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Executive summary
This report presents the latest methods of optimisation under uncertainties invest-
igated in the ExaQUte project, and their applications to problems related to civil
and wind engineering. The measure of risk throughout the report is the conditional
value at risk.

First, the reference method is presented: the derivation of sensitivities of the risk
measure; their accurate computation; and lastly, a practical optimisation algorithm
with adaptive statistical estimation. Second, this method is directly applied to a non-
linear relaxation oscillator (FitzHugh–Nagumo model) with numerical experiments
to demonstrate its performance. Third, the optimisation method is adapted to
the shape optimisation of an airfoil and illustrated by a large-scale experiment
on a computing cluster. Finally, the benchmark of the shape optimisation of a
tall building under a turbulent flow is presented, followed by an adaptation of the
optimisation method.

All numerical experiments showcase the open-source software stack of the
ExaQUte project for large-scale computing in a distributed environment.
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1 Introduction

1.1 ExaQUte context
This report presents research outcomes from the ExaQUte project (‘exascale quan-
tification of uncertainties for technology and science simulation’), part of the
European Union’s research programme Horizon 20201. This project researches
methods for the optimisation of robust optimisation of the shape of tall structure
to withstand uncertain wind, which are then implemented in tools apt to leverage
large-scale distributed computing. This endeavour encompasses diverse scientific
fields: uncertainty quantification (UQ), optimisation under uncertainties (OUU),
computational fluid dynamics (CFD), high-performance computing (HPC), et cætera
(etc.). The work presented here belongs to the work package ‘Optimisation under
uncertainties’, id est (i.e.) in this case on the search for an engineering design
robust against the risk presented by uncertain parameters. This report presents
the latest research developments in this direction with a focus on the application to
problems from civil and wind engineering. It concludes a series of four successive
reports.

deliverable 6.2 described first-order optimality conditions for the type of problems
of OUU considered in ExaQUte. The computation of sensitivities by adjoint
calculus was presented for several risk measures of interest, along with their
challenges and possible solutions.

deliverable 6.3 proposed various gradient-descent method and stochastic approx-
imations for the optimisation of different risk measures. Their possible
combinations with multi-level Monte Carlo (MLMC) methods were presented.
For the case of the conditional value at risk (CVaR), the issue of lack of
regularity was discussed and two regularisation strategies were considered.

deliverable 6.4 introduced several benchmarks, with a focus on unsteady problems
and engineering applications. The adaptation of the optimisation method
identified in the previous deliverable was discussed for each benchmark, along
with the associated challenges and recommended solutions. That report laid
the foundation of the work present in the current document.

Furthermore, two concurrent reports relate closely to the methods and results
presented here: deliverable 5.5 reports on UQ for the same kind of problems, includ-
ing methods necessary to the optimisation discussed here; deliverable 7.4 presents
a major benchmark of OUU which motivates much of the research in this report.

1Funding received under grant agreement 800898.
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As part of its mission, the ExaQUte project maintains several tools in which the
methods developed are implemented. These constitute an interoperable software
stack whose source code is publicly available under open licenses, as are the scientific
reports. It is summarised below, and described in more details in deliverable 1.4.

MMG+ParMMG is a set of tools for simplicial remeshing developed by INRIA.
The adaptive mesh refinement is performed with control of the interpolation
error based on a given metric (C. Dapogny et al. 2014). ParMMG is an
extension developed during the ExaQUte project by Cirrottola and Froehly
2019 to perform this remeshing across several processors in parallel, via the
Message Passing Interface (MPI) standard. The concurrent report deliverable
2.5 presents the latest development on this tool.

Kratos Multiphysics is the solver for the CFD simulation, whose development is
lead by CIMNE (Pooyan Dadvand et al. 2010; P. Dadvand et al. 2013). It
also supports parallel computation through MPI. Its latest release is reported
in deliverable 1.4.

COMPSs and Quake are the two alternative frameworks for distributed com-
puting, accessible via a common application programming interface (API) de-
veloped for the ExaQUte project (see Böhm and Ejarque 2021). COMPSs (Lordan
et al. 2013; Rosa M. Badia et al. 2015; Tejedor et al. 2017) is developed by
the Barcelona Supercomputing Center while Quake is from IT4Innovations.
Their latest progress and benchmarks are in the concurrent report deliverable
4.5.

XMC is a library of hierarchical Monte Carlo (MC) methods for UQ. It was created
during the ExaQUte project as deliverable 5.1 and deliverable 5.2, and has
been developed as a collaborative effort within ExaQUte lead by EPFL.

1.2 Structure of the report
This report is split into four parts, which relate to and follow in direct succession
§ 2–5 from deliverable 6.4, respectively. They are followed by a conclusion of the
report and of the whole work package ‘Optimisation under uncertainties’.

Section 2 discusses the optimisation of the chosen risk measure, the CVaR. It
presents the derivation of its sensitivities for use in a gradient-based optimisation
method. A MLMC estimator is proposed for this task, along with associated
error estimators and the calibration thereof. This eventually leads to a practical
optimisation algorithm.

Section 3 demonstrates the application of the method from section 2 to the
FitzHugh–Nagumo oscillator: an extension of the Van der Pol oscillator previously
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used as a simple benchmark in ExaQUte. Its adjoint problem is formulated,
from which the parametric sensitivities of the primal solution are derived. The
reliability and performance of the algorithm are assessed and compared to theoretical
expectations.

Section 4 discusses the constrained shape optimisation of the CVaR of the
lift coefficient of an airfoil under uncertain boundary conditions – an application
announced in deliverable 6.4. A potential-flow model is used for the flow problem
and its adjoint is presented in order to derive the sensitivities of the lift coefficient
with respect to the shape of the airfoil. Then the optimisation itself is demonstrated
on a computing cluster, using adaptive mesh refinement for the evolving geometry.

Section 5 addresses the case of turbulent fluid flows. It presents an important
benchmark of ExaQUte whose numerical experiments are reported in deliverable
7.4: the shape optimisation of a tall building under turbulent wind to minimise the
CVaR of the mechanical moment at its base. Given the challenges raised by the
chaotic behaviour of the turbulent flow, a different methodology from the previous
sections is proposed.

Finally, section 6 gives some conclusions and perspective on the research presen-
ted here and on the whole package.

1.3 Common notions and notation
The field OUU is broad and varied. To focus the research effort, the ExaQUte project
decided from its inception to target robust shape optimisation constrained by a
partial differential equation (PDE) with uncertain loading or boundary conditions.
The first methodological decision was to research gradient-based methods. Given
that shape optimisation is prone to high-dimensional design spaces, adjoint calculus
is favoured to compute the gradient whenever available. The quantification of the
risk associated with a given design is a significant choice from both the engineering
and the mathematical point of views. The CVaR has been selected for its ability to
control failure states and its suitable mathematical properties, exempli gratia (e.g.)
coherence (see deliverable 6.3, § 3); we refer to R. T. Rockafellar and Royset 2015
for a detailed review of risk measures pertinent to engineering risk-averse decisions.

We introduce below several notions pertinent to this context and used through-
out the report. In all that follows, (𝛺, ℱ,P) will denote a probability space.

DEFINITION 1 (Conditional value at risk). Let 𝑋 ∈ L1(𝛺,R) an integrable, real-
valued, random variable. Let 𝜏 ∈ ]0, 1[. The value at risk (VaR) of significance2 𝜏
of 𝑋 is defined as

VaR𝜏(𝑋) ≔ inf{𝑡 ∈ R ∶ P(𝑋 ⩽ 𝑡) ⩾ 𝜏} (1.1)
2Sometimes called ‘value at risk 1 − 𝜏’.
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In this report, we assume that P(𝑋 = VaR𝜏(𝑋)) = 0; see Uryasev et al. 2010 for a
more general context. We define the conditional value at risk (CVaR) of significance
𝜏 of 𝑋 as the following expectation, conditional on the value at risk (VaR):

CVaR𝜏(𝑋) ≔ E(𝑋|𝑋 ⩾ VaR𝜏(𝑋)) = inf{E(𝜙(𝑋, 𝑠)) ∶ 𝑠 ∈ R}. (1.2)

with 𝜙(𝑋, 𝑠) ≔ 𝑠 + (𝑋 − 𝑠)+

1 − 𝜏
and ∀𝑟 ∈ R, (𝑟)+ ≔ max(𝑟, 0).

Assuming that the cumulative distribution function (CDF) of 𝑋 is continuous, the
infima in (1.1)–(1.2) are minima and CVaR𝜏(𝑋) = E(𝜙(𝑋,VaR𝜏(𝑋))), from T. R.
Rockafellar and Uryasev 2000, theorem 1. ♦

Let 𝑍 be a design space and 𝑄 ∶ 𝑍 → R be a quantity of interest (QoI) whose
risk is to be minimised. Using the CVaR of significance 𝜏 ∈ ]0, 1[ as risk measure,
the optimal design 𝑧⋆ is defined as

𝑧⋆ ≔ argmin{CVaR𝜏(𝑄(𝑧))}. (1.3)

Recalling (1.2), (1.3) appears as a nested optimisation problem. Therefore we
consider the more practical formulation given in problem 1 below, which ibid.,
theorem 2 proved to yield a solution of (1.3).

PROBLEM 1 (General CVaR optimisation with PDE constraint). We define the
optimal design 𝑧⋆ as part of the optimal solution

(𝑧⋆, 𝑠⋆) ≔ argmin{𝐽(𝑧, 𝑠) ≔ E(𝜙(𝑄(𝑧), 𝑠)) ∶ (𝑧, 𝑠) ∈ 𝑍 × R},

where 𝑄(𝑧) implicitly depends on the solution 𝑢(𝜔, 𝑧) of a PDE affected by random
effects, expressed in abstract form as the constraint

𝑃(𝑢(𝜔, 𝑧), 𝑧, 𝜔) = 0 for almost every (a.e.) 𝜔 ∈ 𝛺. (1.4)

We assume that the random solution 𝑢(𝜔, 𝑧) is unique for a given design 𝑧, hence
the notation 𝑄(𝑧). However, computing a sample of 𝑄(𝑧) generally requires to
solve (1.4) for a given 𝜔 ∈ 𝛺. ♦

In the following sections, 𝑃 will generally be a time-dependent PDE and the QoI
sought will typically be temporal averages as defined next.

