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_ . R SUMMARY _ \
An incremental Total Lagrangian Formulation for curved beam elements that includes the effect of large
rotation increments is developed. A complete and symmetric tangent stiffness matrix is obtained and-the
numerical results show, in general, an improvement over the standard formulation where the assumption of
infinitesimal rotation increments is made in the derivation of the tangent stiffness matrix.

1. INTRODUCTION
The development of structural finite elements (beam and shell elements) for non-linear analysis
and the development of solution methods for non-linear problems is a very active research field
because the non-linear analysis of structures is an engineering application continuously deman-
ding more efficient, robust and above all reliable nurmerical tools.

The elements with C° continuity, -derived from the Ahmad, Irons and Zienkiewicz shell
element! appear to be the rhost suitable ones and the majority of the latest developments in the
field take this element as a starting point (e.g. References 2-8).

In the development of elements for geometrically non-linear analysis, the consideration of large

Totations introduces additional difficuities due to the non-vectorial nature of finite rotations.

In this paper we concentrate in the geometricaily non-linear formulation for C° curved beam
elements (also isoparametric beam elements or Timoshenko beam cleménts). ‘

A derivation of the C® beam element is presented by Bathe in Reference 9, and an extensive
derivation of the kinematics of large rotations is presented by Argyris in Reference 10.

In the standard geometrically non-linear formulation for C° beam elemients the tangent
stifiness matrix is derived assuming infinitesimal rotation increments (rotation increments line-
arization) and the effect of large rotation increments is considered only during the equilibrium
iterations, when calculating the stresses.

Different formulations that take into account the effect of finite rotation increments on the
resulting stiffness matrices have been presented by Surana ,!! by Simo,'? Simo and Vu Quoc!?
and by Ofiate. !4

In this paper, we develop an incremental Total Lagrangian Formulation® for C° curved beam
elements with finite incremental rotations. This formulation, ‘
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{a) includes in the linearization of the equations of motion all the terms that can be considered

in a tangent formulation, providing therefore a complete tangent stiffness matrix;
(b) leads to symmetric stiffness matrices. . : :

‘Numerical results show that, in general, the complete tangent stiffness matrix provides a faster
convergence during equilibrium iterations than the stiffness matrix obtained with the standard
formulation. ’ )

2 KINEMATICS OF THE TIMOSHENKO BEAM ELEMENT

In this Section we review the kinematics of C° beam elements with rectangular cross section and
N nodes along its axis (see Figure 1).

' For the initial geometry of the beam element {t=0) we define its axis by means of N nodes of
global co-ordinates °x¥; k=1, ..., N and i=1, 2,3.

We make use of Bathe’s notation, therefore a superscript 0 indicates that the quantity is
measured in the configuration at t=0.° Alsd, at cach node we define the orthonormal system
(°V,, oV, °V}), where °V, is tangent to the element axis t=0). -

Defining the natutal co-ordinate system (7, s, t),? the position vector of any point inside the
beam element is ' - '

N

5 k‘=2'1 h{r)b, DVJ:‘ (L)

-

N N
%%(r, s, )= z hy(r)°x, + z h(naVi+
k=1 ¥t g

| o

X3

X1

Figure 1. N-node curved beam element



LARGE DISPLACEMENT/ROTATION INCREMENTS 1599

where the hy(r) are the 1D interpolation functions.” :
The deformation hypothesis is that the orthonormal systems (°V" c’V" °V") rotate without
deformation, hence

(a) a straight line normal to the beam axis at t=0 remains straight during the beam
deformation but not necessarily normal to the de{ormed axis (shear deformatlons are
considered); ‘

“(b) thecross section of the beam is not deformed (therefore this formulation cannot model
large strain situations).

At any time ¢, the position vector of the (s, £} point in the isoparametric beam element is

N N t .
LI s )= Y, B)x+ EZ i) a'VEi+ = ¥ (b VE {2)
' =1 2= 2451 .
The displacement vector of the same point, corresponding to the configuration.at time ¢ is, ..
p="x—Ox R 3)
Using (1) and (2} in (3) we obtain '
N s N 5 N
n= Z bl + = Z b (VE—"VE 4+ - Z Rb(VE=VE) 4
k=1 2 k=1 2 k=1

where *u, is the displacement vector of node k, at time t.
Since the orthonormal system at node & rotates,

tyk_.t pkOyk
Vi=3R*VS
VE=PRMOVE

where (R is the rotation matrix corresponding to node k, at time ¢t and referred to the initial
configuration.
‘The rotation of the orthonorma] system at node k can be descnbed by a vector

()

:ng I@krk . - . (6a)
0 =[600° +(e6% )2+(09"}2]1f2 : ' (6b)

where ‘e* is a unit vector in the direction of the rotation axis.
Studymg this rotation, Argyns arrived at (Reference 10, equation (16))

singf* 8" sin 8" 2 = _ . |
where
0 - =ik 1gk
@ = 585 0 . —5H o ®
—60% 561 0

Note that the L% are not independent rotations around the global axes but are the components of
the matrix defined in equation (8), which characterizes a rotation around the axis ‘e~
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In a very elegant way, Argyris proved that equation (7) can be rewritten as {Reference 10,
equation (31)) :

t R¥ ——13+0®" o®") +3r (‘®"}3 C -0

2!

where I; isa{3x3) unit matrix.
The incremental displacement from .the configuration at time ¢ to the conﬁguratlon at time
t+Atis,
S u="Ax i , : - (10
Therefore,
N s N 3 t N
u= Y bt Y b (CSVESVIES ) bt VE-VY 1y

Since to go from the configuration at time ¢ t6 the configuration at time i + At the orthonormal
system at node k is only rotated,

:+Alvk — HrAtRk ka
5T t 5

HA'V:‘; '+A:Rk'Vf (12)
Using equation (9),
1 1 ' :
t+A:Rk =I3 + ®k+ (@k)l (@k):'n . ) (1 3)
where
0 -0t 0
o= 88 o0 —& (14)
-05 0f 0 o

again, the 6} are not independent incremental rotations around the global axes but are the
components of the matrix defined in equation (14), which characterizés via equation (13) the
incremental rotation at node k.

Note that, if the incremental rotation is infinitesimal, equations (12) to (14) produce, keeping in

equation (13) only the linear terms N
!+Aka _ (Vh = Bk X :Vk
r+Atvk tv ek tvk (15)

where [0¥]"=[6% 6% 6%]. In this case the 6} are mdependent infinitesimal incremental
rotations around the three global axes.

Because the incremental rofations are finite we kcep in (13), in a first attempt, only the linear
- and quadratic terms.

Therefore,
1+sz_isc_ zvﬁ = @k ‘V:‘-}- %@k @k er;
t+Atvf_tvi(m®k!Vzc+%@k@k!vf (16)
which can be rewritten as
traryk k=g x 'VEL L0% < (0F x'VH) )
. . A (17

r+_Atv::_rvf=Bk % tv{:+%ek % (Bk % lvic]
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& = :

‘g 2 =UTBLU | 41y
8 " T

g, %uUT:)Bf,U @dic)

g 22 =UTB2U 41d
s ap o oY ‘ (‘ )
8

Y- AU (4te)

Matrices B,, B,, B, can be easnly obtained using the. kinematic relations presented in Sectzon 2
Matrices B2, .. ., B2 arise from the underlined terms in equations (27).

