unchanged. Note that the final system of equations is the same
in both cases.

REMARK 10. A consistent Petrov—Galerkin expression can be simply obtained for the transient case by starting
with the stabilized transient form (34a). The resulting integral expression is identical to Eq. (40b) with the
residual including now the time derivative term as in Eq. (34b).

REMARK 11. The second integral in the Lh.s. of Eq. (40c) can be expressed as

fg(gf[ d(f)‘%("if)]dx 2 Mgc&v[ d(ﬁ)—%(k%)]dx (41b)

where the sum extends to all the elements in the mesh. Clearly the r.h.s. of Eq. (41b) allows to use C,
continuous FE interpolations while preserving the consistency of the method. Obviously, the same elemental
splitting can be applied to the stabilization integral affecting the source Q in the r.h.s. of Eq. (40c) although this
is not strictly necessary to allow for C, continuity. This elemental form of computing the stabilization integrals
is widely used in practice [5-7,10-12,15-19,24,26,29].

2.8. Global conservation of flux

Consider the case in which the total flux is prescribed at x =0 and x = I. The weighted residual form (39b) is
now given by

[w(e-5 @) ace [ ma it ea-3)].

= } h
+[ ( vud +k ¢+E;‘!—5F)]r={=0 42)

where g, and g, are the prescribed values of the total incoming and outgoing fluxes at x =0 and x =1,
respectively. Following the same integration by parts of Section 2.6 gives after setting W= W=-W

oaw . aw q&] ! hdw[d(uuq?;) d(dq?;)]
L[ (vud)-i-dxkdx d}H_J‘OWE_dx_ i ka dx

— — "h dW
:J WO dx W], ~aW), + | 2 SY Qs (43)
] 0

Let us chose now W= 1. This gives
!

o de+&0 _5::0 (44)

which confirms the conservation property of the case assumed.

3. Two-dimensional advection-diffusion problems
3.1. Basic stabilized equation

The concepts of previous section will be extended now to the solution of the advection—diffusion problem in
a two-dimensional domain {2 with boundary I'. Let us consider a finite rectangular domain of dimensions h, and
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(vvé+q,)c, )
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|
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Q h, j\ (vud+q,),p,
_._‘,!
\

hy 4’\

}ff_ia

Fig. 4. Balance domain for 2D advection—diffusion problem. Advective and diffusive fluxes are assumed to vary linearly along the sides.

h, in directions x and y, respectively. Both the advective and diffusive fluxes are assumed to vary linearly along
the four sides (Fig. 4). The flux balance equation will be obtained using the following Taylor expansions:

diffusive term: third-order expansion
advective term: third-order expansion

source term: second-order expansion

The balance of flux across the four sides of the rectangular domain of Fig. 4 gives after some algebra (see
(30D

h, ar h, ar
T a2 ay =0 (45)
r=—-wW'f+V(DVp)+Q (46)
where
f=ud,vel’ 47
is the advective flux vector,
)

is the gradient operator, and

k. 0
D=lo &, (49)
is the conductivity matrix. For simplicity x and y are assumed to coincide here with the principal axes of
material orthotropy. In Eq. (46) » is the advective flux parameter which will be assumed to be constant
throughout the domain 2 (¥ = pc for thermal convection problems). Also, as usual the velocities « and v are

taken as positive if coincident with the direction of the global x and y axes, respectively.
Eq. (45) can be rewritten as

1
r—ahTVrZO in 2 (50a)

with
h=1lh,h]" (50b)
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The boundary conditions are written as
é—¢=0 onl, (51)

where [ is the Dirichlet boundary, where the variable is prescribed, and

T T - 1.5 ,
~vn u¢ +n DV +qﬂ—5k nr=0 onl (52)

where g, is the prescribed total flux across the Neumann boundary I with I'= I3 U I] and n = [n,, n,]" is the
normal vector.

Eq. (52) has been obtained by balance of fluxes in the boundary domain of Fig. 5 following the same
procedure of the 1D case previously explained (see [30]).

Note that the advective term — »n'u¢ is dropped in Eq. (52) in the case when only the diffusive flux across
the Neumann boundary is prescribed.

The stabilized transient form of Eq. (41) is obtained using the same arguments of Section 2.5 for the 1D case
(see [30])

V——r——hTV(v—“r =0 (53)

with the initial condition ¢ = ¢, at time =1,
The standard differential equations are simply obtained neglecting the stabilizing terms in Egs. (50)—(51) (i.e.
making A = 0) which gives for the steady state case
r=0 in 2
d—¢=0 on I, (54)
~vn'u¢p +n'DVh +g,=0 on I

The extension to three-dimensional problems is straightforward and identical stabilized expressions are
obtained.