DEFINITION 2 (Temporal average). Let 𝑇 ∈ R, 𝑑 ∈ N and 𝒇 ∶ [0, 𝑇 ] → R𝑑, a
function of time. Let 𝑎 ∈ [0, 𝑇[ and 𝑏 ∈ ]𝑎, 𝑇[. The temporal average (or ‘time
average’) of the function 𝒇 from 𝑎 to 𝑏 is defined as

⟨𝒇⟩𝑎,𝑏 ≔ 1
𝑏 − 𝑎

∫
𝑏

𝑎
𝒇.

This notation may be simplified as ⟨𝒇⟩𝑏 ≔ ⟨𝒇⟩0,𝑏 and ⟨𝒇⟩ ≔ ⟨𝒇⟩0,𝑇. ♦
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Finally, for any pair (𝑎, 𝑏) ∈ R2, we will note J𝑎, 𝑏K ≔ [𝑎, 𝑏] ∩ Z the set of
integers between 𝑎 and 𝑏.
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2 Sensitivity estimation and optimisation for the
conditional value-at-risk

In deliverable 6.2, § 3.4, we presented a framework for the gradient-based optim-
isation for the CVaR. However, the resultant expression for the gradient required
computing the expected value of a discontinuous function using MLMC methods. If
applied directly, the performance of MLMC methods is severely degraded.

In this section, we utilise the idea of parametric expectations to overcome this
issue and estimate the sensitivities necessary to carry out gradient-based optim-
isation of the CVaR. We recall here briefly some concepts around the estimation
of parametric expectations using MLMC estimators. Parametric expectations are
expectations of the form:

𝛷(𝜃) ≔ E(𝜙(𝑄, 𝜃)), 𝜃 ∈ 𝛩 ⊂ R,

where 𝑄 denotes the output QoI which, in the setting of this report, is the quantity
to be optimised. For the remainder of this work, we define 𝜙 as in definition 1:

𝜙(𝑄, 𝜃) ≔ 𝜃 + (𝑄 − 𝜃)+

1 − 𝜏
,

where 𝜏 denotes a significance parameter. This form has the advantage that after
estimating the function 𝛷 and its derivatives

𝛷(𝑑)(𝜃) ≔ ∂𝑑

∂𝜃𝑑 E(𝜙(𝑄, 𝜃)), 𝑑 ∈ {0, 1, 2},

the CDF 𝐹𝑄(𝜃) = E(1𝑄⩽𝜃) and the probability density function (PDF) 𝑓𝑄(𝜃) =
𝐹 (1)

𝑄 (𝜃), as well as the VaR 𝑞𝜏 and the CVaR 𝑐𝜏 of significance 𝜏, can be obtained
by simple post-processing.

𝐹𝑄(𝜃) = 𝜏 + (1 − 𝜏)𝛷(1), 𝑞𝜏 = argmin
𝜃∈𝛩

𝛷(𝜃),

𝑓𝑄(𝜃) = (1 − 𝜏)𝛷(2), 𝑐𝜏 = min
𝜃∈𝛩

𝛷(𝜃) = 𝛷(𝑞𝜏).

The reader is referred to deliverable 5.5, § 2.1 for more details.
We presented in ibid. an MLMC estimator ̂𝛷(𝑑)

𝐿 for 𝛷(𝑑). The estimator works
by first constructing point-wise MLMC estimates on a uniform grid 𝜽 = {𝜃1, … , 𝜃𝑛}
in the interval 𝛩. The MLMC estimator ̂𝛷𝐿 for 𝛷 at a point 𝜃𝑗 reads:

̂𝛷𝐿(𝜃𝑗) ≔ 1
𝑚0

𝑚0

∑
𝑖=1

𝜙(𝑄(𝑖,0)
0 , 𝜃𝑗) +

𝐿
∑
𝑙=1

1
𝑚𝑙

𝑚𝑙

∑
𝑖=1

[𝜙(𝑄(𝑖,𝑙)
𝑙 , 𝜃𝑗) − 𝜙(𝑄(𝑖,𝑙)

𝑙−1 , 𝜃𝑗)],
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where {𝑄𝑙 ∶ 𝑙 ∈ J0, 𝐿K} denote a sequence of approximations of 𝑄 with increasing
accuracy and cost and 𝑄(𝑖,𝑙)

𝑙 and 𝑄(𝑖,𝑙)
𝑙−1 are realisations at two consecutive accuracy

levels obtained for the same random event. In addition, 𝑄(𝑖,𝑙)
𝑙 and 𝑄(𝑖′,𝑙′)

𝑙′ are
statistically independent whenever 𝑖 ≠ 𝑖′ or 𝑙 ≠ 𝑙′.

We then construct a MLMC estimator of the whole function 𝛷(𝜃), 𝜃 ∈ 𝛩 by
interpolating over the point-wise estimates as below.

̂𝛷𝐿 = 𝒮𝑛( ̂𝛷𝐿(𝜽)),

where 𝒮𝑛 denotes the cubic spline interpolation operator and ̂𝛷𝐿(𝜽) denotes the
set of point-wise MLMC estimates:

̂𝛷𝐿(𝜽) = { ̂𝛷𝐿(𝜃1), ̂𝛷𝐿(𝜃2), … , ̂𝛷𝐿(𝜃𝑛)}.

The function derivative estimate denoted by ̂𝛷(𝑑)
𝐿 is then obtained by computing

the derivative of the resultant interpolated function:
̂𝛷(𝑑)
𝐿 ≔ 𝒮(𝑑)

𝑛 ( ̂𝛷𝐿(𝜽)),
where the superscript 𝑑 denotes the order of the derivative.

The error of the estimator is quantified using an estimator for the mean squared
error (MSE) defined as follows:

MSE( ̂𝛷(𝑑)
𝐿 ) ≔ E(∥𝛷(𝑑) − ̂𝛷(𝑑)

𝐿 ∥
2

L∞(𝛩)
).

We presented in deliverable 5.5 and Ayoul-Guilmard, Ganesh, Krumscheid et
al. 2021, an adaptive strategy to select the parameters of the hierarchy, namely
the number of interpolation points 𝑛, the number of levels 𝐿 and the level-wise
samples sizes 𝑚𝑙, such that the MLMC satisfies a given tolerance in a cost optimal
manner. When optimally tuned, the complexity behaviour is dramatically improved
compared to a simple Monte Carlo estimator.

2.1 Sensitivity estimation and gradient error
To demonstrate the relation between parametric expectations and sensitivity estim-
ation, we first consider a CVaR minimisation problem as follows. Let 𝜔 ∈ 𝛺 denote
an elementary random event and 𝑧 ∈ 𝒜 ⊂ R𝑝 denote the design variable. Lastly
we denote by 𝑄(𝑧, 𝜔) ∈ R the value of the QoI to be minimised for a given design 𝑧
and random event 𝜔. We formulate the following OUU problem:

𝐽 ∗ = min
𝑧∈𝒜⊆𝑍

{min
𝜃∈𝛩

(𝜃 + E((𝑄(𝑧, ⋅) − 𝜃)+)
1 − 𝜏

) + 𝜅‖𝑧 − 𝑧0‖2
ℓ2}

= min
𝑧∈𝒜
𝜃∈𝛩

{𝐽(𝑧, 𝜃) ≔ 𝛷(𝜃; 𝑧) + 𝜅‖𝑧 − 𝑧0‖2
ℓ2}, (2.1)
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where 𝑧0 denotes a preferred design and 𝜅 denotes a regularisation parameter. We
have also combined the minimisation problem of the CVaR with the minimisation
problem of the design as in deliverable 6.3 and deliverable 6.4. Since we aim to use
gradient-based algorithms to solve the OUU problem, we compute the sensitivities
with respect to 𝑧 and 𝜃 as follows:

𝐽𝜃(𝑧, 𝜃) = 1 −
E(1𝑄(𝑧,⋅)⩾𝜃)

1 − 𝜏
,

and ∀𝑗 ∈ J1, 𝑝K,

𝐽𝑧𝑗
(𝑧, 𝜃) =

E(𝑄𝑧𝑗
(𝑧, ⋅)1𝑄(𝑧,⋅)⩾𝜃)

1 − 𝜏
+ 2𝜅(𝑧𝑗 − 𝑧0,𝑗)

where 𝑄𝑧𝑗
(𝑧, 𝜔) ∈ R denotes the sensitivity of the QoI with respect to the 𝑗th

design parameter 𝑧𝑗. One can directly estimate the above expectations using MLMC
estimators. However, using MLMC to estimate the expected value of a discontinuous
function can lead to sub-optimal performance of the MLMC method, as shown in
Krumscheid and Nobile 2018.

We propose the following alternative, which consists of interpreting 𝐽𝜃 and 𝐽𝑧𝑗

as derivatives of parametric expectations, videlicet (viz.):

𝐽𝜃(𝑧, 𝜃) = 𝛷(1)(𝜃; 𝑧),

and ∀𝑗 ∈ J1, 𝑑K,

𝐽𝑧𝑗
(𝑧, 𝜃) = 𝛹 (1)

𝑗 (𝜃; 𝑧) + 2𝜅(𝑧𝑗 − 𝑧0,𝑗),

where we introduce the parametric expectations 𝛷, 𝛹𝑗 ∶ 𝛩 × 𝒜 → R:

𝛷(𝜃; 𝑧) ≔ 𝜃 + E((𝑄(𝑧, ⋅) − 𝜃)+)
1 − 𝜏

≕ E(𝜙(𝑄(𝑧, ⋅), 𝜃))

and ∀𝑗 ∈ J1, 𝑝K

𝛹𝑗(𝜃; 𝑧) ≔ E(
(𝑄(𝑧, ⋅) − 𝜃)+𝑄𝑧𝑗

(𝑧, ⋅)
1 − 𝜏

) ≕ E(𝜓(𝜃, 𝑄(𝑧, ⋅), 𝑄𝑧𝑗
(𝑧, ⋅))).

This form has several advantages for both the MLMC algorithm and gradient-based
optimisation algorithms, which are described in detail in deliverable 5.5 and in
Ayoul-Guilmard, Ganesh, Krumscheid et al. 2021.