Being k; and k; the- degrecs of freedom corresponding to- 3“ and G k=1,..:; Nand i 'l = 15 2,
3, thc only ‘non-zero térms. in those matrices are - S e : K

(ku kl)““_hk rak{ Vs(l) Qrm+ Vs(x} grm ('Vf_"'gr){an“f“aai)]

- _ -“"'“g“hk:,nb;c[r V:‘(zat,grm+tme'9ru)‘(‘Vf g )6y +8,)] (422)
6§rzs(ki’ k:)- hkak[! s gr(a]+ W 3t) gr([) (tvk ‘2)(0u+6,)] h -(42b)
cfgfz(ki, k= h b, ['VE i gr(i)+ Vt(:‘) g,ﬂ)—(’Vf' ‘804 +0,)] (42c)

— s ‘
(;Bszr(ki! ki}= § hk. AR Vﬁ(!)!gs{i} +* V.E(i} [qu) —('Vi‘ ') (Ba+ d;)]
+ 3 by, by [' Vf(ljtgs(i) +! I_/i‘(;)'gs(,)e(’:Vf . 'gs)(éu + 5::_)] ‘ . ,(-42__d)

' th(k.s k)= hk AN Vs(l) gr(¢)+ Vsh] Gun— (tvk 'g,)(é,-&-é,l)]

4
+ 3 b b [ Vf(,,‘g,(i) +f Vﬁi; "Guny— (V'8 (85 +6y)] ' (42e}

where §;; is the Kronecker delta,
Itis 1mp0rtant to pomt out that the abovc dcﬁned matr:ccs are symmetnc From equatlons (39
to (42)

JKNL=j [65”ﬁfﬁ,+&§"(ﬁfﬁs+§lﬁ,)+o‘§"(ﬁfﬁ,+B§‘E)}°dV
oy : .

f 205657 '33r+oS”(o§;’;+Bﬁ ) +687( ﬁﬁh‘:ﬁ edy T (4d)
Note that .
{a) The tangent stiffness matrix, K=K, 4+ ¢Ky,, is symmetric.

(b) The second integral in equat;on (43) represents the difference with the tangent matnx as
obtained with the standard formulation.
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4.2. Internal forces

The vector of generalized internal nodal forces equivalent in the virtual work sense to the
element stresses is®

‘F = J. BTV (44)
oy

For calculating the stresses, the vectors _'VQ‘ and "V* are updated using equation (7).

5. NUMERICAL EXPERIMENTATION

In this section we will compare for some simple examples the results obtained using the standard
formulation and using the formulation presented in this paper. In order to avoid the locking
problem,'? reduced numerical integration will be used along the r-direction.

It is important to point out that in beam elements reduced integration does not produce
spurious zero energy modes,*® and therefore does not raise objections from the reliability view
point.*

Full Newton—Raphson iterations are used in all the examples and the energy criterion® 21 is
used to test for convergence. Therefore, we stop the iterations when

[Av(ii].T(t+AtPW:+A6F(if 1)) QETOL[AUH)]T(H ap_ oF} (45)

where ETOL is an error tolerance defined for each case.

5.1, Cantilever beam under constant moment

5.1.1. Analysis using 2-node elements. The cantilever is analysed using four 2-node elements, as
shown in Figure 2. The total moment of 2, which for our case (EI/L=2j corresponds to a total
tip rotation of =, is applied in 10 equal steps. Our formulation needs a total of 33 iterations to
converge, against 92 iterations of the standard formulation. The coding differences for both
formulations are very minor, therefore the number of jterations can be considered as an
approximate indicator of the computational efficiency.

5.1.2. Analysis using 3-node elements. In the example shown in Figure 3 four 3-node elements
are used. A total moment of 1-8n EI/L is applied in 10 steps, as indicated in the figure. Suranal!
also analysed this problem.

In Figure 3 we display our results and the results reported in Reference 11; it is worth pointing out
that, since different convergence criteria were used, the comparison of the number of iterations
used by each formulation is not necessarily indicative of the effectiveness of each formulation.

5.2, Simply supported beam under constant morment

The beam is analysed using five 3-node elements, as shown in Figure 4. A total moment of 20
(which corresponds to a relative rotation of the beam ends of 2:55m) is applied in 10 equal steps.
Our formulation needs a total of 44 iterations to converge against 151 iterations of the standard
formulation.

Surana!! and Oliver®? also analysed this problem. In Figure 4 we display their results and the
present - results. Again, different convergence criteria were used in the three cases and the
comparison is not straightforward. : '
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where ®V is the volume in the initial configuration (¢=0), **48Y are the contravariant compo-
nents measured in the convected system of the 2nd Piola—Kirchhoff stress tensor® 16 and *+4'2 is
the virtual work of the external loads acting on the configuration at time t +At. ‘
When calculating "4 it is important to notice that; although we are-considering finite
incremental rotations, the 86" are infinitesimal, therefore the virtual work of the applied moments

NN
is directly given by Y M¥50% where NN is the total number of nodes in the model.
k=1

Working out equation (29) the lincarized equations of motion are obtained {Reference 9,
Chapter 6).

‘4. INCREMENTAL FORMULATION FOR THE TIMOSHENKO BEAM ELEMENT

Using the kinematic equations presented in Section 2, we develop in this section the incremental
Total Lagrangian Formulation® for the Timoshenko beam element.

With the Newton-Raphson iteratipn scheme® the.equations for the ith iteration in a finite
elements model are ‘ ' ‘

(4K + 4Ky )T DAU =1+ 8P i+ SR 1) (30a)
For the displacements, ’ -
UN =D 4 AUO (30b)
and for the rotations | |
(THRYI=(ATFARMO(TARYED (30¢)

In the above

'*&K, is the linear part of the tangent stiffness matrix,

*%Kyy. the non-linear part of the tangent stiffness matrix,

U the vector of generalized nodal incremental displacements,

‘4P the vector of generalized external nodal loads acting at ¢+ At
and -
"*4F the vector of generalized internal nodal loads acting at t + At, equivalent (in the virtual

work sense) to the element stresses.

4.1. Tangent stiffness matrix
We define a vector
o =[o8 208 20F,.] 31}
and the usual relation®
OE=EI)ELU (32)
The matrix 4B, is derived using equations (27) and (28).
From the linearized equations of motion (Reference 9, Chapter 6) we obtain,

:)KL=J VBT O o, °d 33)
oy

where ,C is a constitutive matrix formed with the contravariant components &% of the
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constitutive tensor that relates the increments of the contravariant components of the 2nd
Piola-Kirchhof stress tensor, measured in the convected system (35), with the increments of the
covariant components of the Green-Lagrange- strain tensor also measured in the convected
system (4&;;). The incremental constitutive equation is, in matrix. notation, :

S=lef BN ED
where _ - 7 - ;
| ST=[8" 8 8] ()
and
UETE[OQ"" 2Ggrs 20§r!] (36)

Thé curvilinear components oC**-are calculated from the components in an orthonormal system
(éi: éj) é.l:):?

= oConpd B O BB ) 67)
For elements of constant (a,, b,) we can define an orthonormal system &="g,/°% I, and
E 0 0 |
L= 0 xG 0 (38)
0 0 kG

where E is the Young's modulus, G is the shear modulus and « is the shear correction factor.”
The linear part of the tangent stiffness matrix, as defined by equation (33), is the same for our
formulation and for the standard formulation. The difference will appear only in the non-linear
part of the tangent stiffness matrix.
We derive the non-linear part of the tangent stiffness matrix from the equality (Reference 9,
Chapter 6) _ y .

U™} Ky, U =-J 439547, 04V (39)
Lo oV s
We define now the following matrices:
' . i Ouigqyy/OF
B~ | ousefor |=BU (40a)
i Btigeay/Or
" [ Bug1,/05 ]
35 =| Ougy/0s | = B.U (40b)
L Buis(3)/05
aﬁ = dugp/ot | =BU L (40c)
o | Qus/0t | ' '
and also,

g =UToB U N (41a)
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The incremental displacement of any point (, 5, £} inside the beam element is

‘ N N . _
) h,‘u"+5g1 hoa, [0 x 'V + 16% x (0 x 'V¥) ]

t\JIH-

We can write, _
’ ll=ﬂs-§'-ll|u . (19)

where ug are the terms obtained considering only infinitesimal rotation increments, ic. using
equation (15) (standard linearization), and iig, are the extra terms obtameci using equatlon (17).
Hence,

N g I t N ‘
us= 3 bt S 3 ha@x V1t 3 hebie x v ©(20)
k=1 25 2.5
and P t N '
Ugy = 2 2 ha [06x (0" x V)] +'-j4‘_ Y b [0 x (6% x V] (21)
k=1 o T4 E=y _
At any time ¢, the covariant basis of thé. convected system (r, s, t) are'®
d'x &'u '
e = =0 — : 2.
g ar gr+ ar {2 a)
- Tx &u
Iy e -0 } 22
6'x - &
t, 0
_— 2

The covariant components of the Green—Lagrange deformation tensor in the configuration at
time t, referred to the configuration at t=0 and measured in-the convected system are!?.