3.2. The concept of intrinsic time in 2D advective~diffusive problems

It can be further assumed that h, = h cos @ and h_ = h sin a, where a is the angle which the velocity vector
u = [u,v]" forms with the global x axis and the distance h = (hf + hi)' ’? is the characteristic length of the 2D
advective—diffusive problem. '

The stabilized governing equations (50) and (53) can now be written as

F
i o . I
"

- A(x,y)

\__ Q h, g

I T

vvb-#-_:;;_%w‘_-

DE=2h,
DF=2h,
X,u

Fig. 5. Balance of fluxes in a two-dimensional domain next to a Neumann boundary.
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Steady state

g,

d 2|u|u Vr=0 (55a)
Transient

¢ _hox ( ¢ )_

v T 2!u|u Viv a7 =0 (55b)

In the derivation of Egs. (55) use of the identities sin @ = u/|u| and cos @ = v /|k| has been made.
The intrinsic time in 2D advective—diffusive problems is defined now as [5]

__N 56
T 2ul (56)
With this definition Eqgs. (55) can be rewritten as
Steady state
r—m'Vr=0 in {2 (57a)
Transient
3¢ T ( 3¢ ) =0 i
var—r—mv arvits =0 in {2 (57b)

The stabilized Neumann boundary condition (52) can also be expressed in terms of the intrinsic time as

—vn'u¢ +n'DVP +q, —u'nr=0 on I, or (58a)
T T - h T
—vn udp+n DV¢+qn—mu nr=0 onl; (58b)

3.3. Equivalence with characteristic and Lax—-Wendroff approximations

Let us consider the stabilized transient equation (57b) neglecting for simplicity the effect of the time
derivative in the stabilization term. A simple forward integration in time gives

At
Ap=—"[r— u'Vr]" (59)
The characteristic approximation for 2D problems is [22]
_ Ar[ At :|"
Agp = ” rfqur (60)

The equivalence between Egs. (59) and (60) is obvious if the time increment Az between the brackets in Eq.
(60) is taken to coincide with half the intrinsic time 7 as in the 1D case.

The same equivalence can be found with the Lax~Wendroff approximation in two dimensions which can be
expressed in a form identical to Eq. (61) [1,21].

3.4. Equivalence with the Petrov—Galerkin and SUPG formulations in the FEM

Substituting the finite element approximation (37) into Eqgs. (55a), (51) and (58b) gives
h

P—muTVFzrn in 2 (61a)
d—d=r, on I, (61b)
. ., h
T T - T a
—wmup+n DV¢+qﬁ—ma ni=r, on [l (61c)
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where 7= r(¢) and r,, r, and r, are the solution residuals in the domain and the Dirichlet and Neumann
boundaries, respectively.
The weighted residual form of Eqgs. (61) is

JJ ( Tl Vr) dﬂ+£_ W(—m‘fmi: +n'DV$ +g, —ﬁ;ﬂmﬁ) dr

+J ﬁ(q"s—?b)dr:o (62)
Iy

where W, W and _;fare arbitrary test functions. As usual W=W=0on ] » Will be assumed, thus implying exact
satisfaction of the essential boundary conditions at the Dirichlet boundary.
Integrating by parts the term including V7 in the first integral of Eq. (62) gives

ff (w+— TVW)rd.Q Jw u'nfdl
£

— . . _  h
+j w(—m‘“u¢+nTDV¢+qn—muTn;)dr=0 (63)
r

o

Choosing now W= —W and recalling that W=0 on [ gives
jJ (W+—u VW)r drz—f W(—vn'ud +n'DV +q,)dl =0 (64)
0 r,

The discrete system of equations is readily obtained making W= W, with i ranging from 1 to the number of
nodes in the FE mesh. Choosing now W, =N, the Petrov—Galerkin form widely used in FE analysis is
recognized [3].

Integrating by parts the advective and diffusive terms in the product WF of Eq. (64) and recalling again that
W=0on I gives

ff [—(V'W)f +(V W)Dqu]d.Q+J‘f uw' VWV'f -V (DY) dn

2ful “
=ff 170) dQ+JJ —h—u"'(VW)Q d(l—j Wg, dI’ (65)
n 2 2lul r

where f=f(<,‘3). With W,=N, (i =1,N.) and h = 27]u| the well-known Streamline Upwind Petrov—Galerkin
(SUPG) expression used in FE computations is obtained [3,5]. Obviously, the same arguments of Remark 11
can be used in this case to allow for C, continuous FE interpolations.

An identical expression to Eq. (64) is obtained for the transient case if the time derivative term is included in
the residual similarly as described in Section 2.5 for the 1D case.

CONCLUSION. The Galerkin solution of the stabilized problem governed by Eqs. (62) is equivalent to the
Petrov—Galerkin (PG) and SUPG formulations of the standard problem posed by Egs. (54). The well-known
stabilization properties of the PG and SUPG approaches would therefore carry forward to the Galerkin solution
of the (equivalent) new stabilized problem. In addition, a meaningful interpretation of the stabilization terms has
been obtained. Also note that for £ =0 the standard Galerkin form is recovered.

REMARK 12. The integration by parts of the advective terms in the expression of WF is not necessary if only the
diffusive flux is prescribed at the Neumann boundary. The first integral in the Lh.s. of Eq. (65) is expressed now
by
f (WV'f + (V'W)DVH] d02 (66)
12

whereas all remaining terms of Eq. (65) remain unchanged. Note that the final system of equations is the same
in both cases.
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It is also easy to verify following the procedure of Section 2.8 that global conservation of fluxes is satisfied.

4, Stabilization of fluid flow equations. Basic concepts

The same concepts of previous sections will be applied now to derive the stabilized form of the governing
equations of fluid mechanics. The basic idea is to apply the standard conservation equations of fluid flow derived
from Newton’s second law, i.e. the momentum equations

b=%f pu dV+J (puwu" dA (67)
v A

to a finite control domain.

In Eq. (67) b is the vector containing the total forces acting over the control domain with volume V bounded
by a control surface with area A. Obviously, in the steady state case the time derivative is zero in Eq. (67). The
equation of conservation of mass can be viewed as a particular case of Eq. (67) with b =0 and pu = p, i.e. the
convected field is the density of the fluid.