The challenge then lies in the accurate estimation of 𝛷(1) and 𝛹 (1)
𝑗 , since these

are directly related to accurately estimating the gradient ∇ 𝐽 = (𝐽𝜃, 𝐽𝑧1
, … , 𝐽𝑧𝑝

).
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More precisely, we denote by ̂𝛷(1) and ̂𝛹 (1)
𝑗 the estimates of 𝛷(1) and 𝛹 (1)

𝑗 obtained
through a MC or MLMC estimator. We denote by ∇ ̂𝐽 the approximation to ∇ 𝐽
obtained from ̂𝛷(1) and ̂𝛹 (1)

𝑗 . We have that:

∥∇ 𝐽(𝑧, 𝜃) − ∇ ̂𝐽(𝑧, 𝜃)∥
2

ℓ2
= (𝛷(1)(𝜃; 𝑧) − ̂𝛷(1)(𝜃; 𝑧))

2

+
𝑑

∑
𝑗=1

(𝛹 (1)
𝑗 (𝜃; 𝑧) − ̂𝛹 (1)

𝑗 (𝜃; 𝑧))
2

⩽ ‖𝛷(1)(⋅; 𝑧) − ̂𝛷(1)(⋅; 𝑧)‖2
L∞(𝛩)

+
𝑑

∑
𝑗=1

‖𝛹 (1)
𝑗 (⋅; 𝑧)) − ̂𝛹 (1)

𝑗 (⋅; 𝑧)‖2
L∞(𝛩)

We can then define a MSE on the gradient and then bound it as follows:

MSE(∇ ̂𝐽(𝑧, 𝜃)) ≔ E(∥∇ 𝐽(𝑧, 𝜃) − ∇ ̂𝐽(𝑧, 𝜃)∥
2

ℓ2
)

⩽ E(‖𝛷(1)(⋅; 𝑧) − ̂𝛷(1)(⋅; 𝑧)‖2
L∞(𝛩))

+
𝑑

∑
𝑗=1

E(‖𝛹 (1)
𝑗 (⋅; 𝑧) − ̂𝛹 (1)

𝑗 (⋅; 𝑧)‖2
L∞(𝛩)). (2.2)

Hence, the MSE on the gradient can be bounded by the sum of the MSEs on
each of the functions 𝛹 (1)

𝑗 and 𝛷(1). This allows us to estimate the parametric
expectation using the MLMC procedure for parametric expectations described in
deliverable 5.5. The procedure can be applied to a linear combination of MSEs on
parametric expectations, as in (2.2), trivially. The reader is referred to ibid. and
Ayoul-Guilmard, Ganesh, Krumscheid et al. 2021 for a detailed explanation of the
procedure.

2.2 Optimisation algorithm
We seek to find the optimal design 𝑧∗ ∈ 𝒜 ⊂ R𝑑 that minimises an objective
function of the form shown in (2.1). As seen earlier, we can estimate the gradient
∇ ̂𝐽 up to a prescribed tolerance by using the framework of parametric expectations
developed in deliverable 5.5. We propose in algorithm 1 a procedure for a gradient-
based algorithm to solve the CVaR minimisation problem in (2.1). The algorithm
estimates the gradient at each iteration using optimally calibrated MLMC estimators,
calibrated using the continuation multi-level Monte Carlo (CMLMC) algorithm
described in ibid., to attain a tolerance that is a fraction of the gradient magnitude
obtained in the previous iteration. During each optimisation iteration, the function
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is first minimised in 𝜃 and as a result, 𝐽𝜃(𝑧, 𝜃∗) = 0 at the minimising value 𝜃∗. An
estimate of 𝐽𝑧 is then computed at this minimising value of 𝜃 and a gradient step
is taken forward in the design variable 𝑧, with a fixed step size. The algorithm is
terminated once the gradient magnitude drops to a specified fraction of the initial
value.

ALGORITHM 1: Optimisation algorithm proposal
1 DATA: Start design 𝑧0, tolerance 0 < 𝜖 < 1, step size 𝛼 > 0 and 𝜂 > 0
2 RESULT: Optimal design 𝑧∗

3 Set residual 𝑟𝑜𝑝𝑡 > 𝜖 and 𝑘 = 0
4 WHILE 𝑟𝑜𝑝𝑡 > 𝜖 DO
5 IF 𝑘 = 0 THEN
6 Simulate screening hierarchy
7 ELSE
8 Initialise CMLMC from the optimal hierarchy for MSE(∇ ̂𝐽𝑘)
9 Simulate CMLMC adapting MSE(∇ ̂𝐽𝑘+1) to tolerance 𝜂‖∇ ̂𝐽𝑘‖2

ℓ2

10 Estimate parametric expectation ̂𝛷𝐿 and quantile 𝑞𝑘+1
𝜏 = argmin ̂𝛷𝐿

11 Compute ∇ ̂𝐽(𝑧𝑘, 𝑞𝑘+1
𝜏 ) and ‖∇ ̂𝐽𝑘+1‖2

ℓ2

12 Compute 𝑧𝑘+1
𝑗 = 𝑧𝑘

𝑗 − 𝛼𝐽𝑧𝑗
(𝑧𝑘, 𝑞𝑘+1

𝜏 )
13 Set 𝑟𝑜𝑝𝑡 = ‖∇ ̂𝐽𝑘+1‖2

ℓ2/‖∇ ̂𝐽0‖2
ℓ2

14 Update 𝑘 ← 𝑘 + 1

We note here that this algorithm is a variation from deliverable 6.4, algorithm 2.
The main difference is that instead of calibrating the MLMC hierarchy parameters to
achieve a tolerance on the VaR and computing an estimate of the gradient using the
same hierarchy, we instead calibrate the hierarchy to achieve a tolerance directly on
the gradient. In addition, we proposed in ibid. an algorithm for adaptively selecting
the step size using interpolation. However, for the demonstrations considered in
this work, we utilise fixed step sizes.

Page 14 of 54



Deliverable 6.5

3 Optimisation of the conditional value-at-risk of
an oscillator

To demonstrate the optimisation framework, we use the FitzHugh–Nagumo system
described in FitzHugh 1961. The FitzHugh–Nagumo model is a bidimensional
simplification of the Hodgkin–Huxley model introduced by Hodgkin and Huxley
1952, which is used extensively in the field of neuroscience to model the phenomenon
of spiking neurons. It is also an extension of the Van der Pol oscillator introduced
in deliverable 6.4, § 3. The dynamical equations formulated over the interval [0, 𝑇 ]
read as follows:

( ̇𝑣
�̇�) = (𝑣 − 𝑣3

3 − 𝑤 + 𝐼
𝜖(𝑣 + 𝑎 − 𝑏𝑤) ), (𝑣(0)

𝑤(0)) = (𝑣0

𝑤0),

where (𝑣(𝑡), 𝑤(𝑡)) in R2 denotes the state variables and 𝑎, 𝑏, 𝜖 and 𝐼 denote system
parameters. Figure 1 shows a phase-space plot containing the 𝑣 and 𝑤-nullclines
for a nominal value of the system parameters. As long as the intersection of the
two nullclines lies in the interval 𝑣 ∈ [−1, 1], indicated by the black lines, the
oscillator enters a limit cycle. If the intersection lies exterior to this interval, then
the oscillator eventually reaches the intersection and remains at a constant value
of 𝑣 and 𝑤.

In particular, we study the forced FitzHugh–Nagumo system over a time interval
[0, 𝑇 ]:

( ̇𝑣
�̇�) = (𝑣 − 𝑣3

3 − 𝑤 + 𝐼 + 𝜎�̇�1
𝜖(𝑣 + 𝑎 − 𝑏𝑤) + 𝜎�̇�2

), (𝑣(0)
𝑤(0)) = (𝑣0

𝑤0),

where �̇�1 and �̇�2 are standard Brownian paths and 𝜎 = 0.01 controls the noise
strength. The problem shows several characteristics that make it a surrogate
problem for fluid dynamics optimisation problems. The first is that the problem
is time-dependent with limit cycle oscillations, resembling the dynamics of low-
Reynolds’ number vortex shedding. The second is that it is a multi-parameter
system, allowing us to test our optimisation algorithm for multiple system para-
meters, similar to what one can expect in civil engineering applications for shape
optimisation.

We denote by 𝑧 = (𝑎, 𝑏, 𝜖, 𝐼) the vector of design parameters with respect to
which we want to minimise the system. The OUU problem which we wish to solve
is given by (2.1) with 𝑧0 = [0.7, 0.8, 0.08, 1.0], with the significance of the CVaR
set to 𝜏 = 0.7. We use the approach detailed in section 2.2, namely the use of
algorithm 1 with the CMLMC algorithm detailed in deliverable 5.5. We discretise
the interval [0, 𝑇 ] using a hierarchy of uniform grids 𝑡𝑗 = 𝑗 ∆ 𝑡𝑙, 𝑗 ∈ J0, 𝑁𝑇 ,𝑙K, with
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Figure 1: FitzHugh–Nagumo oscillator dynamics

∆ 𝑡𝑙 = 𝑇 /𝑁𝑇 ,𝑙 and 𝑁𝑇 ,𝑙 = 𝑁𝑇 ,02𝑙. We set 𝑇 = 10 and 𝑁𝑇 ,0 = 40. Using the
notation 𝑣𝑙

𝑛 to denote the approximation of 𝑣(𝑡𝑛) at level 𝑙, the discretised system
then reads:

(𝑣𝑙
𝑛+1

𝑤𝑙
𝑛+1

) = (𝑣𝑙
𝑛

𝑤𝑙
𝑛
) + ∆ 𝑡𝑙(

𝑣𝑙
𝑛 − (𝑣𝑙

𝑛)3

3 − 𝑤𝑙
𝑛 + 𝐼

𝜖(𝑣𝑙
𝑛 + 𝑎 − 𝑏𝑤𝑙

𝑛)
) + 𝜎√∆ 𝑡𝑙(

𝜉𝑙
1,𝑛

𝜉𝑙
2,𝑛

),

(𝑣𝑙
0

𝑤𝑙
0
) = (𝑣0

𝑤0), 𝑛 ∈ J0, 𝑁𝑇 ,𝑙 − 1K,

where 𝜉𝑙
1,𝑛 and 𝜉𝑙

2,𝑛 are independently drawn realisations of standard normal random
variables. The quantity of interest that we study is the following time average:

𝑄 = 1
𝑇

∫
𝑇

0
𝑣2(𝑡) d𝑡 ≈

𝑁𝑇,𝑙−1

∑
𝑛=0

(
(𝑣𝑙

𝑛)2 + (𝑣𝑙
𝑛+1)2

2
) ∆ 𝑡𝑙 ≕ 𝑄𝑙.