V=g e %%] 0 (23
ofs=3l'e.'g.— 2, ] (23b)
o8 = 3l'2. "2, — %2, %2.] - (23¢)

ofess 985 and &, are zero becaiise of our deformation hypotheses.
Using the contravanant base ve:ctors15 we represent the Green—Lagrange straln tensor

2—4,16
oa-—éé'.," '°g'+os,s[° ’°g‘+°g‘°g’3+oen["g g +°g‘°g’] : 24

Note that, for a beam element with constant (g, b,), the vectors (Og,, 2., ’g,), 1 form an orthogonal
basis for any point inside the. beam
In the incremental step. from ito t+At

as

g =g 4 (252)

a4t au . .
=gt {25

o+ ou (25¢)

=g+ n

N : :
Z e D [05 X TVE+ 105 x (0% x 'VEY] {i8)
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Therefore, using equations (23} and (25),

7] 16u du
t+Aty
i GErr_OEn"" gr 61' +2 ar ar (268')
1 ou on 1 Ju du
t+Alx _ I _ i iy — e —
Ogrs_oa 2[gr a + g ar]+2 (3?‘ aS (26b)
1 au ou 1 u du
t+Alx _ it it e At — e e ® e
WEpe =08 + 2,[ 85, +'g, ar] 35 F (26c)

Using equation (19) we rewrite equatlons (26) keeping only up to the quadratic terms in
generalized incremental displacements.

dug 10dug du cu
- At tr oty .o 8 VU8 T8, T R2
(}Err B srrr 2r 81‘ 2 6!’ . 5?’ _gr_ _51‘__ (27&)
1 Ju -fn 1 dug on
Fo_tvAty ax ey UES g, (U8 878
0Bps™ 0brs T 0%rs 2 [ g Os + gs or ] + 2 Br os
1 : auRz ¢ auRz IV h
= . JR2 27h
+2[gr s e, (27b)
. oug o Oug i 10ug dug
ofre 0bre — 08nt 2| arT W 2B Bt
1h, dugy, |, Ougy
Zitg . . 17
The extra terms with respect to the standard formulation are the underhned ones in equations

27). -
We can decompose the strain mcrement( o J) in two parts, one part has all the linear terms in
generalized displacements {;€;), the other part has all the quadratic terms in generalized
displacements (,f;).> Therefore,
of = ofiy T ofli; (28)
Note that
(a) In elements with no rotational degrees of freedom (e.g. 2D and 3D continuum. elements)
equation {28) represents exactly the total strain increments. In our case equation (28)
represents only an approximation to the strain increments, because in the derivation of
equation (27) we neglect the terms of order higher than two in generalized displacement
- 1ncrements
(b) Equations (27) contain all the terms up to the second order in generalized displacement
increments. This guarantees a complete quadratic form of the incremental energy, leadmg
therefore to a complete expression of the tangent stiffness matrix.

3. PRINCIPLE OF VIRTUAL WORK

For the equilibrium configuration at time t+ Az (the one being sought) the principle of virtual
work” '8states

—[ r+AéS"ijét+A(;§ij0dV:t+Ar92 (29)
oy
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2:§ | a—— 1%

l N Linear Elastic Material
= 1
_:L"'o : E=2.4x 107
Gzl = 10°
. izl =2)
10-‘ - ET#L=107
N
Section
Number of Iterations
. Standard
Step M formulation This work
1 02n 3 3
2 O4x 3 3
3 06n 4 3
4 0-8x 5 3
5 1-0m 6 3
[ 127 g 3
7 t4r 10 3
‘8 1-6x 13 4
9 18 17 4
10 20r 23 7 4
Total Iterations o 92 33

Figure 2. Analysis of a cantilever under constant moment using 2-node elements

5.3. Bend {45-degrees) under concentrated load

The curved beam loaded normal to its plane is analysed using five 3-node elements, as shown in
Figure 5. The total load of 600-0 is applied in 10 equal steps The resuits are compared with those
obtained by Bathe and Bolourchi.?3

In this case the standard formulation and our formulatxon both use approximately the same
number of iterations.
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% CRE ST S _o";,)u
L.

_ i Linear Elastic Material
L:12 \ 1 24 o105
G:=10 « 0°
0 ‘
Section
Total tip disp. (Surana) [117 7 Totdl_ tip (iisp. (This work) Tterations Terations
Total tip disp. (Analit’) Total tip disp. (Analit)) (Surana) [11] (This work)
02 099 100 ' 7 4
0-4 1-00 : 1.01 7 5
06 100 101 | 7 4
0-8 1:00 102 7 5
10 {01 _ 102 7 4
1-2 ' 1-01 1-01 _ 8 5
14 099 100 g ;
1.6 096 _ 097 ' 8 6
17 094 094 e 5
18 091 ' 092 7 ]

Figure 3. Analysis of a cantilever under constant moment using 3-node elements

M ' _ v
(A.O.é o § o % o § 1),4
| | "
I L0 1
" Linear Elastic Material
© - B |owsss E- 410
':I B G2 w10
0.22828  EreLsr
Section

Figure 4
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Number of Iterations

Standard
M formulation This work
02 4 4
04 5 4
06
08 9 4
10 11 4
12 14 5
14 18 4
16 2 5
18 27 4
20 34 5
‘Total Iterations 151 44
M V{Surana) [11]  fterations =~ V(Oliver) [22] Iterations V(This work) Tterations
V(Analit) (Surana) [11]  V(Analit) {Oliver) [22] ~ V(Analit) (This work)
02 1-00 6 1-00 4 100 4
04 100 6 100 4 100 4
06 1-00 6 1-00 4 1-01 5
08 1-00 6 1:00 5 101 4
10 1-00 7 1-01 4 101 4
12 101 7 S 101 4 1-01- 15
14 ol 7 101 5 101 4
16 101 7 102 "4,), 102 s
18 1-02 7 1:02 5 102 4
: _

- 20

101

1-01

101

Figure 4. Analysis of a simply suppofted beam under constant moment
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E ) Y
P =600
X 45°
@
Linear Elastic Material
11.0 £:=107
G508
10 ETHL=10"
Section
Bathe-Bolourcht Standard
[23] formulation This work
U/tip —13-4 —133 -—-13-6
V/1p 235 ~237" —235
W/T1P 534 532 533

Total number of iterations for the standard formulation =233
Total number of iterations for the present formulation =234

Figure 5. Analysis of a 45-degree bend

5.4. Closed frame under concentrated loads

The frame shown in Figure 6 is analysed, modelling one quarter of it with twenty equal 3-node
elements. The total load is applied in 5 and 10 equal steps. The displacements corresponding to
the total load are compared with the results obtained by Wood.?*

In this case, again, the standard formulation and the new one both need approximately the
same number of iterations to converge. '

6. CONCLUSIONS

An incremental Total Lagrangian Formulation for curved Timoshenko beam elements that
includes the effect of large rotation increments was developed. A symmetric tangent stiffness
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matrix wds obtained because, as stated above, our nodal variables are three numbers that define a
rotation rather than independent rotations -around fixed axes. Therefore the commutativity
problem which leads to non-symmetric tangent stiffness matrices®> does not arise. It is important
to notice, however, that.our nodal variables are coincident with mdcpendent rotations. around
fixed axes in the case of infinitesimal rotations. :

The advantages-of the new formulation over the standard formulation, that assumes infinitesi-
mal rotation increments in the tangent stiffness matrix derivation, are as follows.

