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Abstract. The formulation of multiphase flows emanates from basic conservation laws: mass,
momentum and energy. While these are embedded in the celebrated Navier-Stokes equations,
none of these properties do necessarily hold when constructing a computational model, unless
special care is taken in discretizing the different terms of the governing equations. The conserva-
tion of both primary (mass, momentum) and secondary (energy) quantities is not only relevant
to mimic the dynamics of the system, but also computationally beneficial. Conservation of such
quantities produce an enhanced physical reliability, removing most of the need for stabiliza-
tion artifacts. In addition, discrete conservation implies numerical stability as well, producing
inherently stable problems.

Focusing on the capillary force, which is one of the most distinguishable features of multiphase
flows, we present here our most recent developments in the quest for conservation. Departing
from an inherently mass conservative method, in this work we sketch our previous developments
to obtain an energy conservation and next we present our attempt at momentum. By carefully
assessing the continuum formulation, we delve into the mathematical properties responsible for
the conservation of linear momentum, which we then mimic in the regularized and discrete
formulations.

1 INTRODUCTION

Bubbly flow technologies are ubiquitous in industry. Example applications range from drag
reduction around ship hulls [1] to tuning chemical selectivity in process industry [2], among oth-
ers [3]. However, the development of these technologies firstly requires advancing our knowledge
of the physical mechanisms ruling bubble dynamics [3].

A common thread behind most of the aforementioned technologies is the modification of
large scale (flow) features by means of small scale (i.e., bubbles) ones [4, 5]. Two of the most
relevant mechanisms in bubble flow technology are buoyancy, arising from the uneven density
of the dispersed and continuous phase; and wake damping, due to the elastic deformation of
the bubble interface by surface tension. Other important phenomena are bubble coalescence
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in phase-change applications (e.g., boiling, electrolysis), and bubble break-up in atomization
processes (e.g., combustion, spray coating) which are also due to surface tension. All these
contribute to modify the flow features, like its turbulent spectra [6].

The incompressible Navier-Stokes equations describe such flows in most industrially relevant
conditions. These state the conservation of mass and momentum explicitly, which are regarded
as primary invariants; they also state the conservation of mechanical energy (in the abscence
of viscosity) implicitly, which is regarded as a secondary (inviscid) invariant. Their solution
contains the description of all the aforementioned flow features.

The lack of an analytic solution, the small characteristic length scale at which these process
happen, together with its delicate nature, render Direct Numerical Simulation (DNS) as an
essential tool to gain understanding on its ruling physics. DNS aims at representing the govern-
ing equations directly (i.e., the Navier-Stokes equations), without taking any further modeling
assumptions on the solution. Our leitmotiv is that, as far as the physical setup is stable, so
should the numerical one. Not only that, but it should attain stability by mimicking the same
physical mechanisms in charge of such stability. It can be proven that the conservation of those
corresponds with both a guaranteed stability and an improved physical reliability. This has
proven to be invaluable in the DNS of turbulent flows [7, 8].

However, the DNS of multiphase flows is slightly less developed that its single-phase coun-
terpart, precisely because of the even more complex interplay of different length scales [9]. In
particular, the inclusion of very high liquid-gas density ratios and/or surface tension typically
leads to numerical instabilities [10]. To address such instabilities, it is a common trend the
addition of artificial damping mechanisms which, most critically in the context of turbulence,
compromises the physical reliability of the model [11]. On the contrary, in the spirit of the
DNS, our aim is to compute a numerical solution that mimics the continuum one in terms of
the (discrete) conservation of basic quantities: mass, momentum and energy.

The conservation of both primary and secondary invariants is beneficial for the quality of the
simulation because of twofold reason: (i) from the numerical perspective, the conservation of
energy implies stability of the discrete system. This guarantees that the solution will eventually
attain a stable solution. Then, (ii) from the physical perspective, the discrete conservation
laws are exactly satisfied. This provides with an enhanced seal of quality to the output of the
simulations.

Previous attempts on the conservation have obtained limited success, and to the best of
our knowledge no methods has been able to simultaneously attain the conservation of mass,
momentum and energy at the discrete level. While the conservation of mass is straightforward
for the Volume Of Fluid (VOF) [12], Phase Field (PF) [13] and the Conservative Level Set
(CLS) [14] methods, the conservation of linear momentum and mechanical energy has seen
much limited progress. These include the conservation of energy for PF [15, 16], VOF [17]
(partially), and most recently CLS [18] methods; while the conservation of linear momentum
has seen limited success to 2D situations [19].