In order to clarify concepts, let us consider the stationary flow balance equation over an one-dimensional duct
segment AB of length h with x, =x and x, =x —h and transverse cross section of area A (Fig. 6). The
application of Eq. (67) to this simple case is

N, + f bdV— N, = Alu(pu)l — Alu(pu)], (68)

where N, and N, are the viscous axial forces acting at the ends of the balance domain and b are distributed axial
forces. Note that in (68) Ny =N(x)=N, N, =N(x — h) and the same applies to the term u( pu).
The following approximations can be made
2 42

dN N 3
N(x-h)=N(x)—ha+§-—dx“?"0(k )
d 2 2
[u( pu)l(x — h) = [u(pu)}(x) = h e [u(pw)] + ?E fu( pu)] — Oo(r*) (69)

2

Al _ AR b
J;de=-2—[b(x)+b(x—h)]—Ahb(x)- 3 dx+0(h)

Substitution of Egs. (69) into Eq. (68) gives after simplification

h dr
it 70
with
__4 i( E‘E) b 7

In the derivation of Egs. (70) and (71) use of the constitutive relationship N = A(u du/dx — p), where u is

Transverse cross section

NA o A b(x} _"l B o NB
-_— - - -— - - ——
[ulou)], = [u(eu)],
SN

%

Fig. 6. Duct segment where balance of momentum is imposed.
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the fluid viscosity and p is the pressure has been made. Eq. (70) coincides with the standard 1D momentum
equation when # = 0. The distance h is the characteristic length of the stabilized fluid flow problem governed
now by Eq. (70).

Let us chose now a segment of length 4/2 next to the duct exit and where a traction force is applied (see Fig.
7). Using similar arguments of Section 2.4 leads to the following stabilized form of the Neumann boundary
condition as

d — h
,u,a“—p—N—*z‘rZO onx=1 (72)
where N is the applied traction force at the duct end.

The transient form of Eq. (70) can be readily written using Eq. (67) as

I pu) h 8 (M—r)=0

a7 2ax \ o (73)

In the derivation of Eq. (73) use of the same arguments of Section 2.5 to evaluate the time derivative integral
has been made.

Similar arguments can be used to derive the following stabilized forms of the equations of mass and energy
conservation.

Mass conservation:

@Jra(pu)_g_ai(_ H(Pu)) 0

o T ox (74)
Energy conservation:

a(pE) h o (d(pE)

A= (M5 ) =0 (75)
with

rg= ax (p P)“ ax ax UL dx Q ( )

In Eq. (75) the quantity E represents the total energy given by the sum of the thermal and kinetic energies

1 2
E=cT+7u (a7
where T is the temperature and c, represents the heat capacity at constant volume. For a thermally and
calorically perfect gas the relationship between pressure, density and temperature is given by the universal gas
law

p=pRT (78)

where R is the gas constant. The quantities Q and & in Eq. (76) represent the distributed heat source per unit
volume and the thermal conductivity, respectively.

Above equations have been derived for the general case of an one-dimensional compressible fluid. The
particular stabilized forms of the momentum and mass conservation equation for an isothermal incompressible
fluid (p = constant) can be easily obtained as

N, A b(x) B N
=——=—=—=—=1 — =
]
[u(ow)], L e [u(ou)],
E

Fig. 7. Balance of fluxes in a duct segment next to a Neumann boundary.
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Momentum

w_ ko m

Por T 2% \Poy 1)~ (79)
with

PP Gy T ax T ax \ M o (80)
Incompressibility

u_hdu_o ol

x 2 ax° (81)

These equations are completed by the stabilized Neumann boundary condition (72) and the standard Dirichlet
condition of prescribed velocity at the entry point.

5. Extension to two- and three-dimensional fluid flow problems

The extension of above stabilization procedure to two- and three-dimensional fluid flow problems is
straightforward. The basic principle in all cases is the satisfaction of the balance equation in a finite domain
assuming a third-order Taylor expansion for the convection and viscous terms and a linear expansion for the
body forces. The resulting stabilized expressions of the governing equations for compressible and incompress-
ible fluids will be shown next.

5.1. Stabilization of compressible flow equations

The proposed stabilization procedure leads to the following conservation form of the three-dimensional mass
conservation, momentum and energy equations [3]

v 1, @ (au )
Z = (=_,)= k=1,2,3 (82)
a T e \Grr)=0
where
v =p, pu,, pit,, pus, pEI" (83)

is the vector of unknown variables, where as usual p is the density, «, is the velocity in the ith direction and E is
the total energy. Also in Eq. (82)

af, og;
—_ i s 4
T T, 1 (84)
where
[ = lpu,, puyu; + 8, p, puyu; + 8, p, pusu; + 8, p, u;(pE +P)]T (85)
defines the convective flux vector and
aT T
8= [0, T T T Ty Tk E{ - ﬂ;“jjl (86)

defines the diffusion fluxes. Finally
q=10,—b,, —b,, —b;, —bu,— Q1" (87)

gives the source terms due to body forces pf: (i.e. gravity forces) and a distributed heat source Q. In above p is



E. Oniate | Comput. Methods Appl. Mech. Engrg. 151 (1998) 233~265 249

the pressure, T is the temperature, E is the total energy and 7;; are the viscous stress components related to the
velocity gradients by