(a) The tangent stiffness matrix obtained with the new formulation derives from a compléte
linearization of the virtual work equations, therefore it does not introduce errors in stability
analyses (linearized buckling analyses.?5)

2P
lV(disp.)
025
- Hidisp)] 1
s Linear Elastic Materia! E
' E=30x10°
. 6= 15 108
‘ ~ P=6.8757 E1/17
2P o ETAL:w
// 110 :
50
- Section
Total number of 1terat10ns
‘Standard
Number of steps formulation This work
5 - 23 - .. 24
LU S~ IR 32
" This work
Wood . A
[24] 5 steps 10 steps
0070 - 29996 30273
H -0 -ms19 0 —24023

Figure 6. Analysis of a closed fraine
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(b} The complete tangent stiffness matrix assures quadratic convergence in the displacements

norm when using full‘Newton-Raphson iterations,” therefore, in many cases when using

- the new formulation convergence is achieved .with fewer iterations than when using the

standard formulation. It is well known, however; that this should not always be the case,

because in some problems iterating with a ‘non-exact® tangent matrix may lead to a faster

" ¢convergence. Also, some type of secant formulation'# could be developed to improve the
efficiency of the analyses. : P

The:same kind of formuiatlon we. presented for bearn elements-can be developed for C° sheli

elements.
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SUMMARY

The paper presents a fully meshless procedure for solving partial differential equatmns The approach
termed generically the/finite point method’ is based on a weighted least square interpolation of point data
and point collocation’ for evaluating the approximation integrals. Some examples showing the accuracy of
the method for solution of adjoint and non-self adjoint equations typical of convective-diffusive transport
and also to the analysis of a compressible fluid mechanics problem are presented.

4

KEY WORDS: least sqﬁares;_ﬁnite peint method; mesh free techniques

1. INTRODUCTION

The Finite Element Method (FEM)! and its subclass the Finite Volume Method (FVM)?>~* are
well-established numerical techniques in computational mechanics (though the latter is not used
widely in solid mechanics) whose main advantage is their ability to deal with complicated
domains in a simple manner while keeping a local character in the approximation. Both methods
divide the total domain volume into a finite number of subdomains on which a volume
integration is performed. The subdomains are constrained by some geometrical regularity
conditions such as having a positive volume or a limit aspect ratio between the element
dimensions and angles, ¢tc. Although this poses no serious difficulties for 2D situations, the lack
of robust and efﬁc1ent 3D mesh generators makes the solution of 3D problems a more difficult
task.

It is widely acknowledged that 3D mesh generation remains one of the big challenges in both
FE and FV computations. Thus, given enough computer power even the most complex problems
in computational mechanics, such as the 3D solution of Navier—Stokes equations in fluid flow can
be tackled accurately providing an acceptable mesh is available. The generation of 3D meshes,
however, is despite major recent advances in this field, certainly the bottle neck in most industrial
FE and FV computations and, in many cases, it can absorb far more time and cost than the
numerical solution itself.
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Considerable effort has been devoted during recent years to the development of the so-
called mesh-free methods. The first attempts were reported by some Finite Difference
(FD) practitioners deriving FD schemes in arbitrary irregular grids.>”!? Here typically
the concept of ‘star’ of nodes was introduced to derive FD approximations for each central
node by means of local Taylor series expansions using the information provided by the
number and position of nodes contained in each star.’? Similar procedure was developed for
thin plate problems solved by a variational approach by Nay and Utku'? using a least-
squares fit to nodal values and contributing domain concepts for deriving the approximation
integrals.

An alternative class of methods named Smooth Particle Hydrodynamics {SPH), sometimes
called the Free Lagrange methods, depend only on a set of disordered point or particles and has
enjoyed considerable popularity in computational physics and astrophysics to model the motion
and collision of stars.'*~'7 These methods work well in the absence of boundaries, although they
are not as accurate as the regular finite element methods.®

Different authors have recently investigated the possibility of deriving numerical methods
where meshes are unnecessary. Nayroles et al.'? proposed a technique which they call the
Diffuse Element (DE) method, where only a collection of nodes and a boundary description
is needed to formulate the Galerkin equations. The interpolating functions are polynomials
fitted to the nodal values by a weighted least-squares approximation. Although no finite
element mesh is explicitely required in this method, still some kind of ‘auxiliary grid’ was used
in Reference 19 in order to compute numericaily the integral expressions derived from
the Galerkin approach, thus eliminating many of the advantages of the original mesh-free
phylosophy.

Belytschko et al.*®?! have proposed an extension of the DE approach which they call
the Element-Free Galerkin (EFG) method. This provides additional terms in the derivatives
of the interpolant considered unnecessary by Nayroles et al.'® In addition, a regular cell
structure is chosen as the ‘auxiliary grid’ to compute the integrals by means of high-
rder quadratures. Duarte and Oden®? and Babuska and Melenk?® have recently formalized
this type of approximation as a subclass of the so-called ‘Partition of Unity’ (PU) methods
and they propose meshless and enhanced FE procedures using hierarchical PU interpola-
tions.

Liu et al'®2*72% have developed a different class of ‘gridless’ multiple-scale methods
based on reproducing kernel and wavelet analysis. This technique termed Reproducing
Kernel Particle (RKP) method allows one to develop a new type of shape functions
using an integral window transform. The window function can be translated and dilated
around the domain thus replacing the need to define elements and providing refine-
ment. Comparative study of RKP, SPH, DE and EFG methods can be found in Ref-
erence 27.

The objective of this paper is two fold. First, a brief overview of some point data interpolation-
based procedures termed here generically ‘finite point methods™® is presented. Then, a parti-
cularly simple finite point method based on

(a) weighted least-squares interpolation using a ‘fixed’ Gaussian weighting function, and
{b} point collocation for evaluating the approximation integrals

is proposed. Some examples showing the accuracy of the method for solution of adjoint and
non-self adjoint equations typical of convective—diffusive transport and also to the analysis of
a compressible fiuid mechanics problem are then presented.
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2. BASIC CONCEPTS OF MESH FREE TECHNIQUES

Let us assume a scalar problem governed by a differential equation

A =b inQ (1)
with boundary conditions

Bw) =t inl,
2

u—u,=0 inl,

to be satisfied in a domain ©Q with boundary I' = ILT,.. In the above A and B are appropriate
differential operators, u is the problem unknown and b and ¢ represent external forces or sources
acting over the domain  and along the boundary I',, respectlvely Finally, u, is the prescribed
value of u over the boundary T,.

The most general procedure of solving numerically the above system of differential equations is
the weighted residual method in which the unknown function u is approxn‘nated by some trial
approximation # and equations (1) and (2) are replaced by?

j W[ Al —~ b]dQ + J W.[Bf — £]dT + j Wili —u,]dT =0 (3)
0 T, T,

with the weighting functions W;, W; and W, defined in different ways FE, FV and FD methods
can be considered as particular cases of (3) and indeed so can all the meshes approximation
procedures. '

In order to keep a local character of the problem (leading to a banded matrix), function u must
be approximated by a combination of locally defined functions as

u(x) = d(x) = i Ni(x)u! = NT(wyu* 4)

with n, being the total number of points in the domain and the interpolation function N;{(x)
satisfy

N:(x)#0 ifxely
(5)
Ni{x) =0 if X¢Qi

Here Q, is a subdomain of Q containing n points, n < n,. In (4) u} is the approximate value of u at
point i such that u(x;) ~ uf.

In FE and FV methods the Q; subdomains are divided into elements and the N; function may
have some discontinuities (in the function itself or in its derivatives) on the element interfaces. In
the FE method the weighting functions W; are defined in ‘weighting domains® which usually
coincide precisely with the interpolating domains ©Q;. In cell vertex FV the interpolation and
integration domains also coincide, however in the cell centered case they are different®~* (see
Figure 1}.

A common feature of FE and FV methods is that they both require a mesh for interpolation
purposes and also to compute the integrals in equation (3).

In meshless (or element free) methods the subdomains €); are frequently termed interpolation
domains or ‘clouds’.?2
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Weighting domain

D Interpolation demain

Figure 1. Interpolation and weighting dozains in finite element {(FE) and finite volume (FV} metheds: (a) FEM and
FVM (cell vertex); (b} FVM {cell centered)

On the basis of the above remarks, a mesh-free numerical procedure should satisfy the
following conditions:

1. {a) The discretization of the unknown function and its derivatives must be defined only by
the position of points located within the analysis domain and parameters specified at these.
(b) The weighting function and its derivatives must be defined only by the position of points
located within the analysis domain.
II. (a) No volume or surface integration is needed, or
(b) Any volume or surface integration should be independent of the interpolation proced-
ure chosen.

Condition I1(a) is satisfied by finite difference and point collocation procedures. Other methods
like subdomain collocation, or meshless methods which are based on the use of auxiliary
background grids for integration purposes (ie. DEM,'® EFG,2° RPK!#) satisfy condition II(b).