The main difficulty on the conservation of linear momentum and mechanical energy stems
from the inclusion of surface tension [10]. In turn, this strongly depends on how the interface is
represented at the discrete level. In this regard, the use of regularized (i.e., diffuse) interfaces
results into a mathematically better posed problem [20, 18].

In this paper, we discuss our present efforts in the development of a fully conservative numer-
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ical method for multiphase flows. Departing form our recent developments [18] in the context of
the CLS, we review the analytic, regularized and (when possible) discrete formulations leading
to the conservation of linear momentum and mechanical energy.

2 CONTINUUM FORMULATION

The dynamics of multiphase flows is accurately represented by the incompressible Navier-
Stokes equations. In their conservative form, they read:

∂ρu⃗

∂t
+∇ · (ρu⃗⊗ u⃗) = ∇ · σ ∇ · u⃗ = 0 (1)

where ρ is density, u⃗ is the velocity field and σ is the stress tensor. The latter is composed of
the hydrostatic and the deviatoric ones (σ = −pI + τ). Assuming that he flow is Newtonian, τ
is defined by the Stokes constitutive equation τ = 2µS, where the strain tensor is the symmetric
part of ∇u⃗, S = 1/2

(
∇u⃗+ (∇u⃗)T

)
.

However, in the presence of tensile surfaces, the stress tensor σ presents a discontinuity. The
reason behind it is the uneven molecular activity in the two phases across the interface, Γ. This
induces a force parallel to the interface [21]. Across curved interfaces, this results into a stress
discontinuity in the normal direction of the interface surface. As a result, the stress tensor
includes the following discontinuity:

[σ]Γ η̂i = −γκη̂i (2)

where η̂i is the interface normal, γ is the surface tension coefficient and κ is the interface
curvature.

Owing to the conservative nature of equation (1), linear momentum is conserved in this
formulation, while the conservation of mechanical energy has been extensively reported in the
absence of discontinuities (see, e.g., [22]). Nonetheless, we will report next on the conservation
of the both linear momentum and mechanical energy due to the stress discontinuity.

2.1 Energy

For the conservation of mechanical energy, we briefly summarize the procedure described
in [18], by focusing solely on the contributions to the energy balance of the surface tension term.
For a comprehensive detail of how the rest of the terms cancel each other, the interested reader
is referred to [23, 18]. First, we introduce the mechanical energy as the sum of kinetic and
surface energy.

dEm

dt
=

dEk

dt
+

dEp

dt
(3)

The contributions to kinetic energy read as

dEk

dt
= γ

∫
Γ
κu⃗ · η̂idA (4)

where dA stands for a differential control surface of the interface. Note that we have assumed that
γ is constant. This accounts for the change of energy of the fluid due to the accelerating/stopping
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effect of surface tension. On the other hand, the contribution to potential energy is due to the
variation in Helmholtz’s free energy, which reads as

dEp

dt
= γ

d

dt

∫
Γ
dA (5)

and contains the elastic energy stored in a tensile interface due to its deformation, in what can
be seen as a 2D counterpart of the well-known 1D elastic energy of a spring. Overall, the entire
system can be seen as a 3D counterpart of the well-known spring-mass system.

Introducing the first variation of area [24],

d

dt

∫
Γ
dA = −

∫
Γ
κu⃗ · η̂idA (6)

which relates the evolution of surface area with its curvature times its normal velocity, we can
prove that:

dEm

dt
= 0 (7)

2.2 Linear momentum

For the conservation of linear momentum, the integral of the mean curvature vector, κη̂i [25]:∫
Γ
κη̂idA+

∫
∂Γ

η̂i × dη̂i = 0⃗ (8)

states that for a closed surface (i.e., ∂Γ = ∅) momentum is conserved. It also states that, in
case of an open surface the contribution of contact angle to the total momentum equation is
introduced by means of the second term of equation (8). However, as a first attempt, we will
disregard here the contact angle effect and focus on closed surfaces.

The continuum formulation has proven the conservation of mass and momentum and energy.

3 REGULARIZED FORMULATION

The use of a sharp representation of the interface poses several regularity issues, which become
problematic at the computational stage. To overcome these, we consider the embedding of the
different phases and the interface separating them into the ambient space and introduce a proper
regularization. Following our previous work [18], we show that such a regularization is compatible
with the first variation of area (6) as well as the integral of the mean curvature vector (8). The
latter represents the main novelty of this work.