We consider the corresponding adjoint variables 𝜆𝑙
𝑛 and 𝜇𝑙

𝑛 corresponding to
𝑣𝑙

𝑛 and 𝑤𝑙
𝑛, 𝑛 ∈ J0, 𝑁𝑇 ,𝑙K respectively. The adjoint equation reads as follows:

(𝜆𝑙
𝑛

𝜇𝑙
𝑛
) = (𝜆𝑙

𝑛+1
𝜇𝑙

𝑛+1
) + ∆ 𝑡𝑙(((1 − (𝑣𝑙

𝑛)2) 𝜖
−1 −𝜖𝑏)(𝜆𝑙

𝑛+1
𝜇𝑙

𝑛+1
) + (

2𝑣𝑙
𝑛

𝑇
0

)),

(
𝜆𝑙

𝑁𝑇,𝑙

𝜇𝑙
𝑁𝑇,𝑙

) = ∆ 𝑡𝑙(
𝑣𝑙

𝑛
𝑇
0

), 𝑛 ∈ J1, 𝑁𝑇 ,𝑙 − 1K.
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(a) Reliability of error estimator (b) Complexity behaviour

Figure 2: Summary of results for the FitzHugh–Nagumo system

The reader is referred to deliverable 6.4, appendix A for the details of the derivations.
Once the adjoint equation is solved backwards in time, the approximation 𝑄𝑧,𝑙

of the sensitivities 𝑄𝑧 at level 𝑙 can then be obtained as follows:

𝑄𝑎,𝑙 =
𝑁𝑇,𝑙−1

∑
𝑛=0

∆ 𝑡𝑙𝜖𝜇𝑙
𝑛+1 𝑄𝑏,𝑙 = −

𝑁𝑇,𝑙−1

∑
𝑛=0

∆ 𝑡𝑙𝜖𝑤𝑙
𝑛𝜇𝑙

𝑛+1

𝑄𝐼,𝑙 =
𝑁𝑇,𝑙−1

∑
𝑛=0

∆ 𝑡𝑙𝜆𝑙
𝑛+1, 𝑄𝜖,𝑙 =

𝑁𝑇,𝑙−1

∑
𝑛=0

∆ 𝑡𝑙(𝑣𝑙
𝑛 + 𝑎 − 𝑏𝑤𝑙

𝑛)𝜇𝑙
𝑛+1.

To demonstrate the performance of the algorithm, we first assess the performance
of the CMLMC algorithm and adaptive strategy. We estimate the gradient ∇ ̂𝐽 for
𝑧 = 𝑧0. The gradient and gradient error are estimated using the MLMC procedure
described in section 2.1. To assess the reliability of the error bound derived in
section 2.1, we run a reliability study wherein we adapt the parameters of the
MLMC hierarchy to attain a tolerance on the MSE. We run the MLMC algorithm
20 times for each tolerance tested and compare the estimated error to the true
error obtained using a reference gradient computed using a Monte Carlo estimator
with 104 samples. The resultant plot is shown in figure 2a. As can be seen from
the figure, the error estimates are significantly more conservative than the true
errors. This is a result of bounding the error of the gradient at a point (𝑧, 𝜃) using
the L∞-norm over the entire interval 𝛩, leading to conservative bounds. However,
since the error estimates produce practically computable hierarchies, we use them
for the studies in this work.

We present in Fig 2b the complexity behaviour of the CMLMC estimator. We
compute the cost required to obtain the final optimal hierarchy for a given tolerance.
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As can be seen from the figure, the cost grows as 𝜖−2 where 𝜖2 is the tolerance we
impose on the MSE of the gradient, which is the theoretically predicated best case
performance for the MLMC estimator. For comparison, we plot the expected cost
growth rate for a Monte Carlo estimator as well.

We now examine the performance of the gradient descent algorithm. We plot in
figure 3 the difference between the objective function value at the current iteration
and the final iteration, which we treat as a reference value. We observe exponential
convergence in the number of iterations, as is predicted by theoretical consideration
for the full gradient descent algorithm for convex functions. In addition, we plot in
figure 4 the CDF computed for different iterations of the optimisation algorithm
using the design 𝑧𝑘 and a reference Monte Carlo simulation with 1000 simulations.
We observe that the CDF moves left, reducing the mass in the tail of the distribution.
This is since we are minimising the CVaR and thereby the tail of the distribution.

figure 5 shows the optimal hierarchy obtained from the CMLMC algorithm for
each iteration of the optimisation. We observe that since the tolerance supplied to
the MLMC algorithm is a fraction of the gradient magnitude, the optimally tuned
hierarchy becomes larger for later iterations of the optimisation. In the limit of zero
gradient, the hierarchy parameters 𝑁𝑙, 𝑛 and 𝐿 all go to infinity, hence ensuring
consistency with the original problem. figure 6 shows the cumulative cost required
for the optimisation algorithm to reach a given gradient magnitude. The cumulative
cost is computed as ∑𝑘

𝑖=0 ∑𝐿
𝑙=0 𝑚(𝑖)

𝑙 (e(𝑄𝑙) + e(𝑄𝑙−1)), where {𝑚(𝑘)
𝑙 }𝐿

𝑙=0 denotes
the optimal level-wise sample sizes for the 𝑘th optimisation iteration e(𝑄𝑙) denotes
the average cost of simulating one sample of 𝑄𝑙. The cumulative cost at a given
optimisation iteration is defined as the sum of costs of all optimal hierarchies
until the current optimisation iteration. This cost is plotted versus the gradient
magnitude. We observe that the cumulative cost is proportional to the cost of the
optimally tuned MLMC hierarchy, since we adaptively select the parameters of the
MLMC hierarchy to achieve a tolerance proportional to the gradient.

The data set of the results of this numerical experiments is publically available
as a part of Ayoul-Guilmard, Rosa M. Badia et al. 2021.
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Figure 3: Decay of objective function towards final value

Figure 4: CDF for different optimisation iterations. Colour corresponds to optim-
isation iteration number, with darker colours indicating later iterations.
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Figure 5: Level-wise sample sizes for different optimisation iterations. Colour
corresponds to optimisation iteration number, with darker colours indicating later
iterations.

Figure 6: Cumulative optimisation cost to reach a given gradient magnitude
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4 Stochastic optimisation of an airfoil

4.1 Method
In order to demonstrate the optimisation workflow using the CVaR as risk measure
in the objective function, the potential flow over an airfoil is considered. To this
end, the aim is to find the optimal shape of an airfoil that minimises the chance of
obtaining low values of lift. More precisely, we aim at minimising the CVaR𝜏(−𝐶𝑙)
for a given significance level 𝜏.

The method used to solve the full potential equation was presented by the
authors in Davari et al. 2019 which features the solution of the problem on body-
fitted meshes with an embedded wake. In Núñez et al. 2022, the solution was
extended to a full embedded approach. This same method and the discussion of its
sensitivity analysis was also introduced in deliverable 6.4. In this document, the
deterministic adjoint equations presented in ibid. are extended to the stochastic
case with the CVaR as risk measure.

The optimisation problem to be solved is detailed next. Let (𝑀∞, 𝛼∞) be
uncertain parameters, following a known distribution, as discussed in deliverable
5.5. The objective function presented in deliverable 6.4, problem 4, is rewritten
including the CVaR as risk measure. Note that the problem is set up using the
negative of the lift coefficient, in order to define the problem as a minimisation
problem, so the shape that minimises the CVaR is the one that robustly maximises
the lift.

PROBLEM 2 (Airfoil shape for CVaR-optimal lift). The lift coefficient 𝐶𝑙 is now a
random variable, and we wish to minimise CVaR𝜏(−𝐶𝑙). We define the optimal
airfoil as 𝑧⋆ such that

⎧{
⎨{⎩

(𝑧⋆, 𝑠⋆) ≔ argmin{𝐽(𝑧, 𝑠) ≔ 𝜙(𝑄(𝑢(𝜔, 𝑧)), 𝑠) ∶ (𝑧, 𝑠) ∈ 𝑍 × R}
s.t. 𝐹𝜔(𝑢(𝜔, 𝑧), 𝑧) = 0 a.e 𝜔 ∈ 𝛺

and 𝑐(𝑧) = 0.

where 𝑄 = −𝐶𝑙 is the quantity of interest, defined as the negative of the lift
coefficient. The residual 𝐹𝜔 corresponds to the residual of the primal problem, which
is set as a constraint on the optimisation problem. Notice that here 𝑢(𝜔, 𝑧) denotes
the fluid potential for a given design 𝑧, not to be confused with the parametric
expectation defined in section 2. The derivation of this residual was discussed in
detail in ibid., and it is reformulated for a stochastic scenario in deliverable 5.5.
Lastly, a set of equality constraints of the type 𝑐(𝑧) = 0 are added, which are
introduced in equations (4.2), (4.3) and (4.4). ♦
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In order to find the optimal update of the airfoil shape, the derivative of
the objective function for each of the geometrical parameters is computed. In
deliverable 6.4, the deterministic discrete adjoint equations were presented, where
the change of the quantity of interest 𝑄 with respect to the geometry parameters 𝑧
is computed as:

d𝑄
d𝑧

= ∂𝑄
∂𝑧

+ 𝜆⊤ ∂𝐹𝜔
∂𝑧

,

where 𝜆 represent the adjoint variables. The adjoint variables are computed solving
the so-called adjoint equation:

∂𝑄
∂𝑢

= −(∂𝐹𝜔
∂𝑢

)
⊤

𝜆.