Condition I(a) is satisfied by classical use of Rayleigh-Ritz method in which the N, functions
are defined over the whole domain (2, thus precluding the local character of the approximation.
FE methods define the shape functions N; over non-overlapping regions (elements) the assembly
of which constitutes the domain Q;*~* Different interpolations are therefore possible for a given
number of points simply by changing the orientation or the form of these regions, thus violating
the necessary requirement of condition I{a). Although FV techniques do not explicitely define an
interpolation of the form (4), it is well-known that they are equivalent to using linear shape
functions over domains €); defined in the same manner as in the FE method.2 %

In next section some of the more popular approximations used to build interpolations based on
a finite number of points (hereafter termed generically ‘finite point methods’) are briefly reviewed.

3. LEAST-SQUARES, DIFFUSE LEAST-SQUARES, MOVING LEAST-SQUARES
AND REPRODUCING PARTICLE KERNEL APPROXIMATIONS

Let £, be the interpolation domain (cloud) of a function u(x) and let s;withj=1,2,...,nbe
a collection of n points with coordinates x; € Q. The unknown function u may be approximated
within {); by .

ulx) = d(x) = ) pi(x)e; = p(x)"a (6)

i=1
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where o = [a;,a,,. . ., &, ]" and vector p(x) contains typically monomials, hereafter termed ‘base
interpolating functions’, in the space co-ordinates ensuring that the basis is complete. For a 2D
problern we can specify

p=[1Lx 3] form=3 (7a)
and
p=[Lx,yx%xp,y*]" for m =6, etc. (7b)
Function u(x) can now be sampled at the n points belonging to €, giving
U iy Pi
u* = u’i o 1.22 = Pg o = Ca (%)
) &) (o

where v = u(x;) are the unknown but sought for values of function u at point j, it; = d(x;) are the
approximate values, and p; = p(x;).

In the FE approximation the number of points is chosen so that m = n. In this case, C is
a square matrix and we can obtain after equaling u* with Cax in (8)

a=Cto* 9
and
uxhd=p C 'o* = NTu* = E": Nuh (10)
i=1
with
NT=[Ny,...,N,]=p"C"'and N, = i pi(x)C5* (11)
i=1

The shape functions N;(x) satisfy the standard condition’
Nix}=1 j=i
' (12)
=0 jsi Lj=1,...,n
The development of the N; can often be performed directly using interpolation methods and/or
isoparametric concepts.!

3.1. Least Squares (LSQ) approximation

If n > m, Cis no longer a square matrix and the approximation cannot fit all the u values. This
problem can simply be overcome by determining the # values by minimizing the sum of the
square distances of the error at each point

(u} — pj oy’ (13)

1

J= ¥ G ifxy) =
=1

i
with respect to the a; parameters (least-squares fit),
Standard minimization gives ‘

a=C " with C'=A"'B (14)
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Figure 2. Unknown function i(x) and unknown parameters u}

where .
A=Y px;)p"(x) {15a)

i=1

B= [p(xi)s p(xZ)s Tty p(xn)] (ISb)

The final approximation is still given by equation (10) now however substituting matrix C by C of
equation (14). The new shape functions are, therefore,

N =3 paCy! (16)
i=1

where superindex k emphasizes that the shape function N¥ can now be defined differently for each
cloud €.
It must be noted that accordingly to the least-squares character of the approximation

;= u'(x;) # d(x;) (17

i.e. the local values of the approximating function do not fit the nodal unknown values (Figure 2}.
Indeed 4 is the true approximation for which we shall seek the satisfaction of the differential
equation and boundary conditions and u are simply the unknown parameters sought!

However, if n = m the FEM-type approximation is recovered. Then di(x;) = u"(x,) and once
again conditions (12) are satisfied.

Note again that according to {6), the approximate function #(x) is defined in each interpolation
domain €,. In fact, different interpolation domains can yield different shape functions Njf. As
a consequence a point belonging to two or more overlapping interpolation domains has different
values of the shape functions. The interpolation is now multivalued within £, and, therefore, for
any useful approximation a decision must be taken limiting the choice to a single value.

Indeed, the approximate function d(x) will be typically used to provide the value of the
unknown function u(x) and its derivatives in only specific regions within each interpolation
domain. For instance by using point collocation we may limit the validity of the interpolation to
a single point i

LSQ approximation has enjoyed some popularity in deriving point data interpolations for
numerical computation in solid and fluid mechanics. Nay and Utku'? used quadratic LSQ
interpolations to it the deflection field giving constant curvature for thin plate bending analysis.
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More recently, Batina®® has used LSQ fits based on linear polynomial to approximate the fluxes
in the solution of high-speed compressible flows.

The main drawback of the LSQ approach is that the approximation rapidly deteriorates if the
number of points used, n, largely exceeds that of the m polynomial terms in p. Some examples of
this kind are given in a later section. This deficiency can be overcome by using a weighted
least-squares interpolation as described next.

3.2. Weighted least-squares (W LS) approximation

The LSQ approximation can be enhanced in a region in vicinity of point i where, for instance,
the derivatives of the unknown are to be evaluated, by weighting the squared distances with
a function ¢; so that, we minimize

n n
Ji= Z} @ilx; — x:) (@} — Bx)° = 3, oilx; — x;) (} — py &) (18)
i= i=1
Function ¢;(x — x;} is usually built in such a way that it takes a unit value in the vicinity of the
point i (typically called ‘star node’*2) where the function (or its derivatives) are to be computed
and vanishes outside a region Q; surrounding the point (Figure 3). The region ; can be used to
define the number of sampling points » in the interpolation region (i.e. {; = { is this case).
A typical choice for @;(x — x;) is the normalized Gaussian function. Of course, n 2 m is always
required in the sampling region and if equality occurs no effect of weighting is present and the
interpolation is the same as in the LSQ scheme.
Standard minimization of equation (18) with respect to «; gives the same form of the shape
functions as defined in equations (14)-(16) but with matrices A and B given now by

A= 'Zﬁ @ix; ~ x)p(x;)p" (x;) {19a)

B = [i(x; — x)p(x1), ilx2 — x)plxa}s- - ., @i(xy — X)) P(xn)] (19b)

Note that also again a multivalued interpolation is obtained in this case and some definition of £,
is required as in the LSQ approach.

3.3. Moving Least-Squares (M LS) approximation

In the Moving Least-Squares (MLS) approach the weighting function ¢ is defined in shape and
size and is translated over the domain so that it takes the maximum value over the point
k identified by the co-ordinate x, where the unknown function d is to be evaluated.

As shown in Figure 3 we now minimize for every point k the following functional:

J = z olx; — xk)(“? - P}“) (20)
i=t
where ¢, can in general change its shape and span depending on the position of point k. Note that
x, is now an arbitrary coordinate position and it can be simply replaced by the global co-ordinate
x. We will however retain the form @, (x; — x;) to emphazise the possibility of changing function
@ at each position within the approximation domain. In the simplest case of constant grid spacing
it is possible to take

@l — %) = @(x; — x} 25
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Figure 3. Fixed and moving weighting functions: (a) fixed @ corresponding to point x,; (b) moving ¢

and assume the shape of the weighting function invariant. It is precisely for this case that the name
MLS is derived.
In general, with an arbitrary position of points the problem of specifying ¢, at every position
x is very difficult and presents an infinite number of possibilities. It is convenient instead to specify
only the weighting function at the finite number of points chosen and derive similar to the WLS,
weightings of the type ¢,(x; — x;). With this definition, a possible and computationally useful
procedure is to define '
Prlx; = X} = (% — x;} (22)

Note again that k denotes an arbitrary location (ie. x, = x) whereas j is a fixed point in the
domain. With this assumption the function to be minimized in place of that of equation (20) is
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now the following:

0= ¥ 0x — x) [} - platx)] 23)

This gives immediately "~ |
Aaéwﬁ—ammw%m (242)
B =[@1(x — x)pxs} 0200 — x2)p(x2)s - - -, @ulx — %) p(x,)] (24D}

Observe that in this case the parameters «; are no longer constants but vary continuously with
position x and that inversion of matrices is required at every point where 1 is to be evaluated.
Furthermore, a unique global definition of the shape functions can be now obtained provided:

(a) the weighting function ¢, is continuous and differentiable in €;,

(b) the weighting function ¢; vanishes on the boundary of Q; and outside,

(¢) the number of points r within £; is equal or greater than the parameters m at all points
in Qi-

This method has been successfully used by Nayroles et al.!® with the name of Diffuse Finite
Element {DFE) method and later by Belytschko et al.2° in the context of the so-called Element
Free Galerkin {EFG) method. In the DFE method reported in Reference 19, the derivatives of ¢,
where omitted when computing the derivatives of the unknown function, whereas the full
expression was used in the EFG method. In order to avoid the need of inverting matrix A for each
quadrature point where the discrete equations are assembled, Lu et al.?! proposed to use
a weighted orthogonal basis functions using a Schmidt orthogonalization technique though the
computational advantage seems to be small. A generalization of the MLS approach using the
concept of partition of unity functions can be found in Reference 22. Indeed that paper introduces
a very simple possibility of increasing the polynomial order of the shape functions hierarchically
as illustrated in Reference 37.