[ Ou;  du; 2 duy 5 88
T T M 6‘xj+6‘x,-_'3 ax, U (88)

The relationship between pressure, density and temperature is given by the universal gas law Eq. (78). Matrix
H, appearing in the stabilizing term of Eq. (82) can be obtained as

[ ht 0]
hk
H' = Y . k=1,2,3 (89)
hk
I-O " hi—

In above h;,hi,hi, i=1,2,3 are the dimensions of the right prism where mass, momentum and energy

balances are enforced, respectively. Note that for H, =0 the standard conservation form of the compressible
flow equation is recovered as

av

Tt 0 (90a)
1e.

dv df ag,

ot tox Tax, 7470 (90b)

i

5.2. Definition of characteristic lengths, intrinsic times and stabilized traction boundary conditions

The following characteristic lengths for each of the five equations governing mass, momentum and energy
balances can be now defined as

h,=|hn,| withhk,=1[h, k.. h)]" (91a)
h,=|h,| withh, =[h. h:, K" (91b)
h,=|h,| withh, =[hn' K% K" 91c)

It will now be assumed that the characteristic length vectors h,, &, and k, have all the direction of the
velocity vector u = [u,, u,, u3]r. This allows us to express matrix H, as

h, 0
h,
kM .
H =—H withH= h, (92)
u \
0 h,
and the stabilized equations have now the following form
w9 (B, o
ar " oM, Ve 7T T (93)
The intrinsic time for each of the balancing equations can be defined as
_ hﬂ _ h’u _ he 9
2w T 2w T 2 ®4)

Eq. (93) can be rewritten using (94) as
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L IR N (. B W
Pl L ax, \or 7)< (95)
where the intrinsic time matrix is
7, 0
(96)

[7]1=

=1

0 T,
Similar higher-order balance concepts can be applied to a finite domain next to a Neumann boundary I; where
tractions ¢ are specified (see Fig. 8). The resulting stabilized form of the traction boundary condition can be

written as (see [30])
97)

where n is the normal vector
o = [0, 0y, 043, 01y, Ty, Uza]T (98a)
with
0; =1, =P, (98b)
n, 0 0 n, n 0O
M={0 n, 0 n. 0 n (99)
0 0 n. 0 n  n
and r,, contains the momentum equations, i.e. the rows 2, 3 and 4 of vector r of Eq. (84).
Eq. (97) can be rewritten in terms of the characteristic length »,_ using Eqs. (91b) and (92) as
(100)

- h,
Mo—-t——— nur, =0
Ju|
Indeed, for boundaries where the outgoing heat flux is specified the stabilized form given by Eq. (52) should

be used.
The equivalent stabilized equations (82), (93) and (95) are the basis for the numerical solution of

. (ov)u,
*— ’ (pu)u,

n
2hy Ny
(pu_.)u_F = i |c by ¢ i= {{!E
(ﬂV}UJ J b!L.. hy I,
e BT
L Txy| 2h, |
u a o-y "
(pu)v
(ov)v

Fig. 8. Flow domain next to a Neumann boundary where surface tractions are prescribed
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compressible flow problems using FD, FV, FE or FP procedures. As usual, the time integration can be performed
prior to the application of any spatial discretization scheme. Neglecting the time derivative in the stabilization
term and using a simple forward integration gives the following equivalent expressions

ao=adr—s B | oA - Mg )y & 101
v=Arfr—-3 x| r[r 2 Hox, | = tr=[7lu, ax, (101)

n+1 n

where Av =v"" —v".
The analogy of above expressions with the characteristic approximation and the Petrov—Galerkin scheme is
shown in next section.

REMARK 13. The assumption that all the characteristic length vectors are oriented in the direction of the
velocity vector u is not strictly necessary. Other possibilities can therefore be explored, starting with the basic
form of the stabilized equations (82).

REMARK 14. The derivation of the optimum characteristic length (or the intrinsic time) parameter for each of
the governing flow equations is usually based on simplified analogies with the one-dimensional advective—
diffusive equation [3]. An alternative procedure is suggested in Section 8.

5.3. Egquivalence with the characteristic approximation

Note that Eqs. (82), (93) and (95) involve a different characteristic length or intrinsic timescale for each of
the governing differential equations. A simpler form can be derived assuming h,=h, =h,=h, ie. the
balancing domain is taken to have equal dimensions for each of the governing equations. The equivalent
stabilized equations (82), (93) and (95) can be written as

av 1l -, 8 /ov

o T H 3;;(3—’)20 (1022

v h a /adv

gy (ar ) =0 (102

Jv d v

“a'—’—ruka(ﬁ—’)zo (1020
where

h=|h| withh=[h' K" K"
Trk k h
H =h'l, and T:m (103)

where I, is the 5 X 5 unit matrix.
The explicit integration of Eq. (102c) gives (neglecting the time derivative in the stabilization term)

ar "
Av =At[r— mkg] (104)
k

Following the arguments given in [11] the characteristic approximation of the compressible Navier—Stokes
equations can be found as [3,22,23]

po=a -2ty 2|
v=Arfr—Zu e (105)
The equivalence between above two expressions is clear if the time increment between the brackets in Eq.
(105) is taken to be equal to twice the intrinsic time 7 of Eq. (104). Therefore, any of the two approximations
can be used as starting point for the solution in space using a standard Galerkin FE scheme. Indeed, the more

general expressions (102) can be used to derive a (possibly) more advantageous alternative FE scheme.
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5.4. Equivalence with the Lax—Wendroff approximation

The explicit time discretization of the standard compressible flow equations can be written as

Ar 3 "
Av=At[r—*é—"5x—Akr] (106a)
k
where
9,
A, =a—{‘: (106b)

Note that the form of Eqgs. (104) and (106a) is very similar. The full equivalence occurs only if the time
increment between the brackets in Eq. (106a) is twice the intrinsic time of Eq. (104) and the gradient matrix
A, =uld, where I is the 5X 5 unit matrix and », is a constant velocity. This coincidence is unusual and, in
general, the numerical solution of Eqgs. (104) and (106a) will be different [1,21].