For the stochastic case, a similar approach is used to find the update on the
geometry parameters, considering the effect of the risk measure ℛ(𝑄) = CVaR𝜏(𝑄).
The objective function is replaced by the Lagrangian:

ℒ(𝑢, 𝑧, 𝜆) = ℛ(𝑄(𝑢)) + E(𝜆⊤𝐹𝜔(𝑢, 𝑧)),

where ℛ(𝑄) represents the risk measure of the distribution of the quantity of
interest. This expression is equivalent to the one introduced in deliverable 6.2,
Section 3.1, without the penalisation term. Now, each of the Gateaux derivatives
with respect to 𝑢, 𝑧 and 𝜆 in the directions 𝛿𝑢, 𝛿𝑧 and 𝛿𝜆 are computed. In 𝜆, it
reads:

dℒ
d𝜆

(𝛿𝜆) = E(𝐹𝜔(𝑢, 𝑧)𝛿𝜆) = 0, ∀𝛿𝜆,

which corresponds to the primal problem being satisfied for almost every realisation
𝜔, i.e, that 𝑢 = 𝑢(𝜔, 𝑧) is a solution of the problem 𝐹𝜔(𝑢, 𝑧) = 0 for a given 𝜔 and
𝑧. The derivative in 𝑢 reads:

dℒ
d𝑢

(𝛿𝑢) = dℛ(𝑄(𝑢))
d𝑢

(𝛿𝑢) + E(𝜆⊤ d𝐹𝜔(𝑢, 𝑧)
d𝑢

(𝛿𝑢)) = 0, ∀𝛿𝑢,

⇔ dℒ
d𝑢

(𝛿𝑢) = E(∂ℛ(𝑄)
∂𝑄

∂𝑄(𝑢)
∂𝑢

∂𝑢 + 𝜆⊤ ∂𝐹𝜔(𝑢, 𝑧)
∂𝑢

∂𝑢) = 0, ∀𝛿𝑢 (4.1)

where the theorem introduced in ibid. from (Shapiro et al. 2009, theorem 6.10) was
employed to write the Gateaux derivative dℛ

d𝑢 as the expectation of a pointwise
derivative. Equation (4.1) implies that the adjoint equation is satisfied for almost
every realisation 𝜔, which allows computing independently the adjoint variables
𝜆(𝜔) for every realisation. Notice that the adjoint equations can be equivalently
written as:

∂𝑄
∂𝑢

+ �̂�⊤ ∂𝐹𝜔(𝑢, 𝑧)
∂𝑢

= 0, �̂� = ∂ℛ
∂𝑄

𝜆.
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Combining this with the derivative of the Lagrangian in 𝑧, the sensitivities can be
computed as:

∂ℒ
∂𝑧

= E(∂ℛ
∂𝑄

(∂𝑄
∂𝑧

+ �̂�⊤ ∂𝐹𝜔(𝑢, 𝑧)
∂𝑧

)).

This has the advantage that the modified adjoint solution �̂� corresponds to the
standard deterministic adjoint solution, computed for each random event. The
sensitivity of the risk measure enters only in the computation of the sensitivity ∂ℒ

∂𝑧 .
The reader is referred to deliverable 6.2 for the details of this derivation.

The constraints applied in 2 are the same as the ones presented in ibid., Section
4.2.3 and 4.2.4, and we refer to those section for further details. The main functions
used in this deliverable to define the constraints are summarised next:

Perimeter The perimeter is the sum of the lengths of the edges of the airfoil:

𝑃 = ∫
𝛤𝑔

d𝛤𝑔,

where 𝛤𝑔 refers to the boundary enclosing the geometry of the airfoil. The
gradient of the perimeter is computed by finite difference for every point of
the airfoil.

∂𝑃(𝑧)
∂𝑧

≈ 𝑃(𝑧 + 𝜀) − 𝑃(𝑧)
𝜀

.

Angle of attack The angle of attack is defined as the angle between the inflow
velocity and the chord line, using 𝒗 as the inflow velocity and 𝒄 as the chord
vector. The chord vector is defined as the position of the leading edge and
the trailing edge, with the trailing edge as origin:

𝛼 = arccos( 𝒗 ⋅ 𝒄
‖𝒗‖‖𝒄‖

).

The gradient of the angle of attack will only depend on the position of the
trailing edge and the leading edge nodes. It can easily be computed by finite
differences.

∂𝛼
∂𝑧

≈ 𝛼(𝑧 + 𝜀) − 𝛼(𝑧)
𝜀

.

Chord line length Another feature that is important to preserve across the design
space is the chord length, that can be defined as the norm of the chord vector,
represented by the leading and trailing edge nodes:

𝑙𝑐 = ‖𝒄‖,

and its gradient is easily computed by finite differences:
∂𝑙𝑐
∂𝑧

≈ 𝑙𝑐(𝑧 + 𝜀) − 𝑙𝑐(𝑧)
𝜀

.
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These functions are applied as equality constraints to enforce that they do not drift
from their initial values 𝑃0, 𝛼0 and 𝑙𝑐0:

𝑐1(𝑧) = 𝑃0 − ∫
𝛤𝑔

d𝛤𝑔 = 0, (4.2)

𝑐2(𝑧) = 𝛼0 − arccos( 𝑣 ⋅ 𝒄
‖𝑣‖‖𝒄‖

) = 0, (4.3)

𝑐3(𝑧) = 𝑙𝑐0 − ‖𝒄‖ = 0. (4.4)

A trust region algorithm (Yuan 1999) is used to solve the constrained optimisation
problem, as done in deliverable 6.4.

In order to model the uncertainty in the problem the approach used in Tosi,
Amela et al. 2021 is considered. This approach is also used in deliverable 5.5. The
Dirichlet condition on 𝛤𝐷 is transformed to a stochastic condition by considering
some variability in the free stream velocity 𝒗∞, which can be expressed in terms of
the Mach number and the angle of attack:

𝒗∞ = 𝑀∞𝑎∞(cos(𝛼)
sin(𝛼))

where the free stream sound velocity is set as 𝑎∞ = 340 m s−1. The Mach number
and the angle of attack are therefore two independent random variables that model
the stochastic problem. The probability distribution of the two stochastic variables
are 𝑀∞ ∼ 𝒩(0.3, 0.1) and 𝛼 ∼ 𝒩(5.0°, 0.02), respectively. 𝒩(𝜇, 𝜎2) denotes a
normal distribution of mean 𝜇 and variance 𝜎2.

The main quantity of interest is the lift coefficient, which is computed using
the Kutta–Joukowski theorem:

𝐶𝑙 = Γ
1
2𝑣∞𝑐

,

where Γ is the circulation of the flow and the subscript, 𝜌∞ is the free stream
density and 𝑣∞ the free stream velocity. The circulation Γ can be expressed as
the potential jump across the domain 𝛤 = 𝑢+ − 𝑢−, shown by Nishida and Drela
1995. This leads to the definition of the lift coefficient in terms of the potential
jump across the wake:

𝐶𝑙 = 2
𝑣∞𝑐

(𝑢+ − 𝑢−).

4.2 Numerical application
The optimisation problem introduced in problem 2 is solved using the MLMC method
using as initial shape the symmetric NACA0012 airfoil at an angle of attack of
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x
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Figure 7: Starting mesh of the optimisation problem

𝛼 = 5°. The airfoil is discretised with 𝑛nodes = 10 198 nodes, all of which are
considered geometry parameters in the optimisation problem, denoted with 𝑧. The
starting mesh for the algorithm is shown in figure 7.

Considering the number of parameters in the optimisation problem, the adaptive
MLMC approach used in section 3 is replaced by a fixed hierarchy, as the cost of
estimating the error of the sensitivity on every geometry parameter to adapt the
hierarchy was too high. The fixed hierarchy is constructed with 4 levels (𝐿 ≔ 3) and
𝑁 = 256 samples at each level, whose cost at every optimisation step is expected
to be constant. The hierarchy of meshes to solve the MLMC algorithm at every
optimisation step was computed on the fly using the adaptive refinement strategy
described in deliverable 5.3, § 2.2.2 and deliverable 5.5, § 2.2, where a metric-based
refinement following the method from C. Dapogny et al. 2014 is considered using
MMG software. The metric is defined as:

ℳ = 𝒜 ̂𝛬⊤𝒜, where ̂𝛬 = diag(�̂�𝑖)

�̂�𝑖 = min(max(𝑐𝑑|𝜆𝑖|
𝜀

, ℎ−2
max), ℎ−2

min),

where 𝜆𝑖 are the eigenvalues and 𝒜 the matrix of eigenvectors of the Hessian ℋ𝑢
of a given variable 𝑢. The eigenvalues are truncated for some user-defined minimal
and maximal sizes, ℎmin and ℎmax. The metric depends on a constant 𝑐𝑑 and the
interpolation error 𝜀. This means that the refinement can be driven by the value
of 𝜀.

The testing and production runs to solve this problem were run both in MareN-
ostrum 4, whose architecture is described in deliverable 4.5, and Karolina, whose
architecture is described in deliverable 5.5, § 3.2.3.

The total number of samples solved in the optimisation problem is therefore
𝑁total = (2𝐿 − 1)𝑁, as shown in table 1. Each of the samples drawn are distributed
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Table 1: Hierarchy used to solve the MLMC problem at every optimisation step. A
fixed number of samples 𝑁 = 256 is used at each level. For every level 𝐿 > 0, each
realisation evaluates the lift coefficient on each level 𝐿 and 𝐿−1. The interpolation
error 𝜀 used to generate each level is also shown.

Level 𝑙 Samples 𝜀
mesh 𝑙 mesh 𝑙 − 1

0 256
1 256 256 0.1
2 256 256 0.05
3 256 256 0.025

over the available computing nodes. For these runs, COMPSs programming
model (described in deliverable 4.5) was used. Each sample was run with a single
computing unit. After running the hierarchy, the estimation of the CVaR and the
estimation of the sensitivities is performed by XMC.

The results obtained after solving problem 2 for 𝜏 = 0.7 are discussed next. The
problem was run during 24 hours, after which the analysis was stopped. Figure 8a
shows the change of the objective function through the optimisation steps. It can
be seen that the objective function approaches an optimal value, but not smoothly.
The objective function reaches a minimum value early in the optimisation loop,
but then increases as the geometrical constraints are applied.

The stopping criteria of the algorithm was set in terms of the relative change
of the objective function, with a limit of 0.001 %, which was not reached within
the wall-time of 24 hours. The evolution of the stopping criteria is illustrated
in figure 8b. This is partially due to the fact that the MLMC hierarchy was not
adaptive, and thus the error of the MLMC algorithm was not under control. This
does not only affect the accuracy of the estimated objective function, but also the
values of the estimated sensitivities. It is expected that using an adaptive hierarchy
would improve the convergence of the optimisation, although the cost of every step
would also increase. Nonetheless, the variability of the objective function observed
after solving the 24 hours can be considered acceptable, even if the initial stopping
criteria was not met.