We introduce a smooth marker function, θ, as in the Conservative Level Set (CLS) method [14],
which considers a smooth volume fraction, i.e.,: θ = 0 correspond to one phase and θ = 1 cor-
responds to the other one.

H(r) ≈ θ(r) =
1

2

(
tanh

( r

2ϵ

)
+ 1

)
(9)

where H is Heaviside’s step function, r is the signed distance function of an arbitrary point in
space to the interface, and ϵ controls the smearing of the profile. Note that as ϵ → 0, θ collapses
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to the Heaviside step function θ → H(r), which corresponds with the sharp representation of
the interface used in Section 2 The interface surface is then reconstructed as in the Continuum
Surface Force (CSF) method [26]

dA = |∇θ|dV η̂i =
∇θ

|∇θ| κ = ∇ · η̂i (10)

Finally, the marker function allows to replace the transport of the interface by the transport of
a scalar, which is a much more amenable problem.

∂θ

∂t
+ (u⃗ · ∇)θ = 0 (11)

3.1 Energy

For the conservation of energy, we succinctly summarize the derivation described in [18] to
show that the regularization introduced in equation (9), is compatible with the first variation
of area (6). By using the surface reconstruction in (10) and the transport of the marker func-
tion (11), we arrive at

d

dt

∫
Γ
dA ≈

∫
Ω
η̂i · ∇((u⃗ · ∇)θ)dV =

∫
Ω
(∇ · η̂i)(u⃗ · ∇)θdV ≈ −

∫
Γ
κu⃗ · η̂idA (12)

which proves that the use of a regularized marker function is compatible with the conservation
of (regularized) energy. Details on the exact derivation can be found in [18].

3.2 Linear momentum

The next step is to show that the regularized surface tension term given in Eq.(10) preserves
linear momentum re-writing it as a linear combination of terms that are in conservative form
(divergence or gradient). To do so, we firstly apply the chain rule to both ∇|∇θ| and ∇·(η̂i⊗∇θ)

∇|∇θ| = ∇(η̂i · ∇θ) = (η̂i · ∇)∇θ +∇η̂i · ∇θ, (13)

∇ · (η̂i ⊗∇θ) = (η̂i · ∇)∇θ + (∇ · η̂i)∇θ, (14)

then, re-arranging terms leads to

(∇ · η̂i)∇θ
Eq.14
= ∇ · (η̂i ⊗∇θ)− (η̂i · ∇)∇θ

Eq.13
= ∇ · (η̂i ⊗∇θ)−∇(η̂i · ∇θ) +∇η̂i · ∇θ. (15)

Hence, it is clear that the net contribution to linear momentum exactly vanishes if the tensor
∇η̂i and the vector ∇θ are orthogonal, i.e. ∇η̂i · ∇θ = 0⃗. To show this, it suffices to prove it
for the x-direction. Namely, recalling the definition of η̂i = ∇θ/|∇θ| and |∇θ| =

√
∇θ · ∇θ, and

applying the chain rule twice leads to

∂

∂x

( ∇θ

|∇θ|

)
=

∂x(∇θ)|∇θ| − ∇θ∂x|∇θ|
|∇θ|2 =

∂x(∇θ)|∇θ| − ∇θ(∂x(∇θ) · ∇θ)/|∇θ|
|∇θ|2 , (16)

then, taking the dot product with ∇θ and re-arraging terms yields

∂

∂x

( ∇θ

|∇θ|

)
· ∇θ =

|∇θ|(∂x(∇θ) · ∇θ)− |∇θ|2/|∇θ|(∂x(∇θ) · ∇θ)

|∇θ|2 = 0, (17)
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showing that vectors ∂x(∇θ/|∇θ|) and ∇θ are orthogonal. Applying the same reasoning to other
spatial direction leads to the following orthogonality relation

∇η̂i · ∇θ = 0⃗. (18)

Finally, combining Eqs.(13), (15) and (18) leads to the following conservative form for the
regularized surface tension term

(∇ · η̂i)∇θ = ∇ · (η̂i ⊗∇θ)−∇|∇θ|, (19)

and subsequently to the conservation of linear momentum∫
Ω
(∇ · η̂i)∇θ = 0⃗, (20)

provided that the contribution from the domain boundary, ∂Ω, vanishes.