5.5. Equivalence with Petrov—-Galerkin and SUPG finite element forms

Let us assume now a standard FE approximation written as

v=06=2, Nv, (107)
i=1
where v; are nodal values of the approximate solution @. Substituting the FE approximation (107) into Eq.
(102b) gives (for the stationary case)
. h ar .
F— 2lu u, ox, r, in {2 (108)
where F =rD).

For simplicity isothermal conditions will be assumed. Also, only Neumann boundaries I; where surface
tractions are specified via Eq. (100) will be considered (here for simplicity h, = h will be taken). All other
boundaries will be assumed to be of Dirichlet type where the essential boundary conditions in velocities are
exactly satisfied at element nodes. The weighted residual form of Eqgs. (100) and (108) can therefore be written
as

jW‘La—fdﬂ-!-J‘WM—E—LT“ dr=o0 (109
P r 2|u| u, ax, p o 2lu] n ur,, = )
where F excludes now the energy equation. In Eq. (109) W and W are diagonal matrices containing arbitrary
weighting functions. Integrating by parts the term involving 97/ dx, in the first integral of Eq. (109) and making
W= —W, where W, contains the rows and columns 2, 3 and 4 of matrix W, gives after some simplifications

L (W+~2-|£:Ju&%‘£)r‘ dﬂ—L W. Mo —t)dl'=0 (110)
The discrete systems of equations is readily obtained making W= W,. Choosing now W, = NI, in Eq. (110)
where I is the 4 X 4 unit matrix, the standard Petrov—Galerkin form used in FE analysis is found [3]. Again the
arguments of Remark 11 can be now used to allow for C, FE interpolations.
An identical expression to Eq. (110) is obtained for the transient case if the time derivative terms of Eq.
(102b) are included in the residual.

5.6. Equivalence with Laplacian pressure operator schemes
It is interesting to note the equivalence of the stabilization procedure described above and numerical schemes

based on the stabilization of the continuity equation by adding a Laplacian pressure operator [3,11,22,23]. This
equivalence is shown next for the steady state case.
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Let us rewrite the stabilized form of the continuity equation using Eq. (102c¢) as

d(pu;) d (d(pu;)
ox, - TU, ox, ( ox, =0 (111)
where
T, = e
7 2lul’
It is easy to prove that
d d(pu;) d (pu;) d“k d(pu;)
u——\|—===—\y —_— (112)
ox, ax, ax, ax, dr, dx,
The original momentum equation can be written as
2 + 8 hd/} =0 §j=13 113
ax, (puju; + 8, p) — ox, —pf=0 Lj=1, (113a)
or
u; d(pu;) ap 9T,
—J 7 L=
(pu,) ox, +u; ox + 8, ox, ox, pf;=0 (113b)
Differentiating this equation gives
a apu,) azp 3 du, azq}.l. F B
ox; (uf' ax, ) ~ ax, x;  ax (puy) ax, + dx, dx, + ox; (=0
(114)

Substituting Eqs. (112) and (114) into (111) and neglecting terms such as those underlined in Eqgs. (112) and
(114) gives

a(pu;) d o
ax +TpAp—TPﬂ_xj(pfj)_0 (115)

i

where

0 d
2=(55+57)
ax”  ady”

is the Laplacian operator and the last term, of Eq. (115) is due to body forces. Assuming these to be uniform
gives

d(pu;) _
ox T Ap=0 (116)
i.e. the stabilized form of the continuity equation (111) can be interpreted as the addition of a Laplacian pressure
operator to the original mass conservation equation.
Eq. (116) naturally also holds for the case of constant density (incompressible flow) giving simply
wu, T, Ap =
Eix;+p p=0 (117)
Clearly Eqs. (116)-(118) are advantageous to derive FE schemes using equal order interpolation thus
circumventing the LBB condition in the limit incompressible case [3,11]. The equivalence between Eqgs. (111)
and (116) opens various possibilities for deriving alternative div-stable FE schemes where the advantages of the
new stabilized form can be exploited.
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6. Stabilization of incompressible flow equations

Assuming the flow to be isothermal and the density to be constant in Eqs. (102) gives the following
stabilized form of the incompressible flow equations.

Continuity equation

ou, h, o /au,

BT () 0 am
Momentum equations

ou I , & [du

?_’m_iﬂma_n(ﬁ_’m)zo (119)
where

u:[ulruzsufij-r! H:::hf:l'\!

(120)
r :—{VuT]u—lV +lLTa'+b
m p p p
with
o o[ A |

afax 0 0 a/ay afoz O
L= 0 afay 0 alax 0 afoz (121b)
0 0 a/oz 0 afox aloy
and the expression of o is given by Eq. (98a).