A comparison of the shape design obtained is presented in figure 9, where the
resulting shape from the stochastic optimisation problem is compared with the
initial configuration. Also, the shape resulting from solving a classical deterministic
optimisation problem with the mean conditions of the stochastic problem is shown.
It must be noted that both problems are optimising the shape on different objective
functions, so it would not be expected to obtain the exact same shape.
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Figure 8: Evolution of the objective function and the relative tolerance in the
optimisation problem showcased
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Figure 9: Shape comparison of the initial and final shapes after solving a stochastic
optimisation problem with CVaR0.7(−𝐶𝑙) minimisation and after solving a determ-
inistic optimisation problem where the lift coefficient is maximised, as introduced
in deliverable 6.4
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As the optimisation loop advances, the distribution of the lift coefficient changes,
updating the CVaR value. Figure 10 shows the evolution of the CDF of the negative
of the lift coefficient over the first optimisation steps. Since the optimisation
problem is written as a minimisation problem, the distribution moves towards the
left side. Figure 11a shows the PDF of the lift coefficient for the first optimisation
step, alongside with the mean, VaR, and CVaR values. Also, the distribution of
the mean, VaR and CVaR of the pressure coefficient over the airfoil is presented
in figure 12. The results on the initial step are equivalent to those obtained
in deliverable 5.5. Figure 11b shows the PDF of the lift coefficient for the final
optimisation step, and the same statistical quantities as before, and figure 13 shows
the distribution of the pressure coefficient statistics for the final step over the airfoil.
For this shape, a local effect caused by the mesh deformation across the steps is
visible on the top surface in figure 13a, but it is not big enough to have a significant
effect on the final integrated quantity.

The results obtained are a showcase of an engineering application with many
design parameters for which the optimisation under uncertainties workflow is
applicable. A state-of-the-art method to estimate relevant risk measures for the
application was applied. This was possible thanks to the combination of the
different utilities and software packages released during the project (deliverable
5.2; deliverable 4.5; deliverable 1.4) including: the remeshing software MMG; the
solver Kratos Multiphysics; the programming models COMPSs and Quake; and
the uncertainty quantification library XMC.

The data set of raw results of these numerical experiments is publically available
as a part of Ayoul-Guilmard, Rosa M. Badia et al. 2021.
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Figure 10: CDF of the negative of the lift coefficient for the first 10 iterations of
the optimisation problem, where the curve gets darker as the iteration increases
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Figure 11: Distribution of the opposite of the lift coefficient for the initial and final
optimisation steps. Constructed from the 256 samples from the finest level from
the hierarchy in table 1.
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(a) Pressure distribution along the airfoil shape

(b) Zoom in at the trailing edge

Figure 12: Distribution of statistical quantities for the pressure coefficient over the
initial shape of the NACA0012 airfoil at 5° (significance 𝜏 = 0.7)
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(a) Pressure distribution along the airfoil shape

(b) Zoom in at the trailing edge

Figure 13: Distribution of statistical quantities for the pressure field over the final
shape of the NACA0012 airfoil at 5° (significance 𝜏 = 0.7)
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5 Shape optimisation of a tall building under un-
certain wind conditions

This is the most ambitious problem considered by the ExaQUte project: a three-
dimensional robust optimisation of the shape of a building under turbulent, un-
certain wind conditions. As far as optimisation is concerned, its most challenging
feature is the turbulence: the chaotic behaviour of the fluid flow precludes the use
of MLMC methods, as demonstrated in deliverable 5.4, § 2. For this reason an altern-
ative multi-fidelity Monte Carlo (MFMC) method is studied in deliverable 5.5, § 3.
However, further work would be required to use this method in a gradient-descent
algorithm such as presented in section 3. In particular, the accurate estimation of
parametric sensitivities such as described in section 2 would have to be researched
for the MFMC estimator selected. For these reasons, a different optimisation method
is used to address this particular problem of interest to wind engineering.

In this report we will describe the optimisation algorithm as well as the method
used to estimate the sensitivity of the objective function to the optimisation
parameters. We will also present the target application, insofar as it pertains
to this discussion. The application itself and its results are available in detail
in deliverable 7.4. The reader may also be interested deliverable 6.4, § 5 which
previously presented this fluid simulation and part of the method hereafter.

5.1 Formulation of the fluid flow problem
This fluid-flow problem is similar to the one described in ibid. and deliverable 5.5,
§ 3.2.1: a tall building under turbulent wind, with uncertain inflow. The horizontal
section of the building is an ellipse, whose orientation and diameters change with
the height. This shape is therefore parameterised by two real numbers: (I) the
angle of rotation around the vertical axis of the top section with respect to the
section at the base of the building; (II) the length of the minor axis of the section
at the top of the building. The length of the major axis is a function of the length
of the minor axis such that the section area remains constant. Consequently, the
design space is R2.

PROBLEM 3 (Incompressible flow over a building). The flow is simulated for 200 s
on the domain 𝐷 represented in figure 14. The building is parameterised, and for
a given design 𝑧 ∈ R2 we note 𝐵(𝑧) its shape. The boundary of the domain is
therefore partitioned as ∂𝐷 = 𝐷inlet ∪ 𝐷outlet ∪ 𝐷top ∪ 𝐷walls ∪ 𝐷bottom ∪ 𝐵(𝒛).
The wind pressure 𝑝 and velocity 𝒖 are solution of the incompressible Navier–
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Figure 14: Details of the simulation domain and boundary conditions (𝐻 = 180 m)

Stokes equations with boundary conditions stated below.

∂𝒖
∂𝑡

+ 𝒖 ⋅ ∇ 𝒖 − 𝜇
𝜌

∆ 𝒖 + ∇ 𝑝 = −𝑔𝒆3 in [0, 200] × 𝐷, (5.1a)

∇ ⋅𝒖 = 0 in [0, 200] × 𝐷, (5.1b)

with the boundary conditions

𝒖 = 𝒖inlet in [0, 200] × 𝐷inlet, (5.1c)
𝑝 = 0 in [0, 200] × 𝐷outlet, (5.1d)

𝒖 ⋅ 𝒏 = 𝟎 in [0, 200] × (𝐷walls ∪ 𝐷top), (5.1e)
𝒖 = 𝟎 in [0, 200] × (𝐷bottom ∪ 𝐵(𝒛)), (5.1f)
𝒖 = 𝟎 in {0} × 𝐷. (5.1g)

The vector normal to a surface at the point considered is noted generically 𝒏. The
properties of the fluid and dimensions of the building are given in table 2. The
Reynolds number is calculated using the major axis at the base of the building
as the characteristic length. The wind inflow at the inlet 𝒖inlet is described in
section 5.2. ♦

The mechanical moment created at the centre 𝑂 of the base of the building
𝐵(𝒛) by the fluid pressure is defined as

𝑴(𝒛) = ∫
𝐵(𝒛)

(𝒙 − 𝑂) × 𝑝(𝒙)𝒏(𝒙) d𝑆(𝒙) (5.2)

The details of the numerical resolution of problem 3 can be found in deliverable
7.4: spatial and temporal discretisation, solver, etc..
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Table 2: Fluid and building properties

Quantity Notation Value Unit

Air density 𝜌 1.225 kg m−3

Air dynamic viscosity 𝜇 1.846 · 10−5 kg m−1 s−1

Gravity acceleration 𝑔 9.81 m s−2

Height of the building 𝐻 180 m
Major base axis 45 m
Minor base axis 30 m
Reynolds number Re 9.7 · 107

5.2 Problem of optimisation under uncertainties
We define the QoI 𝑄 as the temporal average of the squared magnitude of the base
moment:

𝑄(𝒛) ≔ ⟨‖𝑴(𝒛)‖2⟩50,200 (5.3)

with 𝑴 defined in (5.2). We seek the optimal design with respect to the CVaR of
𝑄 as the solution of problem 4.

PROBLEM 4 (CVaR-minimisation). The QoI here is the temporal average of the
squared magnitude of the base moment defined in (5.3): 𝑄. It is a real-valued
random variable whose CDF is assumed to be continuous. The optimal design 𝒛⋆
that we seek is such that

(𝒛⋆, 𝑠⋆) ≔ argmin{E(𝜙(𝑄(𝒛), 𝑠)) ∶ 𝒛 ∈ 𝒜; 𝑠 ∈ R}

where 𝜙 is as in definition 1:

𝜙(𝑄(𝒛), 𝑠) ≔ 𝑠 + (𝑄(𝒛) − 𝑠)+

1 − 𝜏
,

and we define
𝐽(𝒛) ≔ minE(𝜙(𝑄(𝒛), ⋅)) (5.4)

with 𝒜 ≔ [0, 2𝜋[ × ]0, +∞[ ⊂ R2 the set of admissible designs. ♦

The uncertainty on 𝑄(𝒛) comes from the wind inflow at the inlet 𝒖inlet. It
is modelled as the superposition of a time-independent profile 𝒖inlet and time-
dependent fluctuations �̃�inlet:

𝒖inlet ≔ 𝒖inlet + �̃�inlet.
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The fluctuations follow the model from Mann 1998 and are generated by the
method described in deliverable 7.3. The mean profile depends on the height 𝑥3 as

𝒖inlet(𝑥3) = 𝑤
𝜅

ln(1 + 𝑥3
𝑥3

)⎛⎜
⎝

cos 𝜃
sin 𝜃

0
⎞⎟
⎠

.

Besides the constant of von Karmán 𝜅 ≈ 0.41, the model above features three
parameters treated in this work as random variables: (I) the ‘roughness height’
𝑥3; (II) the angle of incidence of the wind 𝜃; (III) the reference wind velocity 𝑤.
The roughness height affects the shape of the mean profile to represent the effect
of obstacles close to the ground (relief, vegetation, buildings, etc.); it follows the
uniform distribution 𝒰(0.01 m, 0.1 m) which corresponds to an open country as per
Joint committee on structural safety 2001. For this setting, 𝑤 and 𝜃 are dependent.
Their relation is modelled from historical measurements of mean wind velocities
and directions (‖𝑢(10)‖, 𝜃) collected at 10 m above the ground in Basel, Switzerland,
from 2010-01-01 to 2015-12-31; from meteoblue 2015. This data is summarised as
a wind rose in the left of figure 15. The reference velocity is calculated from these
measurements as 𝑤 = 𝜅‖𝑢(10)‖/ ln(10/𝑥3 + 1). The joint distribution of 𝑤 and
𝜃 is then fitter on this empirical data following a copula-based model (see Sklar
1959; Nelsen 2007), yielding the wind rose on the right of figure 15; more details
are available in deliverable 7.4. It is visible in figure 15 that 𝜃 ∈ [0, 2𝜋[, however
in the simulations 𝐷inlet is fixed; the wind is kept blowing towards the building
by rotating the building, instead of changing the origin of the wind inflow. This
rotation is done for every realisation of 𝜃, so that in practice 𝜃 parameterise the
rotation of the building.