4 DISCRETE FORMULATION

The construction of the numerical setting requires to preserve the geometric identities de-
scribed above. Such geometric identities imply the conservation of either energy (first variation
of area) or momentum (integral of the mean curvature vector).

The discrete setting is based on a finite volume, staggered, second order formulation as
described in [18]. Such a framework provides with the basic operators of discrete vector calculus.
The transport of the marker function is performed by using a high resolution scheme, typically
the Superbee flux limiter as in the original CLS scheme [14]. Nonetheless, although included
in [14], recompression has been disregarded for the sake of energy conservation [18].

Following the framework described in [18], discrete variables are arranged into vectors (e.g.:
θc, kc), and discrete differential operators are arranged as matrices (e.g., G, D). The vector sub-
index determines its arrangement, stating c for collocated (cells) and f for staggered (faces);
e.g.: θc and n̂c are collocated, while nf is staggered. The hat symbol determines that the discrete
variable exists for the n components of the original vector, being n = 2 in 2D and n = 3 in
3D; e.g.: n̂c is located at the cell centers and contains n-components for every cell, while nf is
located at the faces and only contains the projection of the vector in the face-normal direction.
The computation of θ and η̂i is performed at the cell centers, by constructing second order
approximations to equation (10).

n̂c = ||Gcθc||−1
L2Gcθc nf = NFΠn̂c kc = Dnf (21)

where we do take the cell-wise modulus of the collocated gradient, ||Gcθc||L2, by taking the
standard L2 norm of its components at each cell.

Next, we will summarize our present knowledge on energy conservation [18] and our current
efforts towards momentum conservation. Details for the conservation of energy can be found
in [18]. In the quest of momentum conservation, we try to preserve the discrete structures that
already provide with energy conservation.
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4.1 Energy

The conservation of energy relies on satisfying the first variation of area (6). To do so, we
follow [18], which we sketch briefly. In the context of a staggered mesh, this implies taking
the point-wise product of both the staggered velocity and the staggered curvature. However,
curvature is naturally defined in equation (21) at the cells, while the need the staggered value.
However, the use of linear interpolation schemes [14] does not result in energy conservation.

Nonetheless, to interpolate the curvature from the cells to the faces provides with an opportu-
nity to satisfy energy conservation. In this regard, we proceed by introducing a new cell-to-face
interpolator Υ, which is the cell-to-face curvature interpolator, and assess its construction in
terms of discrete energy conservation.

The surface area is described in terms of the CSF method in equation (21). Introducing the
more compact inner product notation, (f, g) =

∫
Ω fgdV , we obtain a discrete version of the first

variation of area as: (
G
dθc
dt

, n̂f

)
= (Gθc, uf ⊙Υkc) (22)

where ⊙ corresponds with the element-wise product.
We then consider the discrete evolution of surface energy in terms of the transport of the

marker function. This describes the time derivative of the discrete marker function.

dθc
dt

= C(uf)cθc (23)

Due to the abrupt discontinuity of the marker function, the use of a high resolution scheme is
in place. In particular, we use a Superbee flux limiter, as in the original transport equation of
the CLS [14].

After rearranging equation (22) (see [18] for details), we arrive at the final condition for Υ:

C(uf)cuf
T = −D (uf ⊙Υ) (24)

which relates the construction of the high resolution convective operator for θc, C(uf)cuf with
the the curvature interpolator Υ. By splitting the flux limiter into a symmetric and a skew-
symmetric part [27], it can be shown that the face-to-cell curvature interpolator must be dual
to the cell-to-face marker function interpolator [18]. In summary, the curvature interpolator
must use as much downwind interpolation as upwind interpolation is used for θc. A graphical
example can be seen in Figure 1, where Ψ stands for the high resolution interpolator.

4.2 Linear momentum

The conservation of linear momentum at discrete level turned out to be a very complex
problem. In view of the identity (19) found in this work, there exists a straightforward way to
preserve linear momentum. Namely, simply ignoring the gradient term, ∇|∇θ|, in the regularized
continuous formulation. In this way, we just need to discretize the first term in the r.h.s. of
Eq.(19), ∇ · (η̂i ⊗ ∇θ), which is in divergence convective form; therefore, preserving the linear
momentum. The term ∇|∇θ| would be absorbed into the pressure field, i.e. π = p + |∇θ|.
However, doing so, the conservation of mechanical energy cannot be guaranteed any more.
Notice that the method developed in [18], and briefly outlined in the previous section, relies on
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Ψ(uf ) =
c1 c2f

uf

+1

=

Π

c1 c2f

uf

+1/2 +1/2

+

Λ

c1 c2f

uf

+1/2 −1/2

Υ(uf ) =
c1 c2f

uf

+1

=
c1 c2f

uf

+1/2 +1/2

−
c1 c2f

uf

+1/2 −1/2

Figure 1: The curvature interpolator Υ is constructed in terms of the interpolation used in the con-
struction of the fluxes at the faces of C(uf)c.

discretizing both the surface tension and the convective term in the transport equation of the
marker function in a consistent way.