3.4. Reproducing Kernel Particle (RPK) methods

An alternative procedure to derive point data interpolation of the form {6) is to use multiple-
scale methods based on reproducing kernel and wavelet analysis. This approach has been
successfully exploited by Liu et al.'®2#~2% under the name of RKP methods for the solution of
some solid and fluid flow problems.

A reproducing kernel is a class of operators that reproduces the function itself by integrating
through the domain. The Fourier transform is a typical example of a reproducing kernel. In
general form, we can write

fx) = qu(x S0y - (25)

where ¢(x) is an appropriate window function defined with a compact support and which
can be translated around the domain. A dilation parameter is also used-to provide refinement.
The parameters «; in (6} can be obtained by applying the integral window transform to
equation {(6) and after discretization an approximation identical to equation (4) can be
obtained.'®?® A comparison of RPK, SPH, MLS and WLS methods can be found in References
18 and 27. ‘
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3.5. Comparison of FE, LSQ, WLS and MLS approximations

Independently of the method chosen to solve the global problem (equation (3)), the accuracy of
the solution will very much depend on the shape functions used in each approximation. One of
the main differences between FE and 1.SQ, WLS and MLS methods is that in the FE approach
the local value of the approximating function is coincident with the unknown parameters, i.e.

d(x;) = uf (26)
whereas in finite point-based metheds (FPM) such as LSQ, WLS and MLS methods
f(x:) # uf 27

Summarizing the ‘freedom’ for choosing the approximation in the different methods considered
we can list

(a) In FE methods
(1) the mesh,
(2) the polynomial order (m in equation (6))
(b) In Finite Point Methods (FPM)
(1) the point position (in LSQ, WLS and MLS methods},
(2) the polynomial order (in LSQ, WLS and MLS methods),
(3) the shape of the weighted least square function ¢;(x) (in WLS and MLS methods},
(4) the span of @{x) (in WLS and MLS methods), and
(5) the choice of fixed or moving least-squares weighting functions ¢;(x) (in WLS and MLS
methods).

To understand better these differences we will plot some of the shape functions resulting from
these methods in one dimension.

We choose for simplicity a collection of equally spaced points at a distance s from each other.
Figure 4 shows the weighting least-squares function ¢;(x) used for WLS and MLS methods given
by the Gaussian expression

g X _ g — Gemfey’

PilX) =~ (28)
(@ (b}
1.0 peter———T e e
f [
i [
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Figure 4. Gaussian weighting functions for three and five points clouds; (a) n=3;(by n=35
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where x,, is the half size of the support and c is a parameter determining the shape. We will choose
€= Xpya.
The following weightings will be considered:

{a) x, = 1:6h. This defines three-point clouds (n = 3) for both LSQ and WLS methods. It also
defines a minimum number of three-point clouds for the MLS method, although four
points occur for some particular positions. For consistency the name three-point cloud will
be given to this option in all cases.

(b) x,, = 2:5h. This generally defines a five point cloud (n = 5). Note that now four points may
occur for one position in the MLS method.

Figure 5 shows the shape functions for a quadratic base function polynomial (m=13) and
clouds of three and five points, respectively. Note that with three-points clouds LSQ and WLS
methods yield interpolating functions similar to the standard FE quadratic shape functions as
expected. The MLS method gives global interpolating functions of higher order than guadratic,
When # = 5 (five-points cloud) none of the methods gives Ny(x) = 1 at x = x; nor is Nix)=0at
X = x;, j # L. In particular, the LSQ method yields very inaccurate interpolating functions in this
case with the value Ni(x;) equal to less than 05 everywhere.

Note that, as previously mentioned, the global interpolation is multivalued in the LSQ and
WLS approaches. This is illustrated in Figure 6(a) where the global expressions of the shape
functions are plotted for the case m = 3, n = 3. A mid-point rule has been chosen in Figure (b} to
preserve a single value of the shape function in the vicinity of each point. Note also that the first
derivative is undeterminate at x = (x; + x;_,)/2 which limits the validity of LSQ and WLS
methods to point or subdomain collocation procedures.3334

Similar results can be obtained with linear base functions (m = 2) as shown in Figure 7. Here
again, the shape functions provided by the LSQ method attenuate when the number of points
within the cloud n is changed from 3 to 5. This attenuation is also noted in WLS and MLS
methods where the N(x;) value decreases from 0-97 to 0+57.

05 -

-0
i+2 i1 i i+1

Figure 6. (a) Multivalue definition of the shape function in LSQ and WLS methods for m = 3, n — 3, and (b) giobal
definition of the interpolation using a mid-point rule
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Figure 7. Shape functions Ny(x) for p = [1, x]; (a) three-points clouds (m = 2) (n = 3); (b) five-points clouds {m = 2)
(n = 5). Q, = is the domain fromi—1toi+1lin{a)and i —2 to i+ 2in(b)

It can be concluded that the selection of the more adequate approximation for point
data interpolation should be based on its insensivity to the number of points chosen within
the approximating region {cloud). In order to preserve the freedom of adding, moving
or removing points for a given order of interpolation, the approximating functions should
be as insensitive as possible to the number of points within the cloud. We have found that
the LSQ method is very sensitive to the number of cloud points chosen and the approximation
rapidly deteriorates as the number of points increases. The MLS and WLS approximations
with linear base polynomials seem to also be quite sensitive to the number of cloud points.
Conversely, the MLS and WLS methods with quadratic base functions seem to be best suited
for point data interpolation using blendings of approximations based on three and five points
for each cloud (see Table I).
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Table 1. Sensitivity of the quality of the approxima-
tion when the number of cloud points r is changed

from3to 5
Order of the base
interpolating Sensitivity of
Method polynomial {m) the approximation
LSQ Linear (m = 2) Very large
LSQ Quadratic (m = 3) Very large
WLS Linear (m = 2) Large
WLS Quadratic (m = 3) Low
MLS Linear (m = 2) Large
MLS Quadratic (m = 3) Low
| h i £ { £ h "i
i—2 i1 i i+1 i+2

Figure 8. Point distribution with variable distance

Another important property of a good Finite Point Method (FPM) is the possibility to
introduce {or to translate) new points independently of the distance between existing points. In
the FE method, two nodes that are very close together, generate a gradient in the shape function
which can introduce numerical error. This adds severe limitations in the mesh generator and
adaptivity criteria. In a good FPM, a close distance between two points should not affect the
numerical results.

Figure & shows a set of points with two points placed at a variable distance £ from a central
point i. Figure 9 shows the shape functions when this distance ¢ tends to zero for two different
cases: (a) WLS interpolation with quadratic base functions (m = 3) and (b) MLS interpola-
tions function with a linear base function {(m = 2). Again a truncated Gaussian weighting
(equation (28)) was chosen in both cases. For h/c = 2 the shape functions in the WLS approach
are coincident with the quadratic FE shape functions. Alternatively, when the three points
i—1, iand i tend to coincide, the three corresponding shape functions tend to take the same
expression in both WLS and MLS cases, thus avoiding the sharp gradients typical in FE
approximation.