5.3 Optimisation method
The solution to problem 4 is sought by an algorithm alternating direct minimisation
and gradient descent, similarly to the strategy adapted in algorithm 1 of section 2.2.
For every design 𝒛 ∈ R2, the evaluation of 𝐽(𝒛) requires solving a unidimensional
minimisation problem. Starting from a given initial design 𝒛0 ∈ 𝒜, the new design
at every iteration 𝑘 ∈ N is defined as

𝒛𝑘 ≔ 𝒛𝑘−1 − 𝛾𝑘−1 ∇ 𝐽(𝒛𝑘−1).

As discussed in previous sections, the exact gradient E(∇ 𝐽(𝒛𝑘−1)) is generally not
accessible and has to be estimated. In this section we present the estimation of
∇ 𝐽(𝒛𝑘−1), then the estimation of the expectation will be discussed in section 5.4.

Two limitations are imposed by the turbulent fluid application described in
section 5.1: (I) the chaotic behaviour of the QoI with respect to mesh refinement
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Figure 15: Wind rose based on data from meteoblue 2015

precludes the use of a MLMC method; (II) adjoint-based sensitivities are not available
to compute samples of ∇ 𝐽(⋅). Limitation (I) will be addressed in section 5.4.
Limitation (II) is addressed with a finite-difference estimation. We define the
difference operator for any direction 𝒅 ∈ R2 {𝟎},

∆𝒅 𝐽(𝒛) ≔ 𝐽(𝒛 + 𝒅) − 𝐽(𝒛)
‖𝒅‖

.

Given a stencil size ℎ ∈ ]0, +∞[ we consider the first-order, forward difference
scheme

∀𝑖 ∈ {1, 2}, D 𝐽(𝒛)(𝒆𝑖) ≈ ∆ℎ𝒆𝑖
𝐽(𝒛) = ∆ℎ𝒆𝑖

𝐽(𝒛).

Applying this scheme in both directions 𝒆1 and 𝒆2 with respective stencil sizes
(ℎ1, ℎ2) ≕ 𝒉 yields an approximation of the gradient noted

∆𝒉 𝐽(𝒛) ≔ 𝒆1 ∆ℎ1𝒆1
𝐽(𝒛) + 𝒆2 ∆ℎ2𝒆2

𝐽(𝒛) ≈ ∇ 𝐽(𝒛).

This entails to evaluate 𝐽 for three different designs.
The sizes ℎ1 and ℎ2 define the stencil and parameterise the estimation ∆𝒉 𝐽(𝒛);

they are kept fixed for the whole optimisation. These sizes are not straightforward
to choose: although a small value should yield a more accurate estimation of the
derivative, small step sizes were observed to lead to arbitrarily high and unstable
gradient estimations due to the chaotic behaviour of 𝑄. Moreover, ℎ𝑖 also affects the
variance of sample estimations of ∆ℎ𝑖𝒆𝑖

𝐽(𝒛); a higher variance makes an accurate
estimation more expensive (see section 5.4).
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5.4 Adaptive sample-average approximation
The discretisation of the probability measure – and approximation of the expectation
thereof – is done by an adaptive sample-average approximation (SAA). The reader
can find a description of the non-adaptive SAA in deliverable 6.3, §2.3.2. Here, the
number of samples in each optimisation step is adapted with the goal to find a
descent direction by estimating the gradient of the objective function. A relatively
small set of events is chosen initially and, before each subsequent iteration, an
assessment is made whether the computed gradient is likely to decrease the value
of the objective function. If it is not, new events are added to the current set.

Due to limitation (I) mentioned in section 5.3, the expectation will be estimated
using a single-level MC estimator. For a random variable 𝑋 ∈ L1(𝛺,R𝑑) and a
finite set of elementary events 𝑆 ⊂ 𝛺, the expectation of 𝑋 is estimated as

1
|𝑆|

∑
𝜔∈𝑆

𝑋(𝜔) ≕ 𝜇𝑆(𝑋) ≈ E(𝑋),

where |𝑆| is the cardinal of the set. If |𝑆| ⩽ 2, the variance of 𝑋 is estimated as

1
|𝑆| − 1

∑
𝜔∈𝑆

(𝑋(𝜔) − 𝜇𝑆(𝑋))2 ≕ 𝜍𝑆(𝑋) ≈ Var(𝑋).

We extend this notation to 𝐽 defined in (5.4) as

𝜇𝑆(𝐽(𝑧)) ≔ 𝜇𝑆(𝜙(𝑄(𝒛), 𝑡𝑧)) (5.5)
and

𝜍𝑆(𝐽(𝑧)) ≔ 𝜍𝑆(𝜙(𝑄(𝒛), 𝑡𝑧))
with

𝑡𝑧 ≔ argmin{𝜇𝑆(𝜙(𝑄(𝒛), 𝑡)) ∶ 𝑡 ∈ R}.

Similarly, we will note ∀𝑖 ∈ {1, 2}

𝜇𝑆(∆ℎ𝑖𝒆𝑖
𝐽(𝒛)) ≔ 𝜇𝑆(𝐽(𝒛 + ℎ𝑖𝒆𝑖)) − 𝜇𝑆(𝐽(𝒛))

ℎ
,

𝜍𝑆(∆ℎ𝑖𝒆𝑖
𝐽(𝒛)) ≔

𝜍𝑆(𝜙(𝑄(𝒛), 𝑡𝒛+ℎ𝑖𝒆𝑖
) − 𝜙(𝑄(𝒛), 𝑡𝑧))

ℎ
;

and accordingly

𝜇𝑆(∆𝒉 𝐽(𝒛)) ≔ 𝒆1𝜇𝑆(∆ℎ1𝒆1
𝐽(𝒛)) + 𝒆2𝜇𝑆(∆ℎ2𝒆2

𝐽(𝒛)) ≈ ∆𝒉 𝐽(𝒛) ≈ ∇ 𝐽(𝒛);

𝜍𝑆(∆𝒉 𝐽(𝒛)) ≔ 𝜍𝑆(∆ℎ1𝒆1
𝐽(𝒛)) + 𝜍𝑆(∆ℎ2𝒆2

𝐽(𝒛)).
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As recommended in deliverable 6.4, § 5.3, the samples of 𝑄 share the same events
𝑆 across the stencil (𝒛, 𝒛 + ℎ1𝒆1, 𝒛 + ℎ2𝒆2). In other words, the pairs of random
variables (𝑄(𝒛), 𝑄(𝒛 + ℎ1𝒆1)) and (𝑄(𝒛), 𝑄(𝒛 + ℎ2𝒆2)) are computed from the
same realisations of the input uncertainty (i.e. wind inflow); thus 𝑄(𝒛) is sampled
|𝑆| times instead of 2|𝑆|.

The norm test delivers a posteriori control of the variance of the sample
gradient 𝜇𝑆(∆𝒉 𝐽(𝒛)), for a given design 𝒛 ∈ R2. The approach we follow to assess
a potential descent direction is based on the ‘norm test’ introduced by Byrd et al.
2012. It is built around the observation that 𝜇𝑆(∆𝒉 𝐽(𝒛)) is a descent direction
for 𝐽 at 𝒛 if

‖𝜇𝑆(∆𝒉 𝐽(𝒛)) − E(∇ 𝐽(𝒛))‖2
2 ⩽ 𝜂2‖𝜇𝑆(∆𝒉 𝐽(𝒛)‖2

2. (5.6)

where 𝜂 ∈ [0, 1[ is a constant chosen to control the pace of growth of the event set.
As stated before, computing E(∇ 𝐽(𝒛)) is infeasible. However, the expectation of
the left-hand side of (5.6) can be approximated as

E(‖𝜇𝑆(∆𝒉 𝐽(𝒛)) − E(∇ 𝐽(𝒛))‖2
2) ≈ ‖Var(𝜇𝑆(∆𝒉 𝐽(𝒛)))‖1 ≈ 𝜍𝑆(∆𝒉 𝐽(𝒛))

|𝑆|

Using this expression, we arrive at the sample size condition

𝜍𝑆(∆𝒉 𝐽(𝒛))
|𝑆|

⩽ 𝜂2‖𝜇𝑆(∆𝒉 𝐽(𝒛))‖2
2. (5.7)

Of course, (5.7) cannot be expected to always be satisfied. After an iteration
𝑘 where it is violated for the event set 𝑆𝑘, the size of the next event set 𝑆𝑘+1 is
chosen as

∣𝑆𝑘+1∣ = ⌈
𝜍𝑆𝑘

(∆𝒉 𝐽(𝒛))
𝜂2‖𝜇𝑆𝑘

(∆𝒉 𝐽(𝒛))‖2
2
⌉ > |𝑆𝑘|.

On the other hand, if (5.7) is satisfied, the event set remains unchanged.
The benefit of this strategy is that a small initial sample size allows for a

fast progress towards the optimal design if the initial guess 𝒛0 is poor and the
optimisation error dominates all other errors; then the sample size grows adaptively
to keep the sampling error Var(𝜇𝑆𝑘

(∆𝒉 𝐽(𝒛𝑘))) in line with the optimisation error3

|𝐽(𝒛⋆)−𝐽(𝒛𝑘)| (see Beck and Teboulle 2009). The strategy proposed in algorithm 1
of section 2.2 pursues the same objective with error estimators specific to the CVaR.
It has been shown by Byrd et al. 2012 and Bollapragada et al. 2018 that the exact
norm test (5.6) gives optimal convergence rates for convex objective functions;
moreover it was found robust enough to efficiently deal with many non-convex
problems, e.g. in applications to machine learning.