Hence, it seems that if we aim to preserve both mechanical energy and linear momentum, we
need to mimic the mathematical properties that lead to the conservation of the linear momentum
for the regularized formulation in Section 3.2. Likewise the continuous case, the cornerstone
seems to be to preserve the orthogonality between the tensor ∇η̂i and the vector ∇θ (see Eq. 18)
at discrete level (for the sake of brevity details are omitted here). Very shortly, in 2D (3D
extension is straightforward) we end up with the following discrete term

(MFG
xn̂x)⊙ (Πgx) + (MFG

yn̂y)⊙ (Πgy), (25)

where gx and gy are the cell-centered gradients in x and y direction, n̂x and n̂y are the respec-
tive cell-centered (interface) normals and Gx and Gy represent the discrete cell-to-face gradient
operator, G, projected into x and y directions. This expression resembles the continuous coun-
terpart given in Eq.(18) and must be exactly zero to preserve linear momentum at discrete
level. Several face-to-cell and cell-to-face interpolations are required to construct a numerical
approximation. Current research plans are focused on finding appropriate relations between
these discrete operators to guarantee that expression (25) vanishes.

5 RESULTS AND CONCLUSIONS

A typical example is presented for a bubble of diameter R = 0.15 placed at the center of a
box [1× 1× 1], which is represented by a mesh of [96× 96× 96] cells. In the absence of gravity
and viscosity, velocity should remain stagnant. Stretching the bubble by 20% in the y−axis, the
problem turns into a multi-dimensional version of an (undamped) mass-spring system, which is
meant to continuosly oscillate. Tests are performed for density ratios 1 and 1e− 3.
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Considering linear perturbation theory for an ellipsoid, one can determine the oscillating
period as [28]:

T = 2π

√
R3 ((s+ 1)ρ1 + sρ0)

γs(s2 − 1)(s+ 2)
(26)

being ρ1 and ρ0, the bubble and liquid densities, respectively.
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Figure 2: Flow metrics evolution for an ellipsoid for unit density ratio. Top: Energy evolution. Bottom:
Evolution of |u|∞ and |Duf |∞.

Results show how the simulation of these cases does preserve the energy transfer exactly (up
to an incompressible flow field), preserving both the physics of the problem as well as numerical
stability. It can be observed, however, a damping in the amplitude of such energy transfers.
Since there is no dissipation, this can only be attributed to an erroneous computation of the
intensity of such transfers, i.e., the computation of the actual capillary force.

We assume that these errors are due to the lack of momentum conservation, which may lead to
the production of inaccurate solutions, i.e.: incorrect re-distribution of elastic and kinetic energy.
Eventually, the system evolves into a stagnant case, since all the energy that was available at
the beginning of the simulation is eventually allocated as surface energy. As described above,
the conservation of linear momentum in the capillary term is ongoing work.

Finally, we have exposed the relevance of the conservation of primary and secondary proper-
ties, delved into the mathematical identities behind them, and successfully brought them from
the continuum to the regularized formulation. While we have partially succeed on bringing
those to the discrete formulation, most remarkably energy, the development of a simultaneously
preserving mass, momentum and energy scheme is still work in progress.

9



N.Valle, F.X. Trias and R.W.C.P Verstappen

−5.000
−4.000
−3.000
−2.000
−1.000
0.000

1.000

2.000

3.000

4.000

5.000

0 2 4 6 8 10

0.10

1.00

10.00

100.00

0 2 4 6 8 10
1e-07

1e-06

1e-05

d
E
/
d
t

dEk
dt

dEp
dt

dEm
dt

|u
f| ∞

|D
u
f| ∞

|uf |∞
|Duf |∞

Figure 3: Flow metrics evolution for an ellipsoid for ρ1/ρ0 = 10−3. Top: Energy evolution. Bottom:
Evolution of |u|∞ and |Duf |∞.
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