Eqgs. (118) and (119) can be rewritten in terms of the characteristic lengths and the intrinsic times by using
the following expressions

h
k_ _''p _
h, = 2ul U, = 71, (122a)
h
k_ _"u _ 122b
h, 2|u| U, = 7T,y ( )

Note also that the stabilized continuity equation (118) can be replaced by the more standard equivalent form
(117) obtained using the same procedure of Section 5.6.

7. Higher-order stabilization scheme
7.1. One-dimensional advective—diffusive problem

A higher-order stabilization scheme can be simply derived by using higher-order expansions in the
approximation of the flux and source terms in the balancing domain. For simplicity, let us consider first the
one-dimensional advection—diffusion problem. The balance equation over the typical segment AB of Fig. 1(b)
can be written following the notation of Section 2.1 as

+ v[ud)(x) — glx — h) — —h +£[ +4(—£)+ —h]—o 123
q(x) + v[udl(x) — qlx Vudlx —h) + ¢ | Qo) +4Q\x — 75 )+ Qx — h) | = (123)

In Eq. (123) a quadratic distribution of the external source Q has been taken.
The following expansions can be written
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dg h*d’q h'd’q hn'd'q
q(x*h)=q(x)*h—+———2'—-6—dx3+§dx4
h

* d’[ug]
dx?

3
d ? —- 0"
X

+ Oh’)

dlud]

d3 hat d4
ugl(x = h) = udlx) —h—g— + up] h” d[ud]

hJ
3 +06)
(124)

8
_ aQ  hd
QU —h) =0 ~h 5 +

e o

Substituting Eqs. (124) into (123) gives after some simple algebra

har B R s
"To2dx T 6 a4 24 4 (125)
where r is given by Eq. (24). Note that Eq. (125) incorporates naturally the higher-order stabilization terms

Er g
dx:‘ an 24 dxs.

o=

The higher-order stabilized transient equation can be expressed in identical form to Eq. (125) simply by
including the time derivative term in the residual as shown in Eqgs. (34).
Eq. (125) can be expressed in term of the intrinsic time scale simply making h = 27u. This gives
dr 2 ,,dr 1 ,.dr

r*ma—rg‘r'u'g—gru dx3=0 (126)

A simple stabilized transient form neglecting the time derivative in the stabilization terms is

I dr 2 ,,d% 1 ,dFr
uar—r+'rudx—37udx2+37udr3—0 (127)

The explicit time integration of Eq. (127) is written as

At a2 ,,dr 1 4 ,dr]"
A¢=";‘ r—Tu——+5TU —2——‘?‘“'?

& T3TH T3 (128)

Similar ideas can be used to derive higher-order stabilized forms of the Neumann boundary condition.

7.2. Analogy with stabilization schemes based on adding second- and fourth-order diffusive terms

The stabilization term involving the second derivatives of the residual in Egs. (127) is usually not taken into
account in FD, FE and FV schemes [1,3]. The reason for neglecting this term is that it appears multiplied by the
square of the velocity. Here, this term is unable to capture the effect of a sign change in the velocity field. The
resulting stabilized equation involving first- and third-order derivatives of the residual only is

hdr B &r o 120
T 2dx 24 g (129)

r

Eqgs. (129) can be interpreted as a generalization of the standard stabilization procedures based on adding
second- and fourth-order diffusive terms to the original equation [1]. Indeed, taking into account the convective
term only in the residual derivatives in Egs. (129) gives

hd'wg) B dwe) _
2 4 24 4t

, (130)
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The analogy with a number of similar stabilized FD and FV schemes widely used for advective—diffusive
transport and high speed flow situations is now clearly recognized [1].

7.3. Higher-order stabilization of the two-dimensional advection—diffusion equations

The extension to two-dimensional advective—diffusive problems is straightforward. For this purpose a
quadratic variation of the fluxes along the sides of the rectangular balancing domain of Fig. 3 is assumed.
Following the procedure described in [30] gives

r=V'r+Vr-vVir=0 (131)
where as usual r is given by Eq. (24) and
V'=ih'V withh=[h. k] Vw[i i]T 132
_2h with k =[h h] , = % (132a)
h: 9*  hh, §*  hl
2__ T Y Xy MR
V=% x4 & 8y+ 6 9y° (132)
L R KR R R “
V=uy ' 2 6x2&y+ 12 axay’+24 ay’ (1329

The transient form is identical to Eq. (131) if the residual is defined as in Egs. (34) (see [30]). A simpler
transient expression neglecting the time derivative in the stabilization terms is

d
b2 V-V V=0 (133)

The explicit time integration of Eq. (133) gives
At
A¢=—;[r—V'r+V2r—V3r] (134)

A similar process can be followed to derive higher-order stabilization schemes for the fluid mechanics
equations.