3We recall that, if 𝐽 is strongly convex, then ‖∇ 𝐽(𝒛𝑘)‖2 ≳ |𝐽(𝒛𝑘) − min 𝐽|.
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5.5 Adaptive optimisation algorithm
The previous sections yield algorithm 2. It is similar to the stochastic optimisation
method introduced more briefly in deliverable 6.4, § 5.3 for the minimisation of the
expectation; the method described here minimises the CVaR and uses an adaptive
SAA. Each evaluation of 𝐽 in line 8 involves solving a unidimensional minimisation
problem as per (5.5) and (5.5); this is performed with Brent’s method from Brent
1972. In this application, the step size 𝛾𝑘 at each iteration 𝑘 is set to a constant
value 𝛾. Its value was chosen based on previous experiments on the same problem,
and is of the order of magnitude of ‖∇ 𝐽(𝑧0)‖−1. Likewise, a specific study was
carried out to choose the stencil sizes (ℎ1, ℎ2). The algorithm stops at the end of
iteration 𝑘 if the stagnation condition

𝐽(𝒛𝑘−1) − 𝐽(𝒛𝑘−2)
𝐽(𝒛𝑘) + 𝛿

< 𝜀

is satisfied, with 𝛿 and 𝜀 set by the user.

ALGORITHM 2: Gradient descent with finite differences and SAA
1 INPUT: 𝒛0, 𝛾, 𝜀, 𝛿, 𝜂
2 INITIALISE: 𝑘 ≔ 0, 𝐸 ≔ 𝜀 + 1
3 WHILE 𝐸 > 𝜀 DO
4 FOR 𝜔 ∈ 𝑆𝑘 DO
5 FOR 𝜁 ∈ {𝒛𝑘, 𝒛𝑘 + ℎ1𝒆1, 𝒛𝑘 + ℎ2𝒆2} DO
6 Re-mesh for geometry (𝜻, 𝜃(𝜔))
7 Compute sample 𝑄(𝜻)(𝜔)

8 Compute gradient estimation 𝒈 ≔ 𝜇𝑆𝑘
(∆𝒉 𝐽(𝒛))

9 IF 𝜍𝑆(∆𝒉 𝐽(𝒛)) ⩽ 𝜂2|𝑆|∥𝜇𝑆𝑘
(∆𝒉 𝐽(𝒛))∥

2

2
THEN 𝑆𝑘+1 ≔ 𝑆𝑘

10 ELSE
11 𝑛 ≔ ⌈𝜍𝑆𝑘

(∆𝒉 𝐽(𝒛))𝜂−2‖𝜇𝑆𝑘
(∆𝒉 𝐽(𝒛))‖−2

2 ⌉ − |𝑆𝑘|
12 Draw events 𝑆′ ∈ 𝛺𝑛 and set 𝑆𝑘+1 ≔ 𝑆𝑘 ∪ 𝑆′

13 Update design 𝒛𝑘+1 ≔ 𝒛𝑘 − 𝛾𝒈
14 𝑘 ≔ 𝑘 + 1
15 Update stagnation

𝐸 ≔ 𝜇𝑆𝑘−1
(𝐽(𝒛𝑘−1)) − 𝜇𝑆𝑘−2

(𝐽(𝒛𝑘−2))/(𝜇𝑆𝑘
(𝐽(𝒛𝑘)) + 𝛿)

16 RESULT: 𝒛𝑘, 𝐽(𝑧𝑘)

The practical implementation, application and results of algorithm 2 for prob-
lem 4 are reported in detail in deliverable 7.4. As an example, this numerical
experiment uses the following input values:
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𝜏 ℎ1 ℎ2 𝜂 𝛿 𝜀

0.9 𝜋
60 0.1 m 0.5 10−8 0.01

A notable limitation of the method presented here is its complexity with respect
to the dimension of the design space. Due to the use of finite differences to estimate
the gradient of the objective function, the cost of estimating 𝐽 at every point
of the stencil becomes quickly prohibitive as the dimension increases (see line 5
of algorithm 2). This curse of dimensionality could be solved by computing the
sensitivities from the solution to an adjoint problem, as was done in sections 3
and 4. However, the computation of this adjoint solution remains a challenge for
turbulent flows.

Another possible improvement mentioned in the conclusion of deliverable 6.4
is the use of a MFMC method to reduce the cost of estimating 𝐽. This approach
has been investigated and applied to a fluid flow almost identical to problem 3
in deliverable 5.5, § 3, outside the context of OUU.
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6 Conclusion

6.1 Stochastic optimisation methods for wind engineering
This report presented the latest research from ExaQUte for optimisation under
uncertainties (OUU) of the conditional value at risk (CVaR) from the theory to a
variety of applications. It began with a theoretical section combining a method
of uncertainty quantification (UQ) from deliverable 5.5, § 2 with the methodology
developed for OUU through deliverable 6.2, deliverable 6.3 and deliverable 6.4.

This led to a gradient-descent algorithm with an estimation of the gradient by
multi-level Monte Carlo (MLMC) with controlled accuracy. The rest of the report
consisted of three applications of increasing challenges. Each of these comprised
numerical experiments leveraging distributed computing through the open-source
software stack described in the introduction, in which the methods of the ExaQUte
project are implemented.

The first application was a comparatively light stochastic differential equation
(SDE): the FitzHugh–Nagumo oscillator with random forcing; an extension of a
previous benchmark, the Van der Pol oscillator. This first problem, with readily
available adjoint sensitivities, allowed to demonstrate a direct application of the
algorithm proposed in the previous section. This algorithm evinced the predicted
behaviour, with a complexity of the gradient estimation at least as good as expected
and conservative but reliable error estimation.

The second application was the shape optimisation of an airfoil so as to maximise
the CVaR of its lift coefficient under uncertain boundary conditions. The deriva-
tion of the adjoint sensitivities was described, so as to allow a high-dimensional
parameterisation of the airfoil profile. Given the constrained nature of the optim-
isation problem, a trust-region algorithm was employed. The performance was
then demonstrated in a numerical experiment on a supercomputer, with adaptive
remeshing for the changing geometry. The behaviour of the optimisation algorithm
was illustrated, including statistics of the output uncertainties before and after
optimisation.

The third and last application presented was the optimisation of the shape
of a twisted, tapered building under uncertain turbulent wind, so as to minimise
the CVaR of the mechanical moment at its base. This is the most challenging
benchmark of the ExaQUte project and was the object of a previous discussion
in ibid. Its study, implementation, and numerical resolution constitute the major
topic of deliverable 7.4. It was briefly described here so as to highlight the various
challenges it raises for the OUU methods used. The method chosen to perform the
optimisation was then presented.
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6.2 Optimisation under uncertainties
The major challenges of this work package were the use of a risk measure informative
on failure states, the difficulties inherent to the engineering applications considered,
and the integration of methods and tools developed in other work packages of the
project.

The focus on the CVaR as a risk measure began at the very inception of
the project, which allowed to make considerable progress in that direction. The
derivation of its sensitivities and their regularity issues were studied in deliverable
6.2 and deliverable 6.3. A suitable gradient-descent algorithm was then devised
in ibid. and deliverable 6.4. Finally, the efficient and reliable estimation of its
gradient has been a common thread from deliverable 6.3 to deliverable 6.5.

As far as OUU is concerned, the challenges of the target engineering applications
of this project included a high-dimensional design space; unsteady, expensive
computational fluid dynamics (CFD) simulations; lastly, a turbulent fluid flow.
Unsteady applications were studied in both deliverable 6.4 and deliverable 6.5, and
improvements in cost-efficiency were contributed by many other work packages
of the projects. The most visible improvement is likely the UQ methods, well
integrated in the optimisation method. The computation of shape sensitivities
by adjoint solutions removes the complexity of a high-dimensional design space,
as was shown in the optimisation of the airfoil. Unfortunately, these solutions
were not available for all applications, which led to estimating the sensitivities by
other methods more vulnerable to this curse of dimensionality. This limitation is
related to the turbulence of the flow, whose chaotic behaviour curtailed or even
cancelled the efficiency of several techniques used in this project. Such applications
have been tackled in the current report and in deliverable 7.4, yet they could not
benefit from some of the more advanced methods developed in the project. Several
research directions have been pursued to improve on the methods used here, e.g.
in deliverable 5.5 and deliverable 3.3; however, these developments are more recent
and not yet integrated in this work package.

This points finally to the place of this work package in the workflow of the project:
although the capstone is undeniably the work package ‘Application to robust shape
optimisation of structures under wind loads’, the work package ‘Optimisation
under uncertainties’ comes close second as the point of convergence of the research
contributions. Particularly, deliverable 6.4 and deliverable 6.5 evince the integration
of numerous beneficial developments from the other work packages of the project:
adaptive mesh refinement (deliverable 2.5); parallel computing, task scheduling
and resource management (deliverable 4.5); uncertainty quantification (deliverable
5.5); etc..
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6.3 Beyond the ExaQUte project
As pointed out above, OUU was the work packages gathering synergistically most of
the research efforts of ExaQUte. This integration of varied contributions into both
methods and tools is a significant development in itself. Due to the concurrent
developments and advancements of the different work packages, however, not all
of the latest developments have been integrated into the work package on OUU.
The most obvious is perhaps the study of multi-fidelity Monte Carlo (MFMC)
in deliverable 5.5, which could improve on the efficiency of the Monte Carlo (MC)
method currently used for turbulent flows. Another promising progress is the work
on temporal discretisation and parallelisation in deliverable 3.3 and deliverable 3.4.
These could constitute rewarding research collaborations in the future.

More generally, further time series analysis specific to UQ could bring various
improvements to this work on OUU. For example, the progressive decorrelation of the
solutions between two different spatial resolutions has been one of the challenges
of turbulent flows which prompted time-correlation studies and encouraged to
consider fluid simulations of shorter duration. Similarly, leveraging varying time
resolutions and durations to accelerate statistical estimation has been mentioned as
a promising lead at several stages of the project. Lastly, the CVaR is a risk measure
defined for real-valued random variables, which were typically temporal averages
in the studies reported here. A variation of this risk measure devised for a whole
time series could be considered, following e.g. the idea from deliverable 6.4, § 3.3;
its merit has yet to be investigated. This would require to adapt the UQ and OUU
methodology accordingly but could provide better insights for engineering design.

Finally, to improve the performance of the optimisation algorithm itself one could
look at faster gradient-based methods, e.g. Newton-like approaches. These typically
make use of information on higher derivative of the objective function, which raises
issues for non-smooth risk measure such as the CVaR. Two regularisation techniques
for the CVaR were discussed in deliverable 6.3 for this very purpose.
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