4. DERIVATION OF THE DISCRETIZED EQUATIONS

The selection of different weighting functions in the general weighted residual form of equation (3)
yields different sets of discretized equations. In order to preserve the mesh-free character of the
method, the weighting function must satisfy Condition II(b) of Section 2 and the weighting
domain must be defined independently of any mesh. All approximation methods of integral type
(ie. Galerkin, area collocation, etc)) are costly and necessitate the introduction of complex
procedures for integration (i.e. background grid, etc.'®"?!), Some of these procedures are
reviewed in Reference 28. In this paper we shall therefore limit the choice to point collocation
methods where we feel the advantages of Finite Point Methods are best realized.
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Such point collocation has recently been used with success by Batina,?? who however limited
his work to the use of LSQ and linear approximation. We shall show that considerable
improvement can be gained using WLS or MLS procedures.

I‘G'|'-il L L ‘!.0“;; T T T 7

osl 1 o5l

PO Y TN RN (P VIR SN TN ST

0.0

oL Ly

-0.5 —1—

10117+ 1T 7T
L M T T
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- h/€=20 7 - h/E=100 -
050 it L et 10 1 1 _0.57|l1511|:16|||ls L1
i-2 foritTari—1 i+2 -2 Taei 1 oeie1 i+2

Figure 9a. Shape functions for 3 very close points, WLS method (m = 3)
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“Figure 9b. Shape functions for 3 very close points, MLS method (i = 2)

4.1. Point collocation

The simplest choice that satisfies the mesh-free condition is making W, = W, = W, = §; where
d; is the Dirac delta. This gives the set of equations

[4d@)]; - b;=0 inQ (29)
[Bi)i—t=0 inl, ' (30}
#—u,=0 inT, (30
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Any of the previous shape functions may be used to approximate 4 leading in all cases to the
system of equations

Ku' =f (32)

with K;; = [A(N;)); + B(N;)]; and where the symmetry of the ‘coefficient’ matrix K is not
generally achieved. Vector u* contains the problem unknowns, ul, and f is a vector containing the
contributions from the force terms b and ¢ and the prescribed values u,.

Taking a particular set of nodes and shape functions, this method is coincident with the
generalized Finite Difference Methods of the type described in References 7-12. However, the
approach proposed here offers more possibilities. Indeed any of the interpolation techniques
described in Section 3 can be used.

5. BOUNDARY CONDITIONS

The boundary conditions given by (2) are imposed by the second and third integral of (3). If
a unique solution to (3) is to be achieved using approximations of the type given by (4), the total
number of independent W;, W; and W, functions must be exactly n, (the number of parameters
defining #(x)). In point collocation methods each W is a Dirac delta function and the above can
be achieved by ensuring that the number of point used to approximate the differential equations
is n, — ny, where ny is the total number of points at which the boundary conditions I', and T, are
constructed.
The satisfaction of the essential boundary conditions

u—u,=0 in |
can be approximated for points x; placed on I', as
fx) =u,(x;) x onlT, (33)
Similarly, the other boundary conditions on I', may be approximated as
B(fi{x;)) =t(x;) x onl, (34)

If n, is the number of points where (29) is given and n, the number of points where (34) is given,
then

ny=H,+m (35)
and the differential equation is approximated (collocated) at only n, — 1, points.

The approximation of #(x;) on I, can be performed using different least-squares approxima-
tions than that used for the differential equation. For example, approximating the essential
boundary conditions '

u(x;) = up(x;) on T, (36)
by
u(x) = d(x) =1 04 37

and using a cloud which includes only x; (i.e. one point) gives
u(x;) = d(x;) = ul. (38)
Thus, an approximation using

uf =uy(x;) x; onlI, (39)
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may be used. In this case, however, the approximation chosen for the domain will not be identical
to the interpolation given above at the boundary points,

Further details on the treatment of the essential boundary conditions can be found in
Reference 28.

6. THE FINITE POINT METHOD IN CONVECTION-DIFFUSION PROBLEMS

For non-self-adjoint problems such as those which occur in fluid mechanics special treatment is
needed to stabilize the numerical approximation. As a typical example, we shall outline the
special feature on the convection—diffusion equation given by

et +u-Vop — V- kVd)— Q0 =0 inQ
nkVop +4,=0 inT; (40)
¢—¢,=0 inT,
with the initial condition

¢ = dolx) fort=1,

where V is the gradient operator, ¢, u and k are known physical parameters, ¢ the unknown field
and Q a source term. g, and ¢, are known values of the flux and the unknown function at the
boundaries I'; and I, respectively.

It is well-known that the numerical solution of non-self-adjoint equations must be stabilized in
order to avoid oscillations. Upwind finite difference derivatives, anisotropic balancing diffusion,
Petrov—Galerkin weighting functions or characteristic time integration are some of the standard
techniques used to stabilize FD, FE and FV methods.!'**~*% We will test some of these
approaches in the context of a FPM using a W LS approximation and point collocation.

Let us consider for simplicity the case of the stationary 1D eguation

8¢ 62¢ _0
“ox 6x
$=0 inx=0 (41)
¢=1 inx=1L
The FD and FV method stabilize the numerical solution of this equation by evaluating the first
derivative upwind each point as
a¢ ¢l - qbl 1
(50) - @

in which h is the distance between two points,

The FE method with linear approximation uses Petrov—Galerkin weighting functions defined

ast

h &N
W = N+§o¢a {43)

where N are the linear shape function. Exact nodal solution are obtained if

« = coth |Pe] — ;?13 (44)
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with the Peclet number defined as
uh

P€=E

(45)
Both upwind derivative and Petrov-Galerkin weighting procedures can be interpreted as the
addition of a balancing diffusion term to the original differential equation.!

Quadratic finite elements typically require the definition of twe upwind parameters. In
Reference 31, a single parameter is proposed for quadratic elements with an expression identical
to equation {(44) and h given now by half the element length. Exact nodal values are not obtained
in this case, but the superconvergence-is preserved and the method is very simple to use.

Let us try to generalize these concepts for the FPM using point collocation.

6.1. Upwind computation of first derivative

A simple stabilization procedure in the FPM can be derived by evaluating the first derivative
upwind of each approximating point. This is in fact similar to some standard FD stabilization
procedures.®* Taking advantage of the continuity of the field around each point the upwind
distance & from point x; can be evaluated in order to obtain exact nodal values (Figure 9).

For quadratic base interpolating functions (m = 3)

pr=1[1,xx"]
and choosing three point clouds (r = 3), we have found that exact nodal values are obtained if
&= g o (46)
-
GxJ; \O0x/._:
where h is defined as
h=(Xi+y — Xiz1)/2 (47)

Using again quadratic base interpolating functions and five point clouds (n = 5), acceptab}e
results are obtained as in quadratic finite elements (also linking five nodes) using

h
=7a 48)

and evaluating now « by equation (44) with the distance k defined as
h=(Xi+2 — Xi-2)/2 - {49)

An identical approach can be followed in two and three-dimensional problems. In two-
dimensional problems the critical distance k is defined now as shown in Figure 10.

6.2. Characteristic approximation

Other possibility to solve equation (40} is eliminating the convective term using a Lagrangian
description. In this way, the operator becomes self-adjoint, and a central difference scheme may
be used. This method is also known as characteristic approach.!**



3858 E. ONATE ET AL.

Figure 10. Definition of the critical distance

Fet
99
ot

d¢

+u'v¢=a

(30)

where the right-hand side represents the temporal variation along the particle path (or character-
istic).
Along this path equation (40} now becomes
d¢

5 Vv —0=0 (51)

Considering ¢"(x), the unknown function in a co-ordinate (x) at time ¢, and ¢"(x — 8) the same
function at the co-ordinate x — 8, where 8 = wA¢ is a distance along the characteristic. Then

" (x) - @"(x — B) = AL[V-kVp + Q] (52)

The following Taylor expansion can now be written in component form?*:3°

Mo ; ég" AP 3 [ B

" (x; — w;AL) = ¢"(x;) — Atu; 'gx'}‘ + e ox, ( i 6_35) (53}

5 At 80"

n+1j2 R Y o | .
Q = Q(x 2) Q" —u 7 ox (54)

Substituting (53) and (54) into {52) finally gives*3
n+i __ 4n

¢—~E§—f’m+u-v¢"—v-(kv¢)"—Q"—ézfuTv_[u-V¢+Q]"=0 (55)

Note that the last term may be interpreted as an artificial diffusion in which the term At u is
a characteristic distance. An interesting particular case arises for Atu = h with h defined (in
compenent form) as shown in Figure 10. The stabilization algorithm is now similar to the
upwinding approach described in previous section and identical results are obtained for the
examples shown next if Az is taken to be equal to the critical time step.!"3% A generalization of this
procedure can be found in Reference 38.
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Figure 11, One-dimensional convection-diffusion problem with sinusoidal source team analysed with differents clouds:
(@) WLS, n=3; (b) WLS, n=5; (c) WLS, n="T. Quadratic base interpolation (m = 3) is used in all cases. Curve 1:
Analytical curve. Curve 2: Unknown function values ¢(x;). Curve 3: Unknown parameters curve ¢!