7.4. Analogy with the Subgrid Scale and Galerkin—Least-Square forms

Let us consider the following stabilized form of the one-dimensional convection—diffusion equation obtained
by neglecting the h® stabilization term in Eq. (125), i.e.

r—5-—+——=0 (135)

This equation is completed with the Dirichlet boundary condition (9) and the stabilized Neumann condition

given by Eq. (26).
The finite element solution of these equations will now be attempted. For that purpose the following weighted
residual form will be written

! hdf R AP — . dé _ h = _
j W[F—Ea’-%—?;ﬁ]dx+|:W(—vuqb+k£+q-—§§)]{+[W(¢—¢}]o=0 (136)

0
where # = 1), j_z being the approximate function (viz. Eq. (35)).
As usual W=W=0 in the Dirichlet boundary is now taken. Integrating once by parts the term
h 47
2 dx

and twice the term
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g_:j d’f
6 dx’

gives after choosing W= -Ww

I e O s I (R e ORI C DN B

(137)

Expression (137) provides the system of equations in the FE solution by making W= W, with index i ranging
from 1 to the number of nodes in the FE mesh. Note that by choosing W, = N, an expression analogous to
that used by Franca et al, [10] and later by Hughes [15] with the name of Subgrid Scale (SS) method is
recovered. This can be made more evident by integrating the advective and diffusive terms in the product Wr
giving

j*[gﬁ ; ﬂz".kd_é&] r[ﬁd_“’ LS ][dfww d(ad_és)]
& P kg J 2dx+6dx2 & o\ /e

= [wosaw+ [ (5F+ 5 G )oecs g [ g+ 5+ (5 ]

With W, = N, and h = 27u, Eq. (138) reproduces the features of the SS formulation [15,29]. This approach is
very similar to the so-called Galerkin-Least-Square method [24], the only difference being the sign of the
viscous operator applied to the test functions in the stabilization term. A similar stabilized term is obtained with
the Taylor—Galerkin (TG) procedure as shown in [29] where an interesting comparison of SUPG, SS, GLS and
TG methods is presented.

A similar analogy can be found for two-dimensional problems.

8. Higher-order approximations in time

Let us write the balance equation for the one-dimensional advection—diffusion problem for the space—time
slab [A, B] X [t,t + 8], where [A, B] is the finite spacial domain of Fig. 1 and § is an arbitrary (finite) time
increment as

t+é B t+6
J’ {z internal ﬁuxes) dr = j [J. v dgb] dx (139)
r A t

The Lh.s. of Eq. (139) can be approximated as (using the arguments of Section 2.3)

[ e =3~ 3500 (35
) internal fluxes) dt r 7 ax 7 3x

ﬁh[( h ar + har‘)]
N 2 ax 28( "7 ox (140)

where as usual r is given by Eq. (24).
On the other hand the r.h.s. of Eq. (139) can be expressed as (taking v as constant)

LU vasfac e - onae (a5 5 52

ap 607 haofop 6d°¢d
—vah[(af+2af) 2air( +26r)] (141)

Equaling now Egs. (140) and (141) gives after simplification the final form of the stabilized transient balance
equation as
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- EG_F 6a (. ha?)_
2 ox =0

- AT (142a)

where

9% _
Y ot
In the derivation of Eq. (142a) (-)' =(-) has been taken. Note that by taking 6 =h =0 the standard

infinitesimal form of the transient balance equation 7 = 0 is obtained. A simpler form of Eq. (142a) neglecting
the high order term dh is

Il

- , (142b)

r—ia+§—‘§= (143)
Eqgs. (142a) and (143) can be used to derive time integration schemes where the characteristic time increment
parameter & could play an interesting stabilization role in some cases.

9. Computation of the characteristic length parameter

A popular method for deriving analytical expressions of the stabilization parameter a for 1D problems solved
by the FEM is by adding some kind of artificial diffusion of the form

a_uffe) dZ ¢
2 dx?
to the original differential equations and then computing « by imposing exact or quasi-exact nodal solution [3].
This can be shown to be equivalent to minimizing the truncation error of the numerical solution at each nodal
point. This procedure can only be successfully applied for linear two node elements. For quadratic 1D elements
two stabilization parameters are required to obtain exact nodal results, although a single average parameter can
be used for practical purposes [23,24]. Extension of these concepts to 2D and 3D convective transport and flow
problems is usually made on a simply heuristic grounds and no systematic method for deriving a general
expression of the stabilization parameters is yet available. Recent attempts by Hughes [15] and Brezzi et al.
[16—-18] show some promise in this direction. In the next section an expression for computing the stabilization
parameter is suggested.

9.1. One-dimensional advection—diffusion problem

The arguments somehow follow those of standard procedures mentioned above, ie. the role of the
stabilization parameter is to counterbalance the error introduced by the numerical algorithms.

For simplicity, let us consider the FE solution of the 1D advective—diffusive problem. The average residual of
a particular numerical solution over an element can be defined as

. 1
PO = = J’!m ro dx (144)

where r,, is defined by Eq. (38a).
Substituting Eq. (38a) into (144) gives

Le) ale) h dF\«©
e (145a)

where

o1
a9 = = L..] a dx (145b)
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For simplicity the value of 4 will be assumed to be constant over the element, i.e. h = A'“’. Hence, Eq. (145a)
can be simplified to

h(f! df e)
o= po 2 (a}) (146)

Let us assume now that an enhanced numerical solution has been found for a given finite element mesh. This
can be achieved by projecting into the original mesh an improved solution obtained via mesh refinement or,
more simply, by global/local smoothing or superconvergent recovery of derivatives [27]. If r%’ and r'”,
respectively, denote the element residuals of the original and the enhanced numerical solution for a given mesh

then it 1S obvious that

()

i =ri"=0 (147)

Obviously, both '’ and r3” have assumed to be positive in (147). In the case they are negative the above
inequality should be changed to <0.
Combining Egs. (146) and (147) an expression for the element characteristic length can be found as

d!: ie) d; ey ] -1
””M"‘z’“"")[(i) *(“a?l) ] (148)

The equality case in (148) yields the critical value of the element characteristic length parameter ensuring no
growth of the numerical error. The accuracy of expression (148) is shown next in a simple example.

9.2. Example. The 1D advective—diffusive problem

Let us consider the FE solution of the 1D advection—diffusion problem

—y— + k =0, 0sx<I/ (149a)

with boundary conditions
d=0 atx=0
(149b)
¢=1 atx=1

The solution will be attempted with the simplest two node linear element. For a uniform mesh the residual
and the residual derivative for an element with nodes i and i + 1 can be found as

r

u dr,\@
A== a (G =) and (E;) =0 (150)

The enhanced solution is obtained now by a simple smoothing of the first-order derivative at the nodes. The
elemental residual for the enhanced solution is given by

ate U -, = ko . 5,

r['_’}:TE(¢i+¢j+l)+};(¢i+l_¢j) (151)
where

&, L_(d_ﬁa) - S~ b,

i dx i 2:(8! :

A simple algebra gives

e u k

ri'=—* (&) (¢5-s1_‘»bi—l+¢i+3_@')+—{(¢'{+z—¢f”¢f+;+¢;—1) (152)

: 4l 210
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A similar procedure leads to

d?, \«© d’$ u
(sz) Tu dx? :_W{¢j+2_‘_¢i—(ﬁi+1 + ¢yl (153)

Substituting Egs. (150), (152) and (153) into (148) gives the element critical characteristic length as
R =[¢;+2 -3¢, +3d— ., 1 :l{m

by b — b+ b, Y (154)

where y = ul'’ [ 2k is the element Peclet number. The value of the element stabilization parameter a‘’ is readily
deduced from Eq. (154) as

(e ‘\ﬁi‘-Z __3(251‘-2-1 +3¢'¢ - qbi-—} l
'= —— 155
« («‘{’.‘;z_’@bf+|'_¢;+d’;—1 Y ( )

It can be checked that the value of a'”’ given by Eq. (155) coincides in this case with the analytical
expression typically used in practice. For this purpose let us substitute into Eq. (155) the general numerical
solution for this case given by

—A+B Il+ya+1)] 5
¢= [+ya—1) (156)
where A and B are appropriate constants. After same simple algebra we obtain
(e) l
a=1-— (157)

Y

which coincides with the standard critical value [3].

Eq. (155) can be used for deriving an iterative scheme for computation of a'’ as follows:

(i) Solve the stabilized problem (23) by the FEM with an initial guess of o'’ = %a‘.

(ii) Compute an enhanced value ‘@' by Eq. (155).

(ili) Repeat the numerical solution of the stabilized problem with a new value of & given by 'a'’ =
%(Oalej + la(e’))‘

(iv) Repeat the process until a satisfactory stable numerical solution is found or else ||
where & is a prescribed tolerance.

The computation of the term involving differences of the ¢, values in the r.h.s. of Eq. (155) can be difficult
due to round off errors in zones where changes in the numerical solution are small. This problem can be
overcome by the following procedure:

(1) If ¢, — ¢y =< & where ¢, is prescribed value at the Dirichlet boundary and & is a very small number,
then the first term of the r.h.s. of Eq. (155) is made equal to the unity. This correction eliminates the
possible oscillations of the computed value of @'’ in zones where the relative changes of the solution are
small. In the examples shown next £=10""° has been taken.

(i) I 'a”>1o0r ‘a'” <0 then ‘@'’ =1 and '@’ =0 are, respectively, taken.

Figs. 9—11 show practical applications of this iterative process. In the first case the solution of the 1D
advective—diffusive problem is attempted for ¥ = 5 using a mesh of twenty linear elements. An initial value of
%' = 0.5 is chosen for all elements. Fig. 9 shows the convergence of the solution for a‘“’. Note that the critical
value o’ = 0.8 is obtained in all elements after a few iterations, Fig. 9 also displays the convergence of the
numerical solution for ¢ showing convergence to the ‘exact’ solution after three iterations.

Results for the same problem for y = 25 are shown in Fig. 10. Note that an excellent solution is obtained with
just two iterations in this case. Seven iterations are however needed to obtain the critical value of & for all
elements. Indeed in both cases it suffices to obtain a good approximation for a in the vicinity of the exit node
and this always occurs after 2-3 iterations.

1‘+Ia_(ej _ ia(e)" < g,
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Fig. 11 shows the solution of the same problem for y = 10'° obtained now with an initial value of ‘e’ =0
for all elements. Excellent results are again obtained after 2-3 iterations.

The possibilities of exploiting the form (148) for the numerical computation of the critical stabilization
parameter are discussed more extensively in [28].

10. Concluding remarks

This paper has shown that the origins of many numerical stabilization methods for advective—diffusive
transport and fluid flow problems lay in the higher-order governing differential equations incorporating the
effect of the finite balance domain size /4. Indeed standard conservation statements and the corresponding PDEs
are recovered for the limit 2 = 0. The finite increment form of the differential equations can be used as starting
point to readily derive stabilized differences schemes via FD and FP approximations. Alternatively all
well-known stabilized integral forms typically used in FV and FE practice emerge also as a consequence of the
new stabilized governing differential equations. Extensions of the method to include the effect of reaction terms
seem straightforward.

An interesting spin off result of this Finite Increment Calculus approach is a procedure for computing
numerically the value of the critical stabilization parameter. This seems to offer a promising trend to obtain
consistent values of the no longer mysterious stabilization parameter, therefore eliminating the need for heuristic
predictions.
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