6.3. Numerical examples

Numerical solutions presented here onwards have been obtained with 2 FPM based ona WLS
interpolation using a fixed Gaussian weighting and point collocation. The essential boundary
condition have been imposed by using equation (39)*%. Numerical results obtained with the
standard LSQ approach (and point collocation) are shown in some cases for comparison purposes.

Figure 11 shows steady-state results for equation {40) with a source term

0 =sinnx (56)
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Quadrant search (n=5) Boundary point

{a)

{v)

No boundary crossing

{c}

o Non eligible
point

Trailing
edge

Figure 12. Quadrant technique for sefection of points within a cloud: () quadrant search (» = 5); (b) boundary point;
{c) no boundary crossing

and boundary conditions

¢(x=0) = ¢(x= n=0 (57)
Twenty-one equally spaced points have been used in this case giving
uh
P == e == 2-
e=oy 5 (58)

Figures 11(a}-11(c) show the numerical results using quadratic interpolation (m = 3) and clouds
with n = 3, § and 7 points, respectively. In each figure, the exact results, the approximate function
¢(x;) and the parameters ¢! are shown. For n =3 both solutions are coincident with the
analytical one. A small overdiffusion appears for n = 5. Finally, for n = 7, the unknown para-
meters ¢ are inaccurate but the values obtained for the unknown function ¢ are acceptable.
The next exampie is the analysis of a2 pure two-dimensional thermal diffusion problem in
a square domain under a uniform heat source Q = 10 using a regular square grid of 7 x 7 points.
A prescribed zero value of the temperature at the boundary has been taken. A quadratic base
interpolation (m = 6) and clouds containing 10 points (» = 10) have been chosen. This test shows
the importance of using a WLS approach with ¢, functions as described in equation (28) rather
than the standard LSQ method (¢; = 1). In order to select the points involved in each cloud
a technique of quadrants has been used consisting in defining a system of ortogonal axes in each
point and taking the closest point to the origin of each quadrant. The first set of n points are
selected with this criteria (the ‘star’ node and one in each quadrant for n = 5). New points must be
added to the cloud if the A matrix defined in (19a) is singular or near singular. The new points
were added using the same quadrant criteria for the next nearest points {Figure 12). Figures 13{a)
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Figure 14. Convection-diffusion problem with diagonal velocity field. 7 x 7 points grid, Quadratic base interpolation
(m = 6). Nine points clouds {n = 9). Results for ¢! and ¢(x;} obtained with WLS interpolations and peint collocation

and 13{b) show results for the unknown function ¢ (x) and the unknown parameters ¢! when g, is
taken equal to a fixed Gaussian function (equation (28)). Figures 13(c) and 13(d} display the same
results for ¢; = 1 (LSQ method). Note the deterioration of the solution giving non-physical
results for the unknown parameters ¢7 for the second case {¢; = 1).

Figure 14 shows results for the same example taking into account convection effects. A diago-
nally oriented field has been chosen giving Pe = 10. Quadratic base interpolating polynomials are
again used {m = 6) and each cloud contains now nine points (n = 9). Figure 14(a) shows the
unknown function and Figure 14(b}) the unknown parameters. The numerical solution is free of
oscillations and coincides with the expected result.>*

Further evidence of the importance of using a weighted least-squares approximation for solving
convection—diffusion problems with this FP method can be found in References 33, 34 and 38,

7. COMPRESSIBLE FLUID FLOW

The proposed FPM will be used now to solve fluid mechanics problems governed by the
generalized Navier—Stokes equation

b
Vg,

E 8xi Y 6x,<(3xj- + Q =0 (59)
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with U = [ p, pu" 1", where p and u are density and the velocity vector, respectively and F; and K;
denote the standard convective and diffusive matrix operators.’**
The well-known Lax—Wendroff scheme>? has been used giving now after same algebra,’

Ur|+1 T . auyn \ aZUn . .
—a tEt Ko ax, Q" -+ (A1/2)(8/0x;) [F (0/0x;) (F; U)]
+ {(A2)F1(8/0x,) Q" = 0 {60)

where the the underline identifies the stabilization terms which have some similarity with those
emerging from the characteristic approach (see equation (55)).7+*

This approach has been followed to solve the steady-state Euler equation [K;; = 0] around
a NACA 0012 profile with a Mach number at infinity of 0-3 and an angle of attack = 10°

The problem has again been solved with the FPM and point collocation using both LSQ and
WLS (fixed Gaussian weighting) interpolation procedures. The initial distribution of 6694 points
was generated with a standard unstructured advancing front triangular mesh generator.”® The
essential boundary conditions around the profile and in the incoming flow were imposed by
equation (39). A linear base interpolating polynomial (m = 3) and clouds of a minimum of five
points (n = 5) have been chosen.

Second derivatives corresponding to the stabilization diffusion terms in equation (60) were
computed by constructing first a linear interpolation of the obtained solution gradients using the

same FP procedure as
a n i}' h
Y_v N (5_) 61)

—————— WITHOUT weighting -—
FIXED GAUSSIAN weighting —— ]
Potential solution <

-2
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-5

6 1 L '
o 0.2 0.4 0.6 0.8 1
L

Figure 15. NACA 0012 profile, Mach = 0, 3, « = 10°. C, distribution: (- - -} Constant weighting (1.8Q), ( ) fixed

Gaussian weighting (WLS), (O) potential solution
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Figure 16. NACA 0012 profile, Mach =0, 3, « = 10°. C, distribution for an adaptive distribution of points (- - -)
Constant weighting (LSQ), { ) fixed Gaussian weighting {WLS), (<) potential solution
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Figure 17. NACA 0012 profile, Mach = 0-3. Pressure distribution
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2 (30\ _ & oN,; (30 6

dx; \ 0, B i;, dx; \Oxy /i (62)

Figure 15 shows the distribution of the pressure coefficient C, around the profile obtained with

the FPM with Gaussian weighting (WLS) and constant weighting (LSQ). The potential solution

is also plotted in the figure for comparison purposes. Note the higher accuracy of the WLS

method as expected. This difference becomes greater if the number of points is increased. It was
found that for n = 10 the results become unstable for the LSQ approximation.

Figure 16 shows a more accurate solution using a cloud of 5436 points obtained after an
adaptivity criteria based on the curvature of the solution as suggested in Reference 1. Figure 17
shows the pressure distribution which also agrees with the expected result.*?

Further examples of the solution of fiuid flow problems using the FPM can be found in
References 33, 34 and 38.

which finally gives

8. CONCLUDING REMARKS

The weighted least-squares interpolation combined with a simple point collocation technique is
a promising Finite Point Method for the numerical solution of computational mechanics
problems. The advantage of the method compared with standard FEM is to avoid the necessity of
mesh generation and compared with classical FDM is the facility to handle the boundary
conditions and the non-structured distribution of points.

The method proposed seems to be as accurate as other numerical methods for convective
transport and fluid flow problems and the computing time to solve the differential equation is of
the same order as for methods using non-structured grids.

Another interesting conclusion is the comparison with other FPM presented in the literature.
Firstly, the use of 2 Gaussian weighting function improves considerably the results with respect to
the standard LSQ approach.?®* Secondly, the sensitivity of a FPM to a variable number of
points in each cloud must be low enough to preserve the freedom of adding, MOoVing or removing
points. This sensitivity is very high in FPM using the LSQ approximation, it is large in WLS and
MLS methods with linear base interpolations and it quite Jow in WLS and MLS methods using
quadratic base interpolations